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Abstract—Air pollution is a major problem in urban areas,
where high population density is accompanied with excess anthro-
pomorphic emissions impacting the environment and increasing
health effects. Highly accurate air quality monitoring stations
have been used to monitor the severity of the problem and warn
citizens. However, air quality can vary sharply even within the
same city block, and pollution exposure can vary even 30%
between individuals living in the same residence. Therefore, a
dense deployment of air quality sensors is needed to detect these
variations, and protect citizens from overexposure. Low-cost air
quality sensors make it possible to densely instrument a city
and detect hot spots as they happen. However, thus far limited
information exists on their accuracy and practicability. In this
paper, we conduct a 44 day measurement campaign to assess
performance of low-cost air quality monitors under different
environmental conditions. As practical use case we consider
pollution hot spot detection. Our results show that the mean
error of low-cost sensors is small, but the variation in error is
significantly larger than with reference sensors. We also show that
the accuracy is sufficient for applications relying on variations
in air quality index values, such as hotspot detection.

Index Terms—Air Quality, Low-Cost Sensors, Reference Sta-
tion, Particulate Matter, Gas and Aerosol Sensor, Accuracy.

I. INTRODUCTION

Air pollution is one of the most significant health challenges

of our time. According to the World Health Organization

(WHO), in 2016 air pollution was linked to over 4.2 million

deaths per year (11.6% of all deaths) with mortality in low and

middle income countries particularly heavily affected by air

pollution [1]. Air pollution is particularly problematic in urban

areas with cities exhibiting the highest levels of pollution and

suffering worst from adverse health effects. Indeed, over three

thousand anthropogenic air pollutants have been identified in

urban areas [2] with most relating to combustion sources, such

as traffic activities and biomass burning. The complex nature

of urban air pollution has prompted attempts to quantify the

levels of air pollution in cities across the globe [3].

Air quality has been conventionally measured using

professional-grade measurements stations that incorporate

high precision sensing instruments mounted on tall sens-

ing towers. A state-of-the-art example of such a station is

the Station for Measuring Ecosystem-Atmosphere Relations

(SMEAR) [4], illustrated in Figure 2. While accurate, these

stations are expensive to install and operate (one station typi-

(a) PM2.5 portable sensor
equipped with a GPS, WiFi
module and mobile phone

connectivity for data logging and
visualization [10].

(b) PM2.5, gas, and ambient
conditions sensor package equipped

with microSD memory for data
logging and LCD display

visualization.

Fig. 1. Examples of portable aerosol & gas pollution sensors.

cally costs in excess of $100, 000). This limits resolution of air

quality monitoring as a single station is typically responsible

for an entire city region. Such resolution is not sufficient as

air pollutant levels can vary drastically even within a city

block [5]. Furthermore, pollution levels are highly dependent

on the density of pollution sources, weather and altitude [6].

Low-cost air quality sensors costing a few thousand dollars

or less have recently emerged as alternative to professional-

grade measurement stations. Thanks to their affordability, low-

cost sensors can be deployed densely to ensure a high monitor-

ing resolution. Indeed, urban deployments of low-cost sensors

are increasingly common with examples including Chicago

Array of Things, which uses low-cost air pollution sensors

attached to street lights [7], and Helsinki metropolitan Air

Quality testbed (HAQT) [8]. Besides increased deployment,

the commercial market for low-cost sensors is growing with

estimates suggesting the market value of gaseous pollutant

sensors will exceed $3 billion USD by 2027 [9].

