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Abstract. We show how the computational power and programmability of modern graphics processing
units (GPUs) can be used to efficiently solve large-scale pixel-based material distribution
problems using a gradient-based optimality criterion method. To illustrate the principle, a
so-called topology optimization problem that results in a constrained nonlinear program-
ming problem with over 4 million decision variables is solved on a commodity GPU.
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1. Introduction. During the last few years, the computational power of graphics
processing units (GPUs) has increased at a much higher rate than the corresponding
rate for regular CPUs. Compared to a typical CPU, the GPU allocates more tran-
sistors to data processing and fewer to caching and flow control. Graphics hardware
has evolved rapidly from fixed-function pipelines into general-function stream proces-
sors. Moreover, a graphics card is a standard computer component and is relatively
inexpensive. Thus, a regular computer equipped with a high-end GPU is potentially
a low budget “supercomputer.” Recent releases of GPU software development kits
by the hardware vendors ATI and NVIDIA facilitate the programming of GPUs and
make their computational power increasingly accessible for general computations.

The hardware architecture imposes an algorithmic constraint on the class of prob-
lems that benefit from GPU acceleration. Candidate problems need to be solvable by
algorithms in which data-parallel computations dominate the computational effort.
We will demonstrate that certain problems concerning optimization of material dis-
tributions are well suited for GPU computations. To the best of our knowledge, these
kinds of problems have not been solved on a GPU before.

Problems for which material properties at each point of an object are to be de-
termined from computations are of high and increasing engineering and scientific in-
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terest. A prime example is the problem of creating a load-carrying structure by freely
distributing a fixed amount of material in an optimal way according to a criterion
such as maximum stiffness. Bendsøe and Sigmund [3] extensively review this type
of problem, usually called topology optimization. Topology optimization capabilities
are included in commercial finite-element packages, for instance, those from Altair
Engineering and FE-Design. These packages are increasingly used in the design of
advanced mechanical components, for instance, in the aerospace and car industries. A
problem similar in nature to topology optimization is the so-called inverse problem of
determining material properties from a limited amount of measurements of an object’s
response to mechanical or electromagnetic forcing. In previous publications, we have
applied the topology optimization concept to the design of devices involved in wave
propagation problems [27, 28], and we have used similar ideas for microwave tomog-
raphy, where material properties of tissue are reconstructed from scattered microwave
radiation [29].

Material distribution problems are typically cast as large-scale nonlinear program-
ming problems over the coefficients in a partial differential equation. The structural
optimization community is a source of several successful optimization algorithms par-
ticularly tailored for such problems; we refer to the book by Bendsøe and Sigmund [3]
for an overview and further references. The coefficient field is preferably represented
in terms of large (for high resolutions) rectangular arrays of equally sized (to avoid
a priori bias) pixels or voxels. GPUs are perfectly suited for the manipulations of
such objects that are needed in the optimization algorithms. Most algorithms also
require, at each iteration, an accurate numerical solution of the partial differential
equation associated with the candidate coefficient field. For the success of a GPU
implementation, it is therefore crucial that the partial differential equation can be ef-
ficiently solved in a data-parallel manner. We discuss the implementation on a GPU
of a prototypical material distribution problem for which this requirement holds.

