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Fig. 1. We present a real-time hand-tracking system using four monochrome cameras mounted on a VR headset. We output the user’s skeletal poses and
rigged hand model meshes. Here we show some snapshots of users using our system to drive interactive VR experiences.

We present a system for real-time hand-tracking to drive virtual and aug-
mented reality (VR/AR) experiences. Using four fisheye monochrome cam-
eras, our system generates accurate and low-jitter 3D hand motion across a
large working volume for a diverse set of users. We achieve this by proposing
neural network architectures for detecting hands and estimating hand key-
point locations. Our hand detection network robustly handles a variety of
real world environments. The keypoint estimation network leverages track-
ing history to produce spatially and temporally consistent poses. We design
scalable, semi-automated mechanisms to collect a large and diverse set of
ground truth data using a combination of manual annotation and automated
tracking. Additionally, we introduce a detection-by-tracking method that
increases smoothness while reducing the computational cost; the optimized
system runs at 60Hz on PC and 30Hz on a mobile processor. Together, these
contributions yield a practical system for capturing a user’s hands and is the
default feature on the Oculus Quest VR headset powering input and social
presence.
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1 INTRODUCTION

Recent improvements in VR/AR technology have led to the main-
stream adoption of commercial headsets such as the Oculus Quest,
Microsoft HoloLens and HTC Vive for applications including gam-
ing, virtual training and socializing in virtual worlds. As a new
computing platform, VR/AR is still experimenting with various in-
put modalities, including mouse and keyboard, game controllers, 6
degree of freedom (DOF) motion controllers and wearable gloves.
Vision-based hand-tracking can potentially provide more conve-
nient and lower-friction input than these peripherals. For instance,
users may not need to carry or charge an additional device or put on
a wearable. However, to be a truly convenient input modality, hand-
tracking must also be robust to environmental and user variations,
support a generous working volume and produce responsive and
precise (low-jitter) motions for targeting and selection. As VR/AR
headsets are increasingly mobile, a hand-tracking input system must
also run on a low-compute budget.

Most previous work on hand-tracking has focused on outside-in
depth or RGB cameras. A depth camera provides hand geometry in
terms of a 2.5D point cloud. However, depth cameras impose extra
requirements on hardware design and power usage. In comparison,
RGB cameras are easier to integrate and their utility continues to
improve as deep learning techniques advance. As a result, predicting
hand pose from a single RGB camera, typically with the help of a
neural network, has become a popular research topic.

Despite continued progress, several remaining issues have held
back RGB-based hand-tracking from being applied in VR/AR. First,
predicting 3D hand pose from a single RGB camera is inherently
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ill-posed due to scale ambiguities, making it not directly suitable
for the 3D pose estimation needed to drive VR input. While scale
ambiguity can be resolved with stereo, existing methods cannot
be easily adapted to achieve consistent predictions in multi-view
settings. Second, most RGB-based methods either focus on keypoint
regression [Cai et al. 2018; Igbal et al. 2018; Spurr et al. 2018; Yang
and Yao 2019; Zhang et al. 2016; Zimmermann and Brox 2017a]
or simultaneous pose and shape reconstruction [Boukhayma et al.
2019; Ge et al. 2019; Hasson et al. 2019; Zhang et al. 2019b], neither
of which are well-suited to maintain self-presence requirements
inside VR/AR applications. The former cannot be directly used to
render an actual hand mesh or re-target hand motion. The latter
does not guarantee consistency of the hand shape over time. Third,
prior work on RGB-based tracking does not use or evaluate against
temporal information, leading to jittery predictions unsuitable for
targeting tasks. To our knowledge, no existing work quantifies this
issue or provides insight on how to resolve it.