While popularity of low-cost sensors is increasing, little

information exists on the quality of the measurements they

provide, particularly in real-time monitoring (see Table IV in

Sec. V). Moreover, the information that exists has predomi-

nantly focused on establishing correspondence between low-

cost sensors and professional-grade stations used as reference,



without quantifying the effects of weather or monitoring

resolution. The present paper contributes by quantifying per-

formance of low-cost sensors for real-time pollution hot-spot

detection. We perform our analysis considering measurements

from a 44-day measurement campaign conducted in Helsinki,

Finland. We collect data using two representative examples

of low-cost sensors (Figure 1) directly next to an air quality

measurement reference station, the Station for Measuring

Ecosystem-Atmosphere Relations (SMEAR) [4]. Contrary to

existing campaigns, we consider (near) real-time reporting

accuracy (1 − 5 minutes) instead of aggregated measure-

ments. Our focus is on low cost sensors (less than $2500)

and on understanding how their performance is affected by

environmental conditions. Our results show the measurements

of the low-cost sensor to follow the same general trend as

the reference station and the overall accuracy of the low-cost

sensors to be high. However, we also find variation in sensor

values to be significant which results in low correspondence

when directly compared to reference station values. These

results suggest that low-cost sensors can indeed be used for

real-time applications, such as pollution hot-spot detection,

as long as the error margin of the low-cost sensors remains

sufficiently small.

The contributions of this paper are summarized as follows.

1) Measurements A 44-day measurement campaign from 7th

May - 19th July 2018 (weekdays only) using both low-cost

air pollution sensors and a reference monitoring station.

Both aerosols and gaseous pollutants were measured.

2) Analysis Performance analysis of low-cost sensors includ-

ing accuracy estimation and correlation analysis against

reference station.

3) New Insights Our low-cost sensor results have high accu-

racy but high variation. Its MAE is 3.4 for PM2.5, or 1.36%

to 34.0% in terms of Air Quality Status Ranges (See III),

and 7.24 for O3 (1.43%-23.35%). This motivates the use

of dense low-cost sensor deployments for local real-time

air quality status information.

II. MEASUREMENT CAMPAIGN

To determine the potential for continuous air quality sensing

of low-cost sensors, we estimate the accuracy of two low-

cost sensors in the field: a GPS-enabled portable device (see

Figure 1(a)), and a self-assembled sensor device (Figure 1(b)).

Both of the sensors measure particulate matter (the former

PM2.5, and the latter includes a dust particle counter), and the

latter also measures CO2, O3, CO, relative humidity RH, and

temperature T. We focus on the accuracy of PM2.5, the main

particulate matter component of current air quality indexes,

and O3, one of the gaseous pollutants. PM2.5 is linked to

respiratory problems [11] and visible as smog. O3 exposure

can cause lung damage [12].

Experimental Devices: The two low-cost sensor units that

we used are shown in Figure 1. Both are custom-built devices

with commodity components:

Fig. 2. Example of a reference station: SMEAR III in Helsinki.

• A portable sensor unit designed to measure PM2.5, equipped

with a GPS, WiFi module and mobile phone connectivity

for data logging and visualization. This kind of portable

device has been used for real-time and spatial PM2.5 mon-

itoring [10]. The PM2.5 sensor module was a Panasonic

model GA1 that has a thermal resistor to induce an internal

upward air flow to facilitate continuous sampling.

• A movable multiple output sensor unit, capable of measuring

dust, O3, CO, relative humidity RH, and temperature T. It

was equipped with microSD memory for data logging and

LCD display visualization. In the unit, all sensor modules

were installed inside a transparent box equipped with a

fan and a hole inlet for air sampling. The sensor module

used to measure dust (correlated with PM2.5) was a Sharp

GP2Y1010AU0F attached to the hole inlet. The temperature

and humidity sensor was an AM2315 capacitive sensor. The

gas sensors were FC−22−1 series modules with MQ type

for O3 and CO.

Experiment Setup: During the measurement campaign, we

operated the above described low-cost sensors and compared

their monitoring results to those obtained with the SMEAR

III as an example for a reference monitoring station (See

Figure 2). In total, we performed 44 monitoring sessions,

lasting approximately 2 hours each, on different days during

8th May - 19th July 2018 (excluding weekends and holidays).

The monitoring was conducted at a distance of two meters

from the SMEAR III station. The sensors were protected from

the effects of sun and wind. The results of SMEAR III were

downloaded from the open-access data portal AVAA1. Data

from the two sensors was aggregated to one-minute averages,

matching the time granularity of SMEAR III data.