Our contribution is in line with a recent trend that utilizes GPUs to accelerate
the computation for general problems. In a recent survey, Owens et al. [22] present
a number of applications for which graphics hardware is used as a general-purpose
compute device. The Norwegian strategic institute project “Graphics hardware as
a high-end computational resource” focuses on image processing, partial differential
equations, geometry, and linear algebra [7]. Harris et al. [15] simulate dynamic physi-
cal phenomena, such as boiling and reaction-diffusion, by modeling the complex global
behavior with a set of simple local operations. Rumpf and Strzodka [23] use the graph-
ics processor to track the propagation of a two-dimensional level-set model in order
to perform segmentation of digital images. Their ideas were later generalized, by
Lefohn et al. [19], into a GPU model supporting sparse and dynamic grids for volume
deformation and visualization. Krüger and Westermann [18] develop and implement
linear algebraic operators on a GPU and perform numerical simulations of physical
phenomena of waves and fluids. Bolz et al. [4] use the GPU for a sparse-matrix
conjugate gradient and multigrid solver and demonstrate the methods on geometric
flow and fluid simulations. Goodnight et al. [12] present a multigrid solver for more
general boundary value problems. Hillesland, Molinov, and Grzeszczuk [17] study
a class of nonlinear optimization problems as a data streaming process and apply
their methodology to solve image-based modeling problems. Until quite recently, one
technical limitation was that GPUs natively offered only single precision accuracy.
Hillesland and Lastra [16] and Da Graça and Defour [13] describe how to implement
and perform computations in higher precision on the graphics device. Göddeke, Str-
zodka, and Turek [11] use a mixed precision approach to achieve higher accuracy
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for finite-element simulations, illustrating benefits for several conjugate gradient and
multigrid solvers. Recent releases of GPUs with native double precision support have
finally overcome the single precision limitation.

2. Problem Description. A rectangular plate occupies a unit-size two-dimen-
sional domain Ω, as illustrated in Figure 2.1. The boundary ∂Ω consists of two
nonoverlapping parts ΓD and ΓN. The plate is insulated along boundary ΓN, held at
constant temperature at boundary ΓD, and heated by sources uniformly distributed
within the domain. We assume that the plate is made out of a solid material with
heat conduction properties that are inhomogeneous (spatially varying) but isotropic
(equal in each direction). At thermal equilibrium, the temperature field T satisfies

(2.1)






−∇ · (κ∇T ) = f in Ω,

T = 0 on ΓD,

(κ∇T ) · n = 0 on ΓN,

where κ is the scalar heat conduction coefficient, f the (constant) heat source density
(f ≡ 1 is used in the numerical experiments), and n the unit normal on ΓN.

Now assume that we have a limited amount of a high conductivity material (κ =
κ) and an unlimited amount of a low conductivity material (κ = κ); we used κ = 1
and κ = 0.001 in the numerical experiments. We parameterize the heat conduction
coefficient at each point in the domain as

(2.2) κ(x) = κ+ (κ− κ)α(x),

where α belongs to the set of admissible design variables

U = {α ∈ L∞(Ω) | α(x) ∈ {0, 1} a.e. in Ω } .

We seek to distribute these two materials in order to obtain a temperature field
that is as “even” as possible, a requirement that we formulate as the minimization of

Ω

ΓD

ΓN

ΓN

Fig. 2.1 The problems consist of finding the distribution within Ω of two materials with different
heat conduction properties in order to obtain a temperature field that is as even as possible.
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the objective function

(2.3) J(α) =

∫

Ω

Tf dx,

where T is obtained by solving equation (2.1), in which κ is defined by expression
(2.2). Note that we are minimizing the average temperature, since f is constant. Our
material distribution problem can then be formulated as the optimization problem

(2.4)

min
α∈U

J(α)

subject to

∫

Ω

α dx ≤ V,

where V corresponds to the available amount of the high conductivity material.
Equation (2.1), or others that are very similar, also models many other physical

phenomena, such as groundwater flow, elastic torsion, and electrostatics. Variations of
optimization problem (2.4) can be formulated for many of these models, as Donoso and
Sigmund [8] comprehensively describe. The structure of optimization problem (2.4)
is similar to other more complicated topology optimization problems, such as the
material distribution problem of linear elasticity; we refer to Bendsøe and Sigmund’s
book [3] for more examples and applications. The problem can therefore act as an
appropriate model problem in the development of new algorithms, such as Gersborg-
Hansen, Bendsøe, and Sigmund’s [10] investigation of the use of finite-volume methods
in the context of topology optimization.

