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Abstract—Air pollution is a contributor to approximately
one in every nine deaths annually. To counteract health issues
resulting from air pollution, air quality monitoring is being car-
ried out extensively in urban environments. Currently, however,
city air quality monitoring stations are expensive to maintain,
resulting in sparse coverage. In this paper, we introduce the
design and development of the MegaSense Cyber-Physical System
(CPS) for spatially distributed IoT-based monitoring of urban
air quality. MegaSense is able to produce aggregated, privacy-
aware maps and history graphs of collected pollution data. It
provides a feedback loop in the form of personal outdoor and
indoor air pollution exposure information, allowing citizens to
take measures to avoid future exposure. We present a battery-
powered, portable low-cost air quality sensor design for sampling
PM2.5 and air pollutant gases in different micro-environments.
We validate the approach with a use case in Helsinki, deploy-
ing MegaSense with citizens carrying low-maintenance portable
sensors, and using smart phone exposure apps. We demonstrate
daily air pollution exposure profiles and the air pollution hot-
spot profile of a district. Our contributions have applications
in policy intervention management mechanisms and design of
clean air routing and healthier navigation applications to reduce
pollution exposure.

Index Terms—Air quality, Cyber-physical Systems, Internet of
Things, Low-cost sensors, Data integration and visualization.

I. INTRODUCTION AND BACKGROUND

Air pollution is a growing concern with an increasing

number of acute air pollution episodes worldwide [1], [2].

As a result, data on air quality is becoming increasingly

available1,2,3 and the science underlying the related health

impacts is also evolving rapidly. To date, air pollution – both

ambient (outdoor) and household (indoor) – is considered the

biggest environmental risk to health, carrying responsibility

for about one in every nine deaths annually [3]. In response,

many cities commit to a network of stations that monitor

air quality in real-time. However, the high costs of instal-

lation and maintenance of these stations results in a sparse

monitoring [4], satisfying the legislative requirements but not

providing information about localized air pollution important

to health protection [5].

Urban air is an umbrella concept, combining outdoor and

indoor air [6]. In addition to spatial and temporal variability

of outdoor concentrations, the indoor environment plays a

1https://www.hackair.eu/open-air-quality-datasets/
2https://www.eea.europa.eu/themes/air/explore-air-pollution-data
3https://index.okfn.org/dataset/emissions/

significant role in personal exposure to air pollution [7].

Indeed, urban populations spend large fractions of their time

throughout life. For example, in European cities people spend

on average about 80–90% of their time indoors, 1–7% percent

in a vehicle, and only 2–7% outdoors [8]. Indoor environments

represent important micro-environments when addressing per-

sonal exposure to air pollution in urban environments.

Cyber-physical systems (CPS), defined as networked intel-

ligent systems embedding sensors, controllers and actuators

designed to interact with the physical world, have emerged

as a powerful solution for monitoring the urban environment.

Examples of CPS adoption include real-time management

in the urban water cycle [9]; smart buildings for energy

efficiency [10]–[12]; and smart manufacturing and industry

4.0 [13]. Building on advances in Internet of Things, air

quality can now be monitored with low-cost consumer-grade

sensors [14], enabling designing powerful CPS which ag-

gregate measurements and use them to determine, e.g., air

pollution measurement coverage and local pollution hot-spots.

This enables taking actions such as:

1) Warning citizens to avoid certain areas and times in

different micro-environments;

2) Detecting patterns in pollution over time to predict health-

ier routes with least pollution exposure for individuals;

3) Preventing pollution hot-spot formation by recommend-

ing routes that spread vehicle pollution instead of con-

centrating it;

4) Motivating drones, autonomous vehicles, and citizens

carrying personal air quality sensors to monitor areas that

lack coverage.

In this paper, we present the design, development and

deployment of the MegaSense cyber-physical system for mon-

itoring urban air quality. MegaSense is the first end-to-end sys-

tem providing coverage of air pollution exposure in different

urban micro-environments to be used continuously throughout

the day. Previous system research has focused on improving

coverage of specific parts of the monitoring infrastructure.