Environmental Conditions: Figure 3 shows temperature and

1https://avaa.tdata.fi

https://avaa.tdata.fi


TABLE I
COMPARISON OF DIFFERENT AIR QUALITY SENSOR UNITS.

Sensor Type Parameters Accuracy Deployment Mobility Connectivity Power Drain Cost (USD) Management

Reference 300 to 800 Very High 1 to 2 per city No Fixed Line/Cellular High > 1.5 · 106 Professional

Mid-cost 10 to 50 High ≈ < 1000 Yes Cellular Little (5 to 10) · 103 Semi-Professional

Low-cost ≈ 10 Low ≈ > 105 Yes Cellular Low 6 2500 Amateur

Fig. 3. Temperature and Relative Humidity during the measurement period
(May 8 - July 19, 2018 (excluding weekends and holidays).

relative humidity during the measurement period. Temperature

ranged from 10°C (50°F) to over 25°C (77°F) while relative

humidity ranged from 20% to 85%. These values are typical

to the location and season, allowing realistic evaluation of the

performance of the low-cost sensors.

Data Cleaning: Our low-cost sensors were not able to mea-

sure extremely low particle concentrations below 1 µg/m3,

and therefore we only considered data with concentrations

higher than this. In addition, as the sensor modules used heat

to establish airflow, data values recorded directly after turning

on the low-cost sensors were discarded until the sensor output

was stable. Standard outlier removal was done to eliminate

extremely high values.

III. LOW-COST SENSOR ACCURACY

We next assess performance of the two low-cost sensors

used in the measurement campaign. We separately consider

overall performance, and effects of environmental conditions.

We end the section with a discussion on practicability using

pollution hotspot detection as an example application that

could operate using low-cost sensors.

A. Overall Result

We first consider overall performance of the low-cost sen-

sors. A natural measure of accuracy is the average error of

measurements from the reference values, or mean absolute

error (MAE). Unlike RMSE it is an unambiguous measure of

average error magnitude [13]. To compare low-cost accuracy

with the reference station, we use an x-y scatterplot similar

to previous works on sensor calibration [14]. This plot can

visually show the correspondence of the sensor and reference.

In addition, we use color to show the effect of wind speed,

temperature, and relative humidity, as they commonly affect

sensor measurements [15].

The mean absolute error of our low-cost sensor measure-

ments is shown in Table II. The MAE was relatively low, 3.4
for PM2.5 (MAE of the median 2.80), and 7.24 for O3 (MAE

for median 6.45). This is quantified in terms of air quality

status ranges in Table III in Section III-D.

TABLE II
MEAN ABSOLUTE ERROR OF MEASUREMENTS.

Measurement MAE
PM2.5 3.40
PM2.5 (Median) 2.80
O3 7.24
O3 (Median) 6.45

B. Linearity and Wind

Besides temperature and relative humidity, wind may af-

fect PM2.5 and O3 concentrations. For PM2.5, we show the

correspondence of our low-cost sensor data with SMEAR

III data in regression plots in Figure 4. Figure 4(a) displays

the scatter plot of 5 minutes measurements, indicating these

two measurements were nearly linearly correlated (Pearson’s

R ≈ 0.31). Furthermore, an enhanced linear correlation was

obtained by considering the median of each experimental day

as illustrated in Figure 4(b) (R ≈ 0.49). As expected, the

PM2.5 was negatively correlated with wind speed (indicated by

color) (R ≈ −0.45) as shown in Figure 4. The results indicate

that our low-cost sensors respond to PM2.5 and wind speed

similarly as the reference station, but have a high variance.