Optimization problem (2.4) is an example from a class of problems that Bejan [1]
calls area-to-point flow problems. As we will see, the picture of the optimal conduc-
tivity distribution resembles the root of a plant. Bejan argues that this and similar
geometric shapes, ubiquitous in engineering and the natural world, originate in op-
timization principles. Our experiments demonstrate that finer and finer feeder roots
emerge as the discretization is refined. This is a manifestation of the fact that opti-
mization problem (2.4) is ill-posed in the sense that the problem lacks solutions within
the set U of feasible designs: there exist nonconvergent minimizing sequences of ele-
ments from U . For real life problems there are often some external requirements, such
as a minimal width of the structural members. Imposing such a constraint assures
the existence of a minimizer within the set U .

The requirement that U should be binary-valued leads in the discrete case to a
large-scale nonlinear integer programming problem. Generally, problems of this type
are computationally expensive to solve. Therefore, we choose to attack the problem
using a gradient-based method in combination with a penalization technique. In order
to use a gradient-based algorithm, we relax the range of the design variable to the
continuum [0, 1]; that is, we replace the space of admissible designs U with

Û = {α ∈ L∞(Ω) | α(x) ∈ [0, 1] a.e. in Ω } .

Replacing U with Û turns problem (2.4) into a convex optimization problem and
assures the existence of a unique solution. However, this change will likely yield
nonbinary optimal designs, that is, the optimal design does not satisfy α ∈ {0, 1}
almost everywhere. In other words, the computed design is not a solution to the
original problem of how to distribute the two materials at hand. In order to promote
the values 0 and 1 and suppress the intermediate values, we use the so-called SIMP
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(solid isotropic material with penalization) approach [2], in which the problem of
finding the distribution of the two materials is approximated by the problem

(2.5)

min
α∈Û

Jp(α)

subject to

∫

Ω

α dx ≤ V,

where Jp(α) = J(αp) is the penalized objective function and p is a penalty parameter.
Note that optimization problem (2.5) is obtained by replacing definition (2.2) of the
heat conduction coefficient κ by the relation κ = κ + (κ − κ)αp. SIMP suppresses
intermediate values 0 < α < 1 when p ≫ 1 since intermediate values make much
larger contributions to the volume constraint than to the conductivity distribution:
intermediate values give a small gain compared to their cost.

The penalty destroys the convexity of the relaxed problem. A common approach
to regularizing the SIMP formulation to ensure existence of solutions is the filtering
strategy suggested by Bruns and Tortorelli [6], in which the conductivity κ is defined
through the penalized convolution

(2.6) κ(x) = κ+ (κ− κ)

(∫

Ω

σ(x)max

(
0, 1−

|x− y|

τ

)
α(x) dy

)p

.

Parameter τ is the filter radius and σ(x) is a function such that
∫

Ω

σ(x)max

(
0, 1−

|x− y|

τ

)
dy ≡ 1.

The filter introduces a local averaging within a circle of radius τ around each point.
Moreover, when used together with a penalization approach, the filter radius τ limits
the minimal width of the structural members [5]. The filter (2.6) is also useful for
a different reason, namely, to stabilize the numerical procedure, as we discuss in
section 3.1.

3. Numerical Approach and Implementation.

3.1. Discretization. We partition the domain Ω into N = n2 squares, where n is
the number of panels in each direction, and use the finite-element method with bilinear
elements to solve equation (2.1) numerically. Let t = (t1, t2, . . . , tM )T , where M =
(n+1)2, be the vector of degrees of freedom, associated with the vertices of the squares,
for the temperature field (Figure 3.1). Interpolation with the finite-element shape
functions ϕi yields the continuous, piecewise bilinear approximate temperature field