Mainly on the performance of low-cost sensors [5], calibration

of low-cost sensors [15], providing on-line platform services

[16] with downloadable Apps, and development of indoor

air quality supervision systems [17]. In contrast, MegaSense

provides opportunities to improve both policy making and the

engagement of citizens. Our contributions are as follows:



• MegaSense, a cyber-physical system design for federated

air-quality sensing using crowd-sourced data;

• A battery-powered, portable low-cost air quality sensor

design, tested in Helsinki by 100 volunteers;

• Analysis and demonstration use cases of resulting air

quality measurements.

II. MEGASENSE SYSTEM MODEL

Figure 1 gives an overview of the MegaSense system

architecture. The system receives data from sensing platforms

measuring local pollution exposure and other variables affect-

ing it. This data is processed into air quality information such

as maps and advice on how to reduce personal exposure, take

healthier routes, and direct participants to improve measure-

ments in areas that have limited sensor coverage. Below we

detail the different components of the system architecture.

A. MegaSense Core

The core of MegaSense consists of two layers: the Edge and

Cloud. The Edge layer is responsible for reactively receiving

data from available data sources, such as sensor devices,

traffic data systems, and weather information systems. It

delivers advice and pollution maps to the mobile Exposure App

which provides the user with personal air pollution exposure

information as well as district exposure maps.
This layer is responsible for data preprocessing for filtering

and data cleaning. The data is then placed in long-term

storage for the use of the Cloud layer. The data input API

is generic, and can support all types of environmental data.

The pre-processing components are deployed at the edge of

the network in order to increase the scalability of the system,

e.g. by doing initial aggregation and removing erroneous

values, and therefore reducing data pressure and bandwidth

requirements. The same edge layer can be run on multiple

”edges”, such as districts, 5G network towers, and shopping

malls. This will improve coverage and allow citizens to use

local data when available. The MAP API serves up maps based

on latest results of the analytics from the large scale storage,

or a local cache, to the Exposure App.
The Cloud layer is responsible for storing cleaned data

and aggregating the crowd-sourced data while preserving the

privacy of participants. It includes a scalable storage system

based on Lustre, a distributed production-grade file system

similar in principle to Amazon S3. MegaSense does not man-

date the use of a particular storage system, and is compatible

with any system implementing a POSIX File System API.
Raw and processed data are stored in buckets, representing

different datasets for the purposes of separation of concern,

access control, and privacy. MegaSense permissions to access

or upload data can be controlled on a per-bucket and per-user

basis. The data is collected and stored as raw data in JSON

format. Each authorized entity is given an access key with

access to the required buckets, and which can be revoked, in

case it falls into the wrong hands.
The processing and analytics of the Cloud layer generate

maps with aggregated pollution measurements, so that individ-

ual measured locations are not revealed. It takes into account

Figure 1: MegaSense Cyber-Physical System.

vector information such as distance between sensor devices,

so data is processed individually as a spatially aggregated

time series. Aggregates such as blocks, districts will get air

quality estimates this way. In addition, crowd-sourced sensor

data is improved through on-line calibration [15]. The system

combines crowd-sourced data with traffic information and 3rd

party data sources to provide users a holistic view of current

pollution hot spots and nearby pollution sources.

B. External Systems

External data is pulled to the rest input API from open

sources such as weather data from National Meteorological

institutions, city reference station air pollution data from

municipal bodies for sensor data calibration, traffic data from

city info sharing services, and geo-spatial applications such

as OpenStreetMaps. Third parties, such as business entities

and other researchers, can also supply or retrieve data and

results through the Input and Exposure APIs. In the current

research deployment data upload and access by third parties4,

the Input and Exposure APIs ( Figure 1) are called Write and

Read, respectively.