Figure 5 displays regression plots for O3. Unlike PM2.5, for

O3 5 minute data and median per session show good linear

correlations at R ≈ 0.65 and R ≈ 0.67, respectively. We also

find wind speed to influence the correlation between the gas

sensor and the SMEAR III data. For example, the variation of

O3 concentration was larger when the O3 concentration was

high and the wind speed was also high, as shown in Figures



(a) 5 minutes measurement (b) median of each visit

Fig. 4. The scatter plot of PM2.5 measured by low cost sensor (horizontal axis) and reference station (vertical axis)

(a) 5 minutes measurement (b) median of each visit

Fig. 5. The scatter plot of O3 measured by low cost sensor (horizontal axis) and reference station (vertical axis)

5(a) and 5(b). Accordingly, the O3 concentration measured by

the (b) sensor deviated from the linear trend when wind speed

is high. As with PM2.5 measurements, this may be explained

by the variance in the data.

C. Impact of Temperature and Relative Humidity

Figure 6 shows the PM2.5 values from sensor (a) on the x-

axis, and the reference sensor data on the y-axis. The relative

humidity is shown in color, with warmer colors representing

higher humidity. When relative humidity rises, the relationship

between the low-cost sensor’s values and reference values

seems to improve. Figure 7 shows the PM2.5 values from

sensor (a) on the x-axis, and the reference sensor data on the

y-axis. The ambient temperature is shown as a color, with

warmer colors representing higher temperatures. Temperature

does not seem to have an impact on the linearity of the

measurements, but higher temperatures seem to lead to higher

PM2.5 values, as expected.

D. Practicability

In the measurement location, typical values for PM2.5 range

from 0 to 40, and for O3 from 0 to 60. To put our results

in perspective, Table III shows the air quality status and

corresponding pollutant value range for all of the statuses of

the air quality indexes of Finland, USA, and China. For each

of the statuses, we consider the range to its right, and compute

the relative size of our MAE with respect to the range in the

columns under MAE
AQ Status Range

. For example, the range of the

Satisfactory level of the Finnish AQI for PM2.5 is 25−10 = 15.

Our MAE of 3.4 then corresponds to 22.67% of the range. This

means that if the true PM2.5 value is within the Satisfactory

level, the measurement value of our low-cost sensors would

on average fall to a higher or lower AQ Status (but not both)

22.67% of the time. The error decreases as we move down

the table to worse AQ statuses. We can see from the table that

our low-cost sensor is capable of estimating the air quality



TABLE III
RELATIONSHIP OF LOW-COST MAE TO THE LEVELS OF FINNISH, USA, AND CHINESE AIR QUALITY INDEXES. VALUES FOR USA AND CHINA

OBTAINED FROM THE COMPARISON BY GAO [16].

Air Quality Status MAE
AQ Status Range

Pollutant Finland (FI) USA (US) China (CN) FI US CN Error Range
PM2.5 Good 0-10 Good 0-15 Excellent 0-35 34.00% 22.67% 9.71% 9.71%–34.00%
PM2.5 Satisfactory 10-25 Moderate 15-35 Good 35-75 22.67% 17.00% 8.50% 8.50%–22.67%
PM2.5 Fair 25-50 USG* 35-65 Lightly Polluted 75-115 13.60% 11.33% 8.50% 8.50%–13.60%
PM2.5 Poor 50-75 Moderately Polluted 65-150 Unhealthy 115-150 13.60% 4.00% 9.71% 4.00%–13.60%
PM2.5 Very Poor > 75 Heavily Polluted 150-250 Very Unhealthy 150-250 0.00% 3.40% 3.40% 0.00%–3.40%
PM2.5 – – Hazardous 250-500 Severely Polluted 250-500 – 1.36% 1.35% 0.00%–1.36%
O3 Good 0-60 Good 0-116 Excellent 0-100 12.07% 6.24% 7.24% 6.24%− 12.07%
O3 Satisfactory 60-100 Moderate 116-147 Good 100-160 18.10% 23.35% 12.07% 12.07%− 23.35%
O3 Fair 100-140 USG* 147-186 Lightly Polluted 160-215 18.10% 18.56% 13.16% 13.16%− 18.56%
O3 Poor 140-180 Moderately Polluted 186-225 Unhealthy 215-265 18.10% 18.56% 14.48% 14.48%− 18.56%
O3 Very Poor > 180 Heavily Polluted 255-733 Very Unhealthy 265-800 0.00% 1.43% 1.35% 0.0%− 1.43%
O3 – – Hazardous – Severely Polluted – – – – –