Th(x) =

M∑

i=1

tiϕi(x)

at any point x ∈ Ω. We approximate the conductivity κ as well as the design variable α
with functions κh, αh that are constant on each element. Letting k = (k1, k2, . . . , kN )T

and a = (a1, a2, . . . , aN )T denote the degrees of freedom for κh and αh (Figure 3.1),
the discrete version of the penalized convolution (2.6) can be written as

(3.1) k = κ+ (κ− κ) (Fa)
p
,

where F is a symmetric matrix, with components Fij , corresponding to the integral
in expression (2.6), and the exponentiation of the vector Fa is an elementwise oper-
ation. The filter radius τ is chosen as a fixed multiple of the element size so that
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Fig. 3.1 The crosses indicate the degrees of freedom for the temperature field Th and the dots the
degrees of freedom for the conductivity κh and the design variable αh

the averaging involves only nearest neighbors. Note that this filter does not impose
a smallest geometry scale; to impose such a constraint, the filter radius would need
to be fixed independently of the element size. Here, we wish to capture the increas-
ing scales in the conductivity pattern as the discretization is refined. Our filter acts
only as a stabilization to combat an artifact of purely numerical origin, the so-called
checkerboard phenomenon that appears when using this choice of finite elements. See
section 1.3.2 in the book by Bendsøe and Sigmund [3] for more information about the
checkerboard problem.

The linear system resulting from the finite-element discretization of problem (2.1)
can be written

(3.2) K(k)t = f ,

where matrix K(k) and vector f have elements

Kij =

∫

Ω

κh∇ϕi · ∇ϕj dx and fi =

∫

Ω

ϕif dx, i, j = 1, . . . ,M.

To achieve good performance on the GPU it is necessary to keep the computations
localized as well as to reduce the number of memory operations. The system matrix
K is symmetric and positive definite, which admits the use of the preconditioned
conjugate gradient (PCG) method to solve linear system (3.2). The PCG algorithm
complies well with the requirements of the GPU as long as the preconditioner is well
chosen. We use a diagonal preconditioner based on the sum of the conductivities in
the elements surrounding each temperature node. The preconditioner compensates for
the varying coefficient in the system matrix. The PCG algorithm requires only vector
operations, inner products, and the results of matrix–vector products. Moreover, the
system matrix is sparse and acts only locally on the immediately surrounding nodes.
There is thus no need to explicitly form the system matrix: the elements are computed
on the fly while computing the action of the matrix on a vector.

The objective function (2.3) is discretized as

Jh(a) = f
T
t,

where t solves equation (3.2) with k defined as in expression (3.1). Optimization
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problem (2.5) is discretized as

(3.3)
min

0≤a≤1
Jh(a)

subject to a
T
e ≤ NV,

where e = (1, 1, . . . , 1)T is the vector of ones. The gradient of the mapping k �→ f
T
t =

jh(k) is locally computable from the solution of equation (3.2) through the expression

(3.4)
∂jh

∂kn
= −t

T
K

(n)
t with K

(n)
ij =

∫

En

∇φi · ∇φj dx,

where En is the nth element. The gradient of Jh (that is, the gradient with respect
to changes in the design variable a) follows from expression (3.4) and the chain rule
applied to relation (3.1):

∂Jh(a)

∂an
=

∑

i

∂jh(k)

∂ki
(κ− κ)p(Fa)p−1

i Fin = p(κ− κ)
∑

i

Fni
∂jh(k)

∂ki
(Fa)p−1

i ,

that is,

∇Jh(a) = p(κ− κ)Fb, where bn = −t
T
K

(n)
t(Fa)p−1

n , n = 1, . . . , N.

We use the so-called optimality criterion method to solve optimization problem
(3.3). (For a more detailed exposition of the algorithm, see, for instance, section 1.2
in Bendsøe and Sigmund’s book [3].) From the necessary condition of optimality for
problem (3.3), it follows that there is a Λ ≥ 0 such that, for those i where 0 < ai < 1,

∂Jh

∂ai
+ Λ = 0;

Λ is the Lagrange multiplier corresponding to the volume constraint a
T
e ≤ NV .