Finally, perhaps the most critical issue for a learning-based hand-
tracking system is acquiring sufficient high-quality ground truth
data. Hand keypoints are impractical to manually annotate in im-
ages due to frequent self-occlusions. Several existing methods use a
multi-view capture system to alleviate these challenges, but these
systems are not easily portable, which limits the ability to cap-
ture a diverse set of background and lighting environments. As
a workaround, [Zimmermann et al. 2019] uses a green screen for
background replacement as a post-processing, but cannot support
variation in lighting. [Zhang et al. 2016] uses a depth-based hand-
tracking method to generate ground truth for RGB views. While
this is a more scalable solution, ensuring that the depth tracker
is sufficiently accurate during heavy occlusion is itself a difficult
problem. Another workaround to generating real-world training
data is to synthesize images [Mueller et al. 2018]. However, it’s still
unclear how to generate synthetic data that is realistic enough to
train networks that generalize across users and environments.

The main contributions of this work are as follows:

e We present a tracking system that uses four egocentric mono-
chrome fisheye cameras to produce 3D hand pose estimates.
To the best of our knowledge, it is the first hand-tracking
system that tracks robustly across different environments
and users, supports a large working volume and allows for
real-time performance not only on PC, but also on a mobile
processor.

e We introduce a new keypoint estimation architecture that
leverages tracking history, which improves both temporal
smoothness across frames and spatial consistency across mul-
tiple views.

o Furthermore, we describe how to efficiently generate diverse,
high quality labels using portable and lightweight data col-
lection methods with minimal manual annotations.

2 RELATED WORK

RGB-based approaches. Early RGB-based methods [de La Gorce
et al. 2008; Prisacariu and Reid 2011; Stenger et al. 2006] follow
an analysis-by-synthesis paradigm, fitting a hand model to low
level visual cues such as edges, skin color, silhouettes and optical
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flow. This is extremely challenging given the self-similarity, subtle
color variation, and severe self-occlusion exhibited by hands. Later
work resolve such challenges by augmenting the tracking system
with either a color glove [Wang and Popovi¢ 2009] or multi-camera
rigs [Ballan et al. 2012]. An alternative line of work uses nearest
neighbors to find a matching image/pose pair in the dataset [Athitsos
and Sclaroff 2003].

The current state-of-the-art is dominated by deep learning based
approaches, which directly regress coordinates of hand skeleton
keypoints [Cai et al. 2018; Igbal et al. 2018; Spurr et al. 2018; Tekin
et al. 2019; Yang and Yao 2019; Zhang et al. 2016; Zimmermann
and Brox 2017a] and can be highly accurate when fed sufficient
training data. Recent work [Cai et al. 2018; Igbal et al. 2018; Spurr
et al. 2018; Tekin et al. 2019; Yang and Yao 2019] has focused on
frame-wise estimation. Because motion cues are largely ignored,
the result can be jittery, especially when fingers are occluded. One
notable exception [Cai et al. 2019] leverages temporal information
with graph convolution but ignores hand shape consistency. Most
recently, [Boukhayma et al. 2019; Ge et al. 2019; Hasson et al. 2019;
Zhang et al. 2019b] extend deep neural networks to directly recover
both hand shape and pose. However, no personalization process is
involved and there is no guarantee that the hand shape of the same
user will not change across frames.

Our approach differs from prior work due our focus on egocen-
tric AR/VR input. Instead of RGB cameras, we use monochrome
cameras, which exhibit superior signal-to-noise ratio in low light
compared to their equivalent RGB counterparts. We use fisheye
lenses, which expand the interaction volume, but also require a
re-parameterization of the hand keypoint estimation problem to
predict distance instead of depth. Input applications are also more
sensitive to jitter and tracking from the egocentric viewpoint of an
AR/VR headset is more prone to self-occlusions. To address this, we
propose a keypoint regression network that incorporates tracking
history, which provides temporally smooth results and helps resolve
self-occlusion.