*Unhealthy for Sensitive Groups

Fig. 6. Impact of Relative Humidity on PM2.5.

status at least 80.6% of the time for all levels of the Chinese

air quality index (largest error ±9.71%). For the stricter USA

air quality index, the status would be correct for a randomly

chosen true value 66% of the time, and for the Finnish air

quality index 54.66% of the time. Note that the MAE for the

best air quality status needs to be counted only once, as the

error is never negative in that case.

For O3, the relative error within air quality status ranges

is more stable across air quality indexes and statuses. This is

due to the smaller differences between the sizes of the ranges.

Only the Moderate US AQI status makes our MAE of 7.24
larger than ±18.56%.

E. Application: Pollution Hotspot Detection

Our results have shown that low-cost sensors can be used to

indicate the AQ status for PM2.5 and O3 as described by com-

mon air quality indexes with an error of ±1.43%−−34.00%,

depending on the pollutant and the strictness of the air quality

Fig. 7. Impact of Temperature on PM2.5.

index. We observed that the relative error is smaller at higher

pollutant concentrations, such as those that occur during a

pollution hotspot. For example, if the ambient pollution in the

city is the best status of Table III, and in a PM2.5 hotspot drops

to the next status by only 3.5 µg/m3, on average our low-cost

sensor will report the correct status and identify the hotspot.

The higher the pollution level, the wider the value range of air

quality indices. MAE of 3.5 is significantly smaller than any

air quality index range, suggesting that the devices are capable

of reliably identifying the corresponding pollution category of

an area. In practice, pollution hotspots have PM2.5 differences

exceeding the MAE of our sensor. For example, Targino et al.

(See Targino et al., Figure 4) [17] demonstrated 6−10 µg/m3

differences for most of their PM2.5 hotspots. This motivates the

deployment of low-cost sensors into locations of interest in the

city for PM2.5 pollution hotspot detection.

IV. DISCUSSION

Our results show that low-cost devices can be used to mon-

itor the air pollution in the urban areas, and greatly improve



resolution of air quality monitoring. However, employing low-

cost air pollution sensor devices at outdoor environments also

introduces new challenges. In the following we discuss some

of these issues.

Large-Scale Data Collection: For short measurement cam-

paigns, data can be stored directly on the device, but in

large scale deployment, one must equip the devices with

positioning (GPS and/or network based) and long range radio

and take into consideration the possibly limited energy budget.

The reliability of communications must also be considered

in order to maintain an up-to-date view of the air quality.

Currently available 4G cellular IoT technologies, such as NB-

IoT and LTE-M, and future 5G mMTC technology [18] can

provide suitable solutions also for air pollution sensing data

communication.

Placement: Optimizing placement of low-cost sensor devices

to measure the air pollutants at outdoor environments remains

challenging. When outdoor temperature reaches 25 °C, the

temperature inside the sensor device box could reach up

to 50 °C. While internal temperature monitoring can help

to discount these types of errors, it nevertheless limits the

conditions that the devices can be operated in. This affects

the functioning of battery as well as the stability of the

sensors and can cause anomalies in sensor readings. Similar

observations have been made with other types of portable air

quality sensors [19].

Calibration: Accuracy of low-cost sensors can be improved

through calibration, both in the laboratory before deployment,

and also at regular intervals while in the field. Laboratory

calibration has shown that low-cost air quality sensors have

high potential [20], [21], but the process is costly and time-

consuming. Low-cost sensors also suffer from cross-sensitivity

to other pollutants in-field, and changing environmental con-

ditions such as strong winds, high temperature, and humidity.

As a consequence, more complex calibration methods must

be developed to address these challenges [22]–[24]. While in-

field calibration techniques have shown positive performances,

in sub-part per billion for some gaseous components, more

research is needed to provide data that meets regulatory

requirements [25]. Nevertheless, while low-cost sensors cannot

meet air quality regulation requirements, as we have shown,

they can be used to give an indication of air quality status.