Moreover, for the current problem, it holds that the volume constraint is active and
Λ is strictly positive at optimum.

Each step of the optimality criterion algorithm updates the design variable a in
order to decrease the objective function while keeping the box and volume constraints
satisfied. The update starts by guessing the value of Λ > 0. Then the quantity

Bi = −
∂Jh/∂ai

Λ

is checked at each element. From physical reasoning, it can be argued that the value Bi

indicates the relative gain of changing the conductivity at the corresponding element.
Loosely speaking, the algorithm attempts to increase ai when Bi > 1 and decrease it
when Bi < 1, but only if the box constraints will not be violated. In precise terms,
the optimality criterion method applies the following update:

(3.5) anew
i =






max{aold
i − ζ, 0} if aold

i Bη
i ≤ max{aold

i − ζ, 0},

min{aold
i + ζ, 1} if aold

i Bη
i ≥ min{aold

i + ζ, 1},

aold
i Bη

i otherwise,

where η is a tuning parameter (to soften the amount of update) and ζ is a move limit
(see below). The numerical experiments use η = 0.5 and ζ = 0.2. The first two cases
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in (3.5) enforce the box constraint 0 ≤ a ≤ 1 and impose through ζ a limit on the
size of the update at each design element. After update (3.5), the volume constraint
is checked and the value of the Lagrange multiplier Λ is adjusted with a bisection
method: if the volume is too large (small), the Lagrange multiplier is increased (de-
creased). The update scheme (3.5) and the Lagrange multiplier adjustment alternate
until the volume constraint is actively satisfied.

The above updating strategy typically works well when there is only one global
constraint on the design variable (the volume constraint). However, the update strat-
egy as motivated above is a heuristic that is not so easily extended to more general
problems. For material distribution problems, there are typically far fewer global con-
straints than there are design variables. In such cases, the use of so-called separable
convex approximations together with dual solution methods offers a more systematic
approach [9, 25]. The above optimality criterion approach can be viewed as the sim-
plest version of these more systematic approaches [14]. For most of these methods,
including the optimality criterion method, there is no guarantee that method will con-
verge; however, some methods (for example, GCMMA [26]) are globally convergent.

Below we state the main steps of the optimization algorithm. The following
section contains a more detailed description of the implementation. In order not to
impose any a priori bias, we initially set each component of a equal to V throughout
the domain. The optimization problem is then solved numerically by repeating the
following steps.

1. Compute the filtered design

[Set af = Fa]
2. Find the temperature distribution

[Compute k = κ+ (κ− κ)(af )
p (elementwise exponentiation)]

[Solve K(k)t = f using the PCG method]
3. Compute the gradient

[Compute da (= ∂J/∂a) using the values of t and af ]
4. Update the design

[Apply the optimality criterion scheme (3.5)]
The above four steps are iterated until the maximum change over all elements of the
design is less than a prespecified tolerance; the numerical experiments used 0.001.
For the optimality criterion scheme, this condition is equivalent to requiring that the
residual of the first-order necessary optimality conditions (the KKT conditions) is
sufficiently small. If two consecutive steps give the same design, then Bi = 1; that is,
Λ = −∂Jh/∂ai for all i such that 0 < ai < 1, and the KKT conditions are satisfied.

3.2. Implementation. The numerical experiments presented in the next section
are executed using a regular personal computer equipped with an Intel Core 2 Duo
processor running at 1.86 GHz and an NVIDIA 8800 GTX–based graphics card. This
GPU consists of 16 multiprocessors, each containing 8 processors. Each multiproces-
sor has a SIMD (single instruction multiple data) architecture, that is, each processor
on the multiprocessor executes the same instruction but works on different data. The
device memory is mainly divided into a global memory accessible from all multipro-
cessors, a 16 KB shared memory local on each multiprocessor, and a number of local
registers for each processor.