C. Air Pollution Monitoring and Exposure App

To monitor air pollution at the personal and local level,

citizens can use a mobile app to see current and predicted air

quality conditions. Citizens can also carry a portable sensor

device [18], allowing for a much more accurate picture of

their personal exposure to pollutants. These portable sensor

devices include meteorological variables such as temperature,

relative humidity (percent) and wind speed, and air pollutants

4https://megasense-server.cs.helsinki.fi/



Figure 2: Hope Sensor.

such as particulate matter (PM2:5 and PM10), and gases (NO2,

CO and O3). In addition, the sensor device can interact with

the smartphone, allowing for collections of rich sensor data to

determine other factors that affect pollution exposure, such as

the location of the measurement, whether the user is indoors

or outdoors, and the type of vehicle being used.

As the citizens pass through micro-environments such as

indoors, in transit, outdoors, the exposure caused in these

micro-environments is measured by the sensing platform. This

data is processed by MegaSense and delivered to the Exposure

App, which shows instantaneous personal exposure, exposure

over time, as well as a pollution map for route planning.

III. PORTABLE AIR QUALITY SENSOR DESIGN

To provide citizens a convenient and affordable method

to measure their exposure to air pollution, the University of

Helsinki designed a new sensing platform based on a BMD-

340 System on a module and mobile phone app called HOPE

sensor (Figure 2). The platform connects to COTS Android

smartphones over Bluetooth Low Energy, and the smartphones

report their readings further to a collecting server. The sensor

model for measuring the PM is a Sensirion SPS30. For a

list of all the sensor components available on the device, see

Table I. The platform is powered with a 3500mAh battery and

enclosed in a 3D-printed case made of ESD-PETG filament.

The form dimensions are: width 75 mm, depth 33mm, height

127 mm, with weight 165 grams. The front is protected by

an aluminium mesh. General battery life before recharging

via micro USB interface: 26 hours. Indicator LEDs are used

for communication and charging. Simple maintenance to clean

away dust can be performed using pressurised air. Compared

to our previous prototype [19], this sensor is portable and

considerably lighter.

Table I: Sensors available in the units.

Sensor Type Cycle Timer

BME-280 Temp, Humidity, Air Pressure, 1

Battery Voltage 2

Sensirion SPS30 PM 3

SI1133-AA00-GM UV 4

MiCS-4514 CO, NO2 5

MQ-131 O3 6

The sensing platform samples the surrounding air based on

cycle timer and writes the measurements to a data packet. The

current cycle lasts 3 minutes in which the components MiCs-

4514 and MQ131 heat up to 300� 500
◦C before powering

off for the next cycle. The reported readings include the

temperature, humidity, pressure, battery level, UV, particulate

matter PM1,PM2:5, PM4, PM10 carbon monoxide (CO), ni-

trous dioxide NO2, ozone O3, and positioning information

and a timestamp. Each data packet costs roughly 560 bytes

per sample. As samples are transmitted every 3 minutes,

each HOPE sensor generates roughly 0.26 Megabytes per day.

Scaling up to 100 HOPE sensors results in accumulative data

storage of 26 MegaBytes per day.

The HOPE sensor was originally designed to be carried by

users for studies of outdoor air quality. To preserve battery

while indoors, the units have been programmed to use a long

sampling interval when they are stationary, and switch to a

shorter interval when they detect that they have been moved.

While the units do not report whether they have moved or not,

we deduce this from the rate at which they report readings.

Following manufacturing the HOPE5 sensors were cali-

brated for CO, NO2 and O3 at the University of Helsinki and

PM2:5 in FMI laboratory in May 2019. The calibrations are il-

lustrated in Figure 3). Four portable devices were further tested

by co-location at Helsinki Region Environmental Services

(HSY)6 monitoring site in Mäkelänkatu in Kallio, Helsinki for

10 days. The HOPE device data conversion limits assumes an

ambient pressure of 1 atmosphere and a temperature of 25◦C.