Power: Power consumption of sensor devices is another

important concern for longer deployments. Suitable locations

with available grid power are required for pollution hotspot

detection. In our experiments, the battery of the sensor unit

(Fig. 1(b)) was drained by the 5 sensors in less than 4 hours.

However, the battery life can be easily improved by reducing

the number of sensors. For example, when monitoring only O3

concentrations with a similar low-cost sensor, one can have a

battery life of 50 hours [26].

V. RELATED RESEARCH

Long-term air monitoring is currently conducted using refer-

ence stations – stationary and professional measurement sites

– such as the SMEAR stations and the U.S. Environmental

Protection Agency (EPA) monitoring sites. These stations are

costly to build and require professional engineers to operate.

Because of their size and price point, they cannot be used for

dense air pollution monitoring deployments. Table I presents

these reference stations along with lower-cost options.

To address the need for wider deployments, semi-

professional measurement stations (Mid-cost in the table) have

been deployed in the last decade [32], but these sophisticated

multi-parameter, fully autonomous sensor systems can easily

cost more than 10, 000 USD. Nowadays, low-cost sensor units

are available, at prices below 2, 500 USD [25]. In this paper,

we consider even lower-cost sensor units, termed low-cost,

typically priced below 250 USD and capable of measuring a

handful of variables. Because of their small size, high avail-

ability, and low cost, these sensors can be easily used for dense

coverage measurement of air quality in urban areas [33]. The

Table I demonstrates the classification and comparison of these

senors. In this table, the terms low-cost, and mid-cost refer to

the initial purchase cost of a single sensor unit when compared

against the purchase cost of a single reference station that

measures the same or similar air pollutants. The reasons for

the price differences stem from, for instance, the power source

requirement, communication hardware, processing unit of the

sensor, the casing, sensor quality and the limits of pollutant

detection [34]. In addition, air quality monitoring is not limited

to a specific type of sensor module. A variety of sensor devices

with different sensing capabilities can be employed to measure

the air quality.

Regarding the measurement of the air quality using the

low-cost air quality sensors, previous work [35] has evaluated

the performance of low-cost sensors in high-pollution urban

environments. In the work, low-cost sensors of the same type

(PUWP) were used to monitor PM2.5 in seven different areas in

Xi’an, China. The authors conclude that the employed PUWP

sensor is a suitable choice for monitoring PM2 · 5 in urban

areas, especially in the areas with high concentration, e.g.

industrial areas.

There are many types of low-cost sensor modules available

to measure PM2.5, e.g. the sensors used in [36], and in

our experiment we chose two representative devices, built

independently by research teams in Helsinki and Japan. In

addition to PM2.5, we also consider O3 in our measurement

campaign. Furthermore, we test the accuracy of our sensors

against the SMEAR III station located in Helsinki.

Besides fixed monitoring approaches, mobile monitoring is

a good measurement approach to quickly cover a city area and

reveal urban air pollution patterns [5], [37]. The work of Apte

et al. [5] employed two Google street view mapping vehicles

with onboard professional pollution measurement instruments

to monitor Black Carbon (BC), NO, and NO2 in an area of

30 km2 in Oakland, CA, USA. The authors of Yu et al. [37]



TABLE IV
COMPARISON OF DIFFERENT MEASUREMENT CAMPAIGNS.

Study/Campaign/Duration Sensor Module Measured Variable Data variations Reasons Remarks

[27]
Oakland, California

15–23.4.2013
Shinyei: PPD42NS PM2.5 NA

Low-cost,
R2 = 0.01-0.59

[28]
Houston, Texas
4–27.09.2013

Denver, Colorado
14.7–12.08.2014

CairClip: O3, NO2 O3, NO2 NA
Low-cost,

O3:R2 = 0.83-0.85,
NO2: R2 = 0.13-0.28

[29]
Multiple Cities, USA
20.6.2013–31.3.2014

PM2.5 monitor (PDR-1500),
O3 monitor (OEM-106),

Wind (09101) RM Young,
Temp RH (HMP60) Vaisala

PM2.5, O3,
Wind, Temp, RH

Lower operational time in
wintertime, RH and Temp in
multiple regression equation,

slightly improves the
correlation coefficients.