The algorithm presented in the previous section is implemented using NVIDIA’s
Compute Unified Device Architecture (CUDA) [21], utilizing the level 1 CUBLAS [20]
(Basic Linear Algebra Subprograms (BLAS) implemented on the graphics device)
routines for the inner products in the PCG algorithm. The CUDA programming
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∂Ω

∂Ω

Fig. 3.2 Left: the domain is divided into a number of overlapping blocks. Right: illustration of a
single block.

interface consists of a set of extensions to the C programming language and a runtime
library. The CUDA programming model is based on dividing the computational
problem into a number of blocks, where each block consists of a number of threads.
When the program is executed, each block is processed by one multiprocessor only,
which enables fast memory access through the shared memory. Each multiprocessor
typically processes a number of blocks simultaneously by time slicing; these blocks
jointly utilize the registers and the shared memory on the multiprocessor. On the
multiprocessor, the blocks are divided into groups of 32 threads on which the SIMD
operations are used. For more information on the programming model, how to set up
memory access patterns to minimize latency and avoid bank conflicts, etc., we refer
to the programming guide [21].

Below we describe an implementation of the algorithm on the GPU focusing on
the main ideas. The computational problem is divided into blocks, as illustrated in
Figure 3.2. Each block is responsible for a specific part of the computational domain
Ω. The left diagram in Figure 3.2 shows a collection of 16 blocks covering the upper
left part of the domain. This diagram also illustrates the small overlap between
the blocks due to the fact that when computing the matrix–vector product and the
filtering, the nodes and elements require information from their nearest neighborhood.
The right diagram shows a single block; this block is responsible for updating the
elements marked with • and the nodes marked ×. Each block also has a number
of ghost elements (the unmarked elements) and ghost nodes (the unmarked nodes
not on the dashed lines), whose values are required for the update of the values the
block is responsible for. The block reads data from all elements and nodes, including
the ghosts, but computes and writes the results for the internal elements and nodes
only. The blocks bordering on the bottom or right boundary of the domain are the
exceptions to this scheme. Within these blocks, data are also written to corresponding
boundary nodes. Since each block updates 14×14 elements, the discretization size N
is chosen so that a square grid of blocks fills the domain, that is, N = (14n)2, where
n is the number of blocks in each direction.

Each block consists of 256 elements and 256 nodes, and is handled by 256 threads.
Each thread is assigned one element and the node at its upper left corner (right
diagram in Figure 3.2). Whenever computations are performed on a specific block,
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the required nodal and element values are read into the fast shared memory portion
of the multiprocessor on which the block is active. The computations are massively
parallel; however, the movement of data between the global and shared memory spaces
takes a significant part of the execution time, since, in general, only a small fraction
of each variable fits into the available fast shared memory. By allocating threads
to the ghost elements and ghost nodes, the costly global memory operations can be
handled in a perfectly parallel manner at the cost of the threads associated with the
ghost cells idling during the computations. An alternative viewpoint is to consider the
shared memory as the on-chip cache. In this view, these noncomputational threads
are devoted to improving the data-caching efficiency.

One important implementation aspect comes from the combination of the lack of
native double precision support on the GPU that we employ, which limits the imple-
mentation to single precision floats, and the fact that the conjugate gradient method
is notoriously sensitive to roundoff errors. We noted that a naive implementation of
the inner product summations in single precision on the CPU is not accurate enough
for the PCG method to converge. Fortunately, the fast CUBLAS routines provide
sufficiently accurate inner product computations to ensure convergence of the con-
jugate gradient solver. Note that more recent generations of GPUs, released after
completion of the present study, offer native double precision support.