Table II shows the data conversion rates of our HOPE sensor.

Table II: Data conversion limits for HOPE sensors.

Variable Rate

NO2 1 ppb = 1.88 �g/m3

O3 1 ppb = 2.00 �g/m3

CO 1 ppb = 1.145 �g/m3

IV. USE CASE

To validate the capabilities of MegaSense CPS to moni-

tor urban air quality and influence citizens to reduce their

exposure to air pollution, the system is tested in Helsinki,

Finland, as part of the Urban Initiatives Actions HOPE project

coordinated by the City of Helsinki. Citizens are loaned

portable HOPE sensors to continuously measure their own

exposure to air pollution. Combining all citizens data enables

creation of district based crowd-source maps.

During data gathering campaigns registered citizens down-

load the HOPE Exposure App from Google play store and

tether their Android smart phone to HOPE sensor. The HOPE

Exposure App is pre-configured with the MegaSense server

address and upon launching the app and switching on the

HOPE sensor, measurement data packets including the smart-

phone GPS location are routed by wireless connection via local

mobile service provider to the MegaSense Core.

5https://www.uia-initiative.eu/en/uia-cities/helsinki
6https://www.hsy.fi/en/residents/pages/default.aspx



Figure 3: HOPE sensor calibration for CO in chamber and co-

location calibration at HSY monitoring site in Mäkenlänkatu,

Helsinki.

A. MegaSense Core

Citizens measurement data is routed to MegaSense Edge

layer Rest API. The measurements are forwarded to buck-

ets (accessed controlled datasets) in MegaSense cloud data

storage. MegaSense permissions to access or upload data is

controlled on a per-bucket and per-user basis by super users.

All HOPE sensor end-user data is stored and collected as raw

data in JSON form in an bucket with access key named HOPE.

Other sub buckets are created for 3rd parties to ensure privacy.

Each authorized entity is given an access key with access to

the required buckets, and which can be revoked. HOPE raw

data is processed by calibration analytic techniques to improve

the accuracy of the sensor data. The calibrated data is stored

in the processed data buckets for publishing via the MAP API

to end users.

B. External systems

External systems are scraped to augment the HOPE sensor

datasets. To differentiate between, indoor air quality measure-

ments and outdoor air measurements, end user HOPE data is

combined with a personal mobility app called MOPRIM7. The

app detects and records the end-users personal mobility using

their smartphone sensors [20]. To complement the outdoor

ambient concentrations of air pollutants, HOPE sensor data is

integrated with open data taken from FMI ENFUSER [21].

ENFUSER data includes meteorological parameters, wind

vector data, road traffic data, and pollutant measurements taken

from nearest city monitoring stations. It produces hourly con-

centration of particle matter (PM2:5 and PM10) and NO2 for

Helsinki. To display geo-spatial location, the HOPE time series

measurements and corresponding GPS records are inserted on

top of OpenStreetMaps [22].

C. HOPE Exposure App

Registered citizen use HOPE Exposure App to view their

air pollution exposure profile through password protected web

7https://www.moprim.com/

Figure 4: PM2:5 air pollution profile for an individual.

access. On the end user web page timestamped data is orga-

nized into time series graphs of the previous day’s exposure to

PM2:5, NO2, CO, O3, and graphs of last three days of the same

pollutants. These air pollution exposure profiles are personal

indicators associated with end user carrying the HOPE device

and stored as an explicit digital representation of their identity

(name, age, address, and GPS location). When the HOPE

Exposure App and HOPE Sensor are persistently sampling,

the air pollution exposure profile records the end user’s air

quality in their micro-environment context (residential house)

and changes when travelling to the next micro-environment

(walking to the bus stop). It enables end user to learn the

spatial-temporal context of steady-state exposure conditions

(work place) and rapid fluctuations (near busy roads). In the

example shown below, PM2:5 data is recorded with HOPE

sensor connected to a hand bag, sampling 273 data records

on 18-11-2019. Table III presents the air pollution exposure

characterized by presence in different micro-environments.