Mid-cost
O3:R2 = 0.76,

PM2.5: R2 = 0.79

[30]
Atlanta, USA

01.10.2013–40.10.2013
21.11.2013–16.12.2013

Hyderabad, India
30.01.2014–10.02.2014

Shinyei: PPD42NS,
PPD20V, and PPD60PV

Sensirion: SHT 15
(Temp and RH)

PM2.5, Temp, RH
Lower correlation is found

in lower concentration
range (40ug/m3)

Low-cost
(high conc.): R2 > 0.81

(low conc): R2 = 0.21, 0.3

[31]
Helsinki, Finland

2004 - Present

TEOM 1405-D, TEI 49,
TEI 42S, Horiba APMA 370,

Horiba APSA 360, Metek USA-1,
Vaisala DPA500, HMP243,

Hauke-type DMA & TSI Model

PM2.5, PM10,
O3, CO,

CO2, Wind,
Temp, RH, etc.

Wind direction,
weekdays/weekends,

seasons, etc.

Reference station:
SMEAR III,

Not a campaign

employed another mobile monitoring approach using a variety

of sensors to measure BC, PNC, CO, and PM2.5. The sensors

were carried by two persons along parallel pathways in specific

streets in the city of Newark, NJ, USA. The experiment

was conducted to asses spatial gradients in traffic-related air

pollutants, while controlling temporal variations.

The mobile measurement approach used in previous

works [5], [37] has been able to capture pollution variations

within the city, and discover pollution hotspots. They have

highlighted the problem of highly localized, dramatic pollution

variations even within the same city block. Effective air pollu-

tion monitoring to keep citizens informed of this would require

continuous measurements. In urban areas, pollution hotspots

can occur quickly, and therefore, real-time local information

of each city block is required for effective monitoring to

help citizens. However, continuous mobile measurement is

expensive and laborious, but continuous measurement can be

achieved cost-effectively with stationary local measurement

using low-cost sensors.

Finally, while the error observed by our low-cost sensors

was relatively low, we could not measure extremely low

concentrations that occur regularly in Helsinki. In a megacity

such as Beijing, these low concentrations happen extremely

rarely, and the error of low-cost sensors decreases significantly.

VI. CONCLUSION

We contributed by quantifying performance of low-cost

through a 44-day in-field measurement campaign. We mea-

sured the concentration of PM2.5 and O3 using two low-

cost sensor devices, and estimated their accuracy against

a reference measurement station (SMEAR III). The results

achieved from the experiments indicate that low-cost sensor

measurements follow the expected pattern of reference data,

but have a noticeable error. However, the accuracy of the two

devices was sufficient to indicate air quality status, such as

Good, Fair, or Unhealthy. This level of performance is suitable

for detecting pollution hotspots in urban areas. In particular,

the mean absolute error is significantly smaller than the differ-

ence between a hotspot and outside of it as reported in previous

work. In addition, as ambient air quality worsens, the error is

smaller relative to pollutant concentrations, further improving

accuracy. In light of our results, we consider low-cost sensors

a viable alternative for outdoor air pollution monitoring when

there is a need to increase the spatio-temporal measurement

resolution, e.g., placing sensors in each city block in an urban

area to detect pollution hotspots.

As future work, we plan to use deep learning-based ap-

proaches for on-line calibration of low-cost sensors, in order

to deliver more accurate local real-time air quality information

within an urban area. Accurate real-time air quality informa-

tion is required for regulation-grade pollution measurement

as well as e.g. pollution-aware navigation. Beyond the linear

regression analysis of the measurement data, a non-linear

correlation method, such as [38], could yield further patterns

in the results.
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