4. Results. Figure 4.1 shows two conductivity distributions optimized using a
discretization of N = 702 elements and allowing high conductivity material to fill half
the plate, that is, V = 0.5. The left image is optimized using a single penalization
of p = 3, while the right image is optimized using a continuation approach for the
penalization; that is, the problem is first solved without penalization (p = 1), then
p is increased and the optimization problem is solved again using the previously
computed solution as a starting guess. In the experiments p is increased by 0.5
between the optimization rounds and the procedure is repeated until the problem is
solved with p = 3. These two conductivity distributions both successfully even out

Fig. 4.1 Material distributions optimized on a discretization of N = 702 elements allowing high
conductivity material (black) to fill a relative volume fraction V = 0.5 of the plate. Left:
using a single penalization level p = 3. Right: using a continuation approach for the
penalization.
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Fig. 4.2 Material distributions optimized on a discretization of N = 10502 elements allowing high
conductivity material (black) to fill a relative volume fraction V = 0.5 of the plate. Left:
using a single penalization level p = 3. Right: using a continuation approach for the
penalization.

the temperature field and jointly illustrate that the optimization problem does not
have a unique solution. Similar results can also be obtained by modifying Sigmund’s
99-line Matlab code [24] following the description in the corresponding paper.

Note that there is nothing in the problem formulation stipulating that the optimal
design is symmetric. One of the interesting aspects of this nonlinear problem is that
the detailed shapes are sensitive to disturbances, and it can be seen that the results
are not perfectly symmetric. The nonsymmetry is imposed by the properties of finite-
precision arithmetic. That is, even if the conductivity field is perfectly symmetric,
the numerically computed temperature field will generally not be symmetric.

Increasing the resolution to N = 10502 results in the distributions depicted in
Figure 4.2. The final values of the objective function for the two distributions are
essentially the same. Moreover, the two distributions have the same main character-
istics. Next to the heat sink both have a large core consisting of high conductivity
material, and the amount of high conductivity material decays as the distance to the
heat sink increases. Attached to the core are small wires or roots of high conductiv-
ity material, extending out to the rest of the domain. The way these roots stretch
out from the core differs between the two optimized distributions. The roots in the
left image, obtained when using a single penalization of p = 3, have a wiggly form,
while the roots in the right image, obtained using the continuation approach for the
optimization, extend straight out toward the boundary. Changing the amount of
available high conductivity material to be 30% of the plate area (V = 0.3) and still
using a discretization of N = 10502 elements results in the optimized distributions
depicted in Figure 4.3. These distributions show the same main characteristics as the
distributions optimized using V = 0.5 (Figure 4.2). As a final example, the image in
Figure 4.4 shows the resulting material distribution for N = 21002, V = 0.5, and a
single penalization level of p = 3. In this case, the nonlinear optimization problem
has over 4 million design variables.
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Fig. 4.3 Material distributions optimized on a discretization of N = 10502 elements allowing high
conductivity material (black) to fill a relative volume fraction V = 0.3 of the plate. Left:
using a single penalization level p = 3. Right: using a continuation approach for the
penalization.

Fig. 4.4 Material distribution optimized using a single penalization level p = 3 on a discretization
of N = 21002 elements allowing high conductivity material (black) to fill a relative volume
fraction V = 0.5 of the plate.
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Fig. 5.1 Iteration time in seconds as a function of problem size for the different experimental setups.
The solid line illustrates the computational time on the GPU. The dotted line presents the
computational time on a single core of the 1.86 GHz Intel Core 2 Duo processor. The
dashed line shows the computational time on four cores of a 2.80 GHz AMD Opteron 2220
based HPC cluster.

5. Discussion. For small problem sizes, the fastest way of solving the linear sys-
tem (3.2) on the CPU would be to use a banded direct method requiring O(N2)
operations and O(N3/2) memory. Direct methods become increasingly costly as the
problem grows. For example, the solution of the linear system corresponding to the
optimization using N = 21002 elements (Figure 4.4) would require 35 GB of memory.
On the other hand, the memory requirements of the conjugate gradient solver grow
as O(N), and the expected running time is O(N3/2). Each step requires O(N) oper-
ations, and the number of iterations required is expected to grow as O(N1/2) due to
the increase in the condition number of the system. That is, the conjugate gradient
method is both faster and less memory consuming for large problems.