Table III: Air pollution exposure profile in different micro-

environments.

Time (hour) Environment

12:00 - 08:00 Indoor residential measurements
08:00 - 10:00 Transport & outdoor micro-environments
10:00 - 16:00 Indoor office micro-environments
16:00 - 19:30 Transport & outdoor micro-environments
19:30 - 00:00 Indoor residential measurements

These micro-environments are evident in the end user’s

air pollution exposure profile shown in Figure 4 and depict

lower PM2:5 exposure in enclosed indoor environments, family

residential address and university shared research space, and

marked increases when walking outside, and within sealed

transport micro-environments above-ground bus service and

below ground in the metro system. The PM2:5 values are

typical for Helsinki and below the World Health Organization

(WHO)8 limit values.

Citizens view air pollution exposure profile of a district

through the same password protected web access. On their web

8https://www.who.int/airpollution/publications/aqg2005/en/



page are exposure animations for Air Quality Index, PM2:5,

NO2, CO, O3, of the local district. The animations are a

series of time sheets (maps) created by combining PM2:5 and

gas measurements from all HOPE sensors identified within a

predefined spatial and temporal window. The animations show

the spatial-temporal distribution of hyper-local pollution hot

spots. A pollution hot spot can be caused by wood burning.

Although indoor fire or outdoor garden fire are hyper local,

small-scale burning of wood is the largest emission source

for fine particulate matter in Finland, causing around half of

domestic fine particulate matter emission and according to the

Finnish Ministry of Environment causes around 200 premature

deaths each year.

The example air pollution exposure profile of a district, Pak-

ila, Helsinki, shown in Figure 5 was created by combining all

citizens measurements (end user air quality exposure profiles

to PM2:5) onto hourly space-time slices between 30.10.2019

to 19.11.2019. Pollution hot spots are defined when PM2:5

persistently exceeds the WHO limit value (25 �g/m3) for all

sequential space-time slices, and displayed as red pixels on

top of a static OpenStreetMap of the district. The other pixel

categories are presented in Table IV.

Table IV: The pixel categories used in Figure 5.

Colour Value

Red > 25�g/m3

Orange 18:75�g/m3

Yellow 12:5�g/m3

Light green 6:25�g/m3

Green 2:5�g/m3

To identify the outdoor hot spots, simple filtering rules are

applied such as a temperature threshold (temperature less than

20
◦C). To fill in missing geo-spatial sampling holes, when end

users are not near each other, neighbourhood interpolation is

applied on the time slice. To fill in missing temporal sampling

holes between each space-time slice, when the end user is not

using the HOPE sensor (turned off by app or powered off

the HOPE sensor), temporal interpolation is applied between

sequential space-time slices.

D. Clean Air Routing Apps

The HOPE project further develops the clean air journey

planner application that creates optimal walking and cycling

routes based on air quality of Helsinki (Figure 6). The route

guide is made by Forum Virium Helsinki.

V. DISCUSSION

MegaSense cyber-physical system for monitoring urban air

quality is spatially distributed though deployment of portable

scalable low-cost air quality sensors [23]; time-sensitive by

providing real-time interaction between the physical atmo-

spheric measurements and end user’s receiving air quality

information [7]; and multi-scaled making use of edge comput-

ing and advanced cloud computing integration with external

systems. MegaSense provides a feedback loop between the

physical processes (air pollution), cyber computation, and

Figure 5: Air pollution profile of a Pakila district in Helsinki.

Figure 6: Clean air routing navigation path.

rapid information dissemination to exposure apps. It enables

end-users to measure personal exposure to individual air

pollutants where-ever they are, when-ever they want to, and

create personal intervention measures to reduce the length of

exposure in a particular micro-environments. This important

for cohorts sensitive to air pollution such as: children [24], suf-

ferers of lung diseases [25] and cardiovascular diseases [26],

and the elderly [27]. Agility is increased through the battery-

powered, portable low-cost sensor tethered to smart phone, as

the CPS service can implemented in any urban environment,

city, region or country where connection to the MegaSense

cloud or server instance is allowed. Operation and maintenance

is transferred to the motivated citizens using portable sensors.