Depth-based approaches. Depth sensors have been widely applied
to hand-tracking [Mueller et al. 2019; Oikonomidis et al. 2012; Sharp
et al. 2015; Tagliasacchi et al. 2015; Taylor et al. 2016, 2017; Zhang
et al. 2019a]. Model-based approaches can reliably fit a hand mesh
to the reconstructed point cloud provided by the depth sensor, but
this approach does not generalize to RGB images.

With a few exceptions [Zhang et al. 2016], most depth-based
approaches use active illumination [Mueller et al. 2019; Sharp et al.
2015; Tagliasacchi et al. 2015; Taylor et al. 2016, 2017; Zhang et al.
2019a], which provides more accuracy in textureless environments.
However, active illumination limits the field of view (FOV) and in
turn, the interaction volume, due to the difficulty of building wide
FOV projectors. Moreover, depth cameras are larger and use more
power than monochrome cameras, which makes integration more
challenging on an VR/AR headset.

While we use monochrome cameras at inference time, we use
depth-based hand-tracking [Taylor et al. 2017] to generate accu-
rate ground truth for training our neural networks, leveraging the
benefits of both systems.
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Fig. 2. Hand-tracking pipeline. Our system takes inputs from 4 monochrome VGA (640x480) cameras. We first compute a per-hand, per-image bounding
box using either the hand detection network (DetNet) or by extrapolating the hand pose from the previous frames (Section 3.3). We crop each image using the
bounding box and feed the resulting hand image into the hand keypoint network (KeyNet). The input is further augmented using keypoint features generated
from the extrapolated hand pose (Section 3.4). The network predicts a 2D location heatmap and 1D relative distance heatmap for each of the predefined 21
hand keypoints. The keypoints are used to fit a template hand model for each hand (Section 3.5). Finally the output of the previous two frames are used to
predict the pose in the next frame, which is used to improve both the bounding boxes and keypoint estimation.

Training data generation. Manually annotating 3D hand pose can
be tedious and unreliable. During self-occlusion, manual labeling
can suffer from temporal jitter and a lack of consensus between
annotators [Supancic et al. 2015]. To minimize human effort, [Ober-
weger et al. 2016; Tompson et al. 2014] propose to couple human
annotation with model based tracking, either by annotating a subset
of key frames [Oberweger et al. 2016] or by manually initializing
the tracker [Tompson et al. 2014]. [Simon et al. 2017] use a multi-
camera system with bootstrapping where an annotator needs only
to provide a binary indication of whether the estimated pose is
accurate.

Another line of work leverages synthesized data. To bridge the
distribution gap between real and synthesized data, [Mueller et al.
2018; Shrivastava et al. 2017] improve the realism of the synthesized
data with a generative adversarial network (GAN). Alternatively,
[Dibra et al. 2017; Wan et al. 2019] initialize the pose estimation
network with synthesized data. The network is then fine-tuned on
unlabeled real data by minimizing the model fitting error.

Utilizing cameras from other modalities, e.g. , IMU [Huang et al.
2018] or magnetic 6D sensors [Yuan et al. 2017] are also promising
paths to generate accurate hand pose annotation. However, wearing
the sensors can change the appearance of the hand, especially for
RGB or monochrome inputs, making these approaches unsuitable
for training deep learning based systems.

In this work, we use a depth tracker to generate ground truth hand
poses for training the keypoint estimation network. This model-
based tracker requires minimal human intervention (2D bounding
boxes) if the tracker fails. Our system maximizes the quality of
the ground truth data without sacrificing mobility. As a result, our
training set is larger and more diverse in terms of hand shape,
pose and background variation than any previously proposed RGB
datasets [Zhang et al. 2016; Zimmermann and Brox 2017a].

3 HAND-TRACKING USING MONOCHROME CAMERAS
3.1 Overview

We outline our hand-tracking system in Figure 2. We start with the
images from four monochrome cameras (Section 3.2) and detect the
left and right hands in each image, producing a set of bounding
boxes (Section 3.3). We crop each bounding box from the image
and pass it to a network that detects 21 keypoints on the hand
(Section 3.4). The resulting keypoints are then used to fit a 3D hand
pose (Section 3.5).

Our hand model is defined in two parts, a kinematic hand skeleton
$ and a mesh model M. The hand skeleton $ consists of 26 degrees
of freedom (DOFs) — 6 DOFs representing the global transformation
{R, t} and 4 rotational DOFs per finger representing finger artic-
ulations. Additionally, we define 21 keypoints on the hand — one
for each finger’s MCP, PIP, DIP and fingertip as well as a wrist and
palm center (note that the thumb has 3 keypoints instead of 4). We
can compute the global position of a keypoint using,

pi(0) = T, (0) - p¥

where b; denotes the index of the bone associated with keypoint
i, Tp, is the world space bone transform which is a function of the

hand pose 6 and pf’i is the keypoint position in the local space of
bone b;. Lastly, the mesh model is rigged using traditional linear
blend skinning.

3.2 Camera configuration

We use four VGA, synchronized, global-shutter cameras to drive
our hand tracker (Figure 3). Each camera covers a 150° (width),
120° (height) and 175° (diagonal) FOV. Figure 3 shows the cover-
age from this camera configuration. Regions in the lower center
are covered by two or more cameras (STEREO, red/orange/green),
ensuring that the most accurate tracking is available in the regions
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120°

Fig. 3. Camera configuration. On the left is a frame holding the 4 mono-
chrome VGA fisheye cameras (circled in blue) that we use for hand-tracking.
The frame has a hollow front plate so users can see their hands for data
collection purposes. On the right we plot the combined field of view at 50cm
distance from the center of the 4 cameras. The angle increases linearly as
we move out from the center of the plot. 0° corresponds to the forward-
facing (imagine looking forward and extending a ray from the bridge of
your nose). We color code the areas by how many cameras can see them:
4(red), 3(orange), 2(green), 1(blue), 0(black).

where ergonomic interactions are likely to occur. Hands are tracked
with a single camera in the side regions (MONOCULAR, blue), though
with degraded accuracy (Section 5). This ensures the widest possible
working volume.

3.3 Hand detection

The task of hand detection is to find the bounding box of each
hand in every input image. A key challenge is to ensure robustness
to a variety of real world environments. To tackle this challenge,
we collect a large and varied hand detection dataset specific to
this camera configuration using a semi-automatic labeling method
(Section 4.2) and propose a simple and efficient CNN architecture
which we name DetNet.

DetNet is inspired by lightweight single shot detectors (SSD)[Liu
et al. 2016; Redmon and Farhadi 2017] which simultaneously localize
and classify. We further leverage the fact that there is a fixed number
of outputs (at most two hands) for any input. Hence, we design
DetNet to directly regress the 2D hand center and scalar radius
for each hand from the VGA-resolution input image. In addition,
a scalar “confidence” output indicates whether the given hand is
present in the image. Please see the supplementary section for more
details on the network architecture.

During training, we apply the loss function,

L= Z Lige,i + ALconf,i >
ie{left,right}

where Lj,.; supervises the bounding circles using an MSE loss,
Leonf,i supervises the hand confidence loss using the standard binary
cross entropy loss, and the coefficient A balances the contribution
of the two terms (A = 100 when we train DetNet). The losses are
summed over the left and right hands. Our detection bounding boxes
are the squares that minimally inscribe the circles produced by the
network. We only generate boxes when the confidence is above 0.5.
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Detection-by-tracking. In general, it is necessary to run DetNet on
all four images to guarantee finding both hands in all views. Since
we target mobile architectures, this is too expensive to run at every
frame, even for our power-optimized DetNet architecture. To over-
come this limitation we employ a detection-by-tracking approach
when a tracked hand is available. We first extrapolate the current
hand pose from the previous two tracked poses, ét =201 — 04_s.
Detection-by-tracking leverages this extrapolated pose 6, by pro-
jecting the hand keypoints into each camera and computing the
minimum enclosing circle as the detection result. In the case that
no current hand is tracked, we run DetNet for the next frame. We
further reduce compute of this evaluation by running DetNet only
on one of the cameras (in a round robin fashion). Once the hand
has been detected and tracked in a single image, bounding boxes
in the remaining cameras in the next frame can be obtained using
the tracked pose, allowing for subsequent STEREO tracking. The
resulting system can (re-)acquire the hands almost instantly (within
two timesteps) while incurring the cost of only a single evaluation of
DetNet (or none, when both hands are being tracked). Detection-by-
tracking has the added benefit that the resulting bounding boxes are
temporally smooth; jittering of the bounding boxes from running
DetNet at every frame would otherwise cause more noise later in the
pipeline. Please see Section 5.4 for detailed quantitative evaluation
of the improvements afforded by these choices.

3.4  Keypoint estimation

Our keypoint estimation network, KeyNet, predicts the 21 keypoints
on the hand from a crop of the image based on the predicted bound-
ing box from the hand detection step. Previous work on keypoint
estimation typically treats each image independently. This has sev-
eral drawbacks for real-time, multi-camera systems. First, the quality
of predictions will degrade when the hand moves between overlap-
ping camera views as each view is handled independently and views
where the hand is partially out-of-frame are problematic for key-
point estimation. Second, the keypoints tend to jitter, particularly
for occluded fingers, because temporal consistency is not enforced.

To resolve both problems, we structure our network to explicitly
incorporate the extrapolated keypoints as an additional network
input. In Section 5, we demonstrate how this architecture can effec-
tively promote both spatial and temporal consistency and lead to a
low-jitter tracking system.

The input to KeyNet is the square bounding box crop from the
hand detection step. To ensure the entire hand is visible, we increase
the crop size by 20%. Similarly to the hand detection step, if a hand
is actively tracked, we extrapolate the previous 3D hand pose and
project the 21 keypoints to the image. We then augment the input to
KeyNet with the 21 keypoint coordinates. Each keypoint coordinate
consists of a 2D keypoint coordinate (normalized to [0, 1]) and a 1D
relative distance coordinate, which we introduce in the next section.
If the hand is not actively tracked, this channel is replaced with all
Zeroes.

The network outputs a 2D heatmap for each of the 21 predicted
keypoints, constructed by evaluating a Gaussian following [Tomp-
son et al. 2014]. In addition, we predict a 1D heatmap that encodes
the relative distance of each keypoint (see next section). To train
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Distance

Fig. 4. We use a 2D example to demonstrate the advantage of predicting
relative distance over relative depth. The red and blue curves correspond to
the same shape appearing in different locations. The cropped view of these

two curves will be identical for an equidistance (fisheye camera) projection.

We consider two points on the curve as keypoints. Left: while the cropped
images of the two curves are identical, the depth values are different. A
network that uses the image to predict the relative depth between the

keypoints will struggle to resolve the ambiguity in the ground truth. Right:

the two images have the same relative distance values, so the keypoint
network can reliably map the input to a single relative distance prediction.

the network, we use MSE loss to supervise both the 2D and the 1D
distance heatmaps

A2 A2
Lyp = ||Hyp — Hypll; + allHip — Hipllg

Here Hyp, Hap, Hip, Hip are the ground truth and predicted 2D
heatmaps and the ground truth and predicted distance heat maps
respectively. « is a parameter to balance the two loss terms during
training and is set to 0.05 in practice. Our network is designed to
only predict keypoints for a left hand. To predict keypoints for the
right-hand, we mirror the network inputs and outputs along the
X-axis.

Predicting depth vs. distance. Previous work on predicting 3D pose
have used 2D image space keypoints and 1D relative depth values
[Zimmermann and Brox 2017b]. The choice of depth works well for
orthographic or weak perspective cameras where depth and image
space predictions are orthogonal. However, fisheye cameras are
more accurately modeled using the equidistance projection [Kannala
and Brandt 2006], where rays are parametrized by their angle
with the camera’s principle axis. Predicting depth orthogonal to the
image plane is therefore ambiguous for cropped images near the
edge of the frame; see Figure 4 (left).

As shown in Figure 4 (right), predicting relative distance instead
ensures that a given input image maps to a single output value,

di—d

rel _
4" = ——

¢

Here d; is the distance of the keypoint i to the camera center, d =
>.; di/n is the mean distance across all keypoints and ¢ is the global
scale of the hand skeleton (Section 3.6).

3.5 Model based pose estimation

Once we have obtained the 21 3D keypoints of the hand, we solve
for the pose of the hand,

0= main(EZD +wiEgist + WZEtemporal)~

The 2D error term E;p enforces agreement with the detected 2D
keypoints,
£12
Exp = ) ITL(pi(0)) - pi 3,
Lj
where IT; is the function that projects a point in 3D space to the jth
camera’s image space and f; j is the ith predicted keypoint in the
Jjth camera’s image space.
The 1D error term for the relative distance is,

Egie = ), |I(dist; (pi(0)) = dist; (po(0)) - ¢ - (d[5' - dp)I[3,
Lj

where dist; is a function that computes the distance between a
point to the jth camera and cf{ el s the predicted relative distance
coordinate for the ith keypoint in the jth camera.

The temporal term is to ensure smoothness of the tracked hand
poses

Etemporal =16 - Gt—l”%

0¢-1 is the hand pose from the previous frame when available. Note
that this term assumes a constant position motion model, as we
found that a constant velocity model tends to overshoot during
fast hand motion. wy and wy are set to 0.04 and 20 respectively in
practice. We use a Levenberg-Marquardt solver and initialize with
a valid hand pose from the previous frame when available, or a
neutral hand pose otherwise.

3.6 Solving for hand scale

In a single image, there is an inherent ambiguity between the size
of a user’s hand and its distance from the camera. We resolve this
by running an automatic calibration process to estimate the size
of the user’s hand when the hand is in the STEREO region. We use
the same keypoint predictions from KeyNet, but to improve the
estimate we incorporate constraints across images from different
capture times. We start by sampling frames where either the left
or right hand is visible in STEREO. We augment the pose with an
additional global scale parameter ¢ (shared between left and right
hands) and minimize a multi-frame version of E;p

n
min Z Eop (01, 9)
0nd 13

where 60; represents the hand pose at a particular time instance
t and Eap (6, @) is the keypoint error across all images captured
at time ¢. Note that solving for pose and scale jointly is key here
so the optimizer can adjust the distance to compensate for scale.
The block-diagonal structure of the Jacobian matrix allows us to
compute the Levenberg-Marquardt search direction in O(n).

4 DATA GENERATION AT SCALE

Similar to [Zimmermann et al. 2019], we find that networks trained
on existing RGB hand pose datasets do not generalize well to new
environments and camera configurations. We thus found it neces-
sary to generate our own datasets to train both DetNet and KeyNet.
The two tasks have different requirements: hand detection requires
only that the annotated bounding boxes be accurate, but needs a
camera configuration as similar as possible to the target configu-
ration, while keypoint estimation is less sensitive to the camera
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Monochrome camera views

Fig. 5. Multi-camera system for keypoint annotation. Left image
shows the multi-camera rig with a single depth camera (in red circle) and 6
monochrome cameras (in blue circles). The rig is attached to a backstrap
so that user can put it on and walk out to environments with various light-
ings and backgrounds. Right images show captured frames and generated
ground truth. We intentionally place left hand in front of depth camera with
minimum occlusion. To this end, the ground truth is generated based on
depth camera and projected to other monochrome views.

configuration (since the network sees only a crop) but needs accu-
rate annotation of the entire hand pose. We therefore developed
two scalable methods for generating high quality data for training
DetNet and KeyNet in real-world scenarios.

4.1 Keypoint labels from depth-based hand-tracking

To generate keypoint labels for training KeyNet, we generate ground
truth keypoint annotations using a depth-based hand-tracking sys-
tem and project the resulting keypoints to several calibrated mono-
chrome views. Fig. 5 shows our hardware setup. Six 60Hz mono-
chrome fisheye cameras, placed to emulate egocentric viewpoints,
are attached to a rigid frame. A single depth camera running at
50Hz is used to capture and label the subject’s hand motion. The
cameras are both spatially and temporally registered to each other,
so keypoints generated by the depth-based hand-tracker can be re-
projected and interpolated to the monochrome views. Our capture
setup is mobile, allowing us to capture lighting and environment
variations efficiently.

To ensure high-quality keypoint annotations, it is important to
maximize the quality of the depth-based tracking. We therefore try
to limit occlusion by instructing users to hold their hand so that the
palm always points toward the depth camera, ensuring the fingers
stay in view. Because we place the monochrome cameras around
the frame, the resulting monochrome frames still capture a variety
of more challenging, occlusion-heavy viewpoints that can be used
to train KeyNet (Figure 5, right).

We track with a calibrated user-specific template hand model
fitted to high quality hand scans [Romero et al. 2017]. We manually
label the hand bounding box in the first frame of each sequence
and track hands in future frames. Hand poses are estimated using
a combination of keypoint estimation [Tompson et al. 2014] and
model-based tracking [Tagliasacchi et al. 2015]. After an initial
track of a sequence, we re-reprocess it by jointly optimizing the 3D
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Fig. 6. Examples of semi-automatically labelled bounding boxes.
Each row corresponds to images from different views captured at the same
time. Accurately annotating hand region in images at low light (see Row
1), partially observed hands (see Row 2) and disambiguating left versus
right hand is a challenging task for human annotator. On the contrary, our
system only needs manual annotation at few frames. Annotation will then
propagate to other views and subsequent frames. The examples here are
sampled from a sequence of 10k frames where the annotation was done at
about 100 bounding boxes per second. Given the capture system is mobile,
the sequence features large background and lighting variations.

depth error, keypoint error and temporal smoothness across the full
sequence. Finally, sequences are manually inspected again in order
to discard any problematic frames.

4.2 Semi-automatic bounding box labeling

To train a sufficiently accurate DetNet, we need bounding box labels
for data that closely match the camera configuration and environ-
ments that we see in the wild. We find therefore that specialized
setups as in Section 4.1 are inadequate, and it is better to label
images captured from the headset itself (Figure 3). To maximize
the throughput and efficiency of the labeling task, we use a novel
semi-automatic solution for bounding box labeling, leveraging the
detection-by-tracking approach described in Section 3.3. After a user
manually labels the hand bounding box for an initial frame, we use
a trained KeyNet and our tracking pipeline to propagate the hand
pose and thus the resulting boxes for the remaining frames. If the
annotator notices that the tracker fails, she simply annotates a new
box and the tracked hand is updated automatically. Figure 6 shows
some example hand detection data to demonstrate the efficiency of
this labeling method.
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5 EVALUATION

In this section, we first provide further details on how we train
DetNet and KeyNet using the data annotated by the methods we
introduced in Section 4. We then describe an evaluation of our
pipeline on a separate dataset annotated with a different ground
truth mechanism to avoid bias. We also evaluate our pipeline on
three public datasets to gain more insights on the strengths and
weaknesses of our system.

5.1 Implementation details

Training DetNet. We used the labeling tool introduced in Sec-
tion 4.2 to generate 2.6 million images for training DetNet. We train
the network for 75 epochs using a stochastic gradient descent opti-
mizer with a learning rate of 0.001 and momentum of 0.9. We apply
random intensity scaling to the input images as data augmentation
to simulate environment and lighting variations.

Training KeyNet. KeyNet takes a 96 X 96 monochrome image and
a 63 dimensional vector (of extrapolated keypoints) as input and
outputs 21X 18X 18 2D heat maps and 21X 18 1D heat maps. To train
KeyNet to handle fast motion and tracking failures, we use a mixture
of extrapolation strategies for data augmentation. For 90% of the
training data, we compute keypoints from an extrapolated pose
calculated from the two previous ground truth hand poses, similarly
to what we do at runtime. For the remaining 10%, we compute
keypoints from hand poses from 20 frames ago. As indicated by our
preliminary experiments (see Section 5.3), directly feeding keypoint
features leads to a degenerate network that simply duplicates results
of the input keypoints and fails to learn features from image inputs.
Hence, we augment the keypoint features by adding Gaussian noise.

To further make KeyNet robust to various real world scenarios,
several augmentation strategies are carefully applied during training.
First, to simulate partially out-of-frame hands, we randomly wipe
out rectangular regions at the image boundary by setting pixel
intensity to zero. In addition, we apply random intensity scaling
and random geometrical translation, rotation and scaling to the
input image and keypoints, to simulate lighting and view-point
variations. To simulate the initialization phase when no keypoint
features are available, we set the keypoint branch to all zeroes with
a certain probability. This augmentation strategy further facilitates
the network to learn features from the images without relying on
input keypoint features. Our training data set contains "2 million
examples and we apply all combinations of the aforementioned
augmentation strategies at every training iteration. We train the
network for 75 epochs using a stochastic gradient descent optimizer
with a learning rate of 0.025 and momentum of 0.9.

Note that while many detection and keypoint estimation archi-
tectures [He et al. 2017] are trained end-to-end, we trained KeyNet
and DetNet separately. This has the advantage of allowing us to
use separate datasets for KeyNet and DetNet with different prop-
erties as described in Section 4. Moreover, because KeyNet does
not rely on evaluation of DetNet, we are able to use detection-by-
tracking, which we show is both more efficient and more accurate
in Section 5.4.

Hand scale calibration. VR headsets include hardware to detect
when they have been placed on or taken off a user’s head. We there-
fore know when we are potentially tracking a new user and thus
begin scale calibration. The process takes "5 seconds. For offline eval-
uation, we run calibration using the first 100 frames of a sequence
and re-track using the updated hand model to generate results.

Inference. When running our system in real-time, we limit DetNet
to evaluate only on one image, and KeyNet to evaluate on no more
than two images per hand at any given frame to reduce compute.
Our system runs at 60Hz on a PC with an NVIDIA GTX 1080 GPU
with a total system of latency of ~60 ms, including rendering in
VR. We further trained two models, KeyNet-F and DetNet-F, that
require significantly lower compute, which enable us to run on a
Snapdragon 835 mobile processor with a Hexagon v62 DSP at 30Hz.

5.2 Evaluation dataset

We collected four evaluation sequences including various finger
motion with both slow and fast hand movements and simple hand-
hand interactions. To avoid bias, we adopt a different ground truth
method than was used during our training. Instead of relying on
depth-based hand-tracking, we use a marker-based hand-tracking
system [Han et al. 2018] which can achieve sub-millimeter accuracy.
We directly placed 3mm semi-sphere markers on the user’s skin to
minimize appearance modification. Note that these markers only
appear in the evaluation set so the trained KeyNet cannot over-fit
to the marker appearance.

5.3 Ablative studies of KeyNet

To evaluate the individual contribution of the proposed KeyNet
architecture, 3 KeyNet variants are trained,

o KeyNet-S only takes a single image as input without keypoint
features.

o KeyNet-N uses the same architecture as the KeyNet but with-
out adding Gaussian noise to the keypoint features during
training.

o KeyNet-F is a fast model similar to KeyNet but can be run on
a Hexagon V62 DSP in real