To compare the running time for the algorithm on the GPU with typical CPU-
based implementations, we also implement a serial version of the algorithm as well as
an OpenMP parallelized version. We run the GPU and the single core CPU versions
of the algorithm on a workstation equipped with an 1.86 GHz Intel Core 2 Duo
processor and an NVIDIA 8800 GTX–based graphics card. The parallel version of
the algorithm is executed on an AMD Opteron 2220 (2.80 GHz) based HPC machine.
Figure 5.1 shows the time per iteration for the three experimental setups described
above. This estimate compares the running time for the first 10 iterations of the main
optimization loop using the implementation discussed in section 3.2 for the GPU and
an unblocked implementation in single precision—except for the summations in the
conjugate gradient method, which are performed in double precision—of the same
algorithm for the CPUs.

The GPU-based version of the code starts to perform faster than the CPU-based
version at problem sizes larger than N = 562, and is faster than the parallel version at
problem sizes larger than N = 2242. A comparison, for the larger problems, between
the running time of the algorithm using the GPU and using a single core of the CPU
shows that the implementation using the GPU is about 20 times faster than the CPU
implementation and about 3 times faster than the parallelized version running on the
HPC machine.
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A closer look at the asymptotics for the time per iteration reveals that the single
core CPU follows the asymptotic growth of O(N3/2). The parallel CPU-based version
attains this asymptotic growth once the additional overheads, such as startup latency
and communications, are small relative to the computation cost. In contrast, the
time per iteration for the GPU follows a dogleg-shaped curve. The smallest problem
consists of only four blocks, which leaves most of the multiprocessors on the GPU idle.
The next problem size also fits on the GPU; thus, the same number of operations are
required to compute each matrix–vector product in the two smallest problems. The
increase in computational time for the smaller problems is mostly due to the O(N1/2)
growth of the conjugate gradient iterations. As the problems get larger, the time per
iteration on the GPU follows the expected O(N3/2) growth.

6. Conclusions. Material distribution problems are often posed on uniform
meshes, which easily map onto the GPU, to avoid a priori bias between different
parts of the domain. To allow the use of the conjugate gradient algorithm, the system
matrix needs to be symmetric and at least positive semidefinite. There are sev-
eral other problems of scientific and engineering interest that share that particular
problem structure, most notably topology optimization problems for linearly elastic
structures [3]. However, material distribution problems for other applications, for in-
stance, in the context of wave propagation and fluid flow, do not yield symmetric and
positive definite system matrices. In these cases, the availability of suitable solution
algorithms for the governing equations is a crucial issue when determining whether a
material distribution problem would benefit from a GPU acceleration.

The GPU can provide high computing performance per price and energy unit for
material distribution problems. To utilize the computational power of the GPU the
problem needs to be formulated in terms of data-parallel tasks. Structural topology
optimization problems are amenable to data parallelism and can be treated analo-
gously to the heat conduction problem of this paper. The acoustics problem is much
more difficult; the challenge here consists of finding efficient data-parallel solvers for
the Helmholtz equation.
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Conjugate gradients and multigrid, ACM Trans. Graphics, 22 (2003), pp. 917–924.

[5] T. Borrvall, Topology optimization of elastic continua using restriction, Arch. Comput. Meth-
ods Engrg., 8 (2001), pp. 351–385.

[6] T. E. Bruns and D. A. Tortorelli, Topology optimization of non-linear elastic structures and
compliant mechanisms, Comput. Methods Appl. Mech. Engrg., 190 (2001), pp. 3443–3459.

[7] T. Dokken, T. R. Hagen, and J. M. Hjelmervi, The GPU as a high performance com-
putational resource, in Proceedings of the 21st Spring Conference on Computer Graphics
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