When citizens share their air pollution exposure data they

contribute to identifying hyper-local pollution hot spots maps

in their own districts. This is important for Public Authorities

seeking collaborative intervention methods to reduce local air

pollution [28].

Improved understanding of local emission sources and con-

centrations stimulates knowledge representation based nav-

igation tools, clean air routing apps that nudges personal

behavioural changes leading to overall improved air quality.

Extending the MegaSense CPS feedback loop to mobile plat-

forms such as cooperative drones and autonomous vehicles is

the next step. Modifying drones IoT delivery tasks [29] to

search and detect air pollution emission sources from fixed



urban locations and mobile vessels and mapping in 3D spaces

to characterize pollution concentrations at different heights.

The challenges of the current MegaSense CPS that needs ad-

dressing: inserting run time configuration updates to portable

sensing platforms; optimizing integration to other systems and

data fusion; and improving privacy and system security - end

user access to their air quality exposure and GPS data is pass-

word protected, however security mechanisms against denial

of service attacks are yet to implemented and tested.

VI. CONCLUSION

The MegaSense cyber physical system offers urban citizens

a feedback loop to make a difference to their personal exposure

to air pollution and related health impacts. It enables citizens

to self-monitor urban air quality in homes, work spaces, in

vehicles and outdoors. Based on this data, citizens receive

advice, history profiles and pollution hot spot maps on their

smart devices through exposure apps. This empowers citizens

and policy makers to develop air quality solutions to reduce

emissions at the local level in their own districts. MegaSense

supports the emergence of navigation tools for clean air and

health optimal routing applications. Network scaling and real-

time performance are supplemented by splitting the system

into two logical layers: Edge and Cloud, Allowing the former

to be replicated close the data sources and data users.

ACKNOWLEDGEMENTS

This work is supported by the MegaSense program,

the European Union through the Urban Innovative Action

Healthy Outdoor Premises for Everyone (UIA03-240), Busi-

ness Finland Project 6884/31/2018 MegaSense Smart City, and

Helsinki Center for Data Science (HiDATA) program.

REFERENCES

[1] X. Li, L. Jin, and H. Kan, “Air pollution: a global problem needs local
fixes,” 2019.

[2] C. Nunez, “Air pollution, explained,” February 2019, accessed 2019-
12-14. [Online]. Available: https://www.nationalgeographic.com/enviro
nment/global-warming/pollution/

[3] P. J. Landrigan, R. Fuller, N. J. Acosta, O. Adeyi, R. Arnold, A. B.
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[10] M. Schmidt and C. Åhlund, “Smart buildings as cyber-physical systems:

Data-driven predictive control strategies for energy efficiency,” Renew-

able and Sustainable Energy Reviews, vol. 90, pp. 742–756, 2018.
[11] N. H. Motlagh, S. H. Khajavi, A. Jaribion, and J. Holmstrom, “An

iot-based automation system for older homes: a use case for lighting
system,” in 2018 IEEE 11th Conference on Service-Oriented Computing

and Applications (SOCA), Nov 2018, pp. 1–6.
[12] Q. Ha, S. Metia, and M. D. Phung, “Sensing data fusion for enhanced

indoor air quality monitoring,” arXiv preprint arXiv:2001.01976, 2020.
[13] F. Tao, Q. Qi, L. Wang, and A. Nee, “Digital twins and cyber–physical

systems toward smart manufacturing and industry 4.0: correlation and
comparison,” Engineering, vol. 5, no. 4, pp. 653–661, 2019.

[14] N. H. Motlagh, M. A. Zaidan, P. L. Fung, X. Li, Y. Matsumi, T. Petäjä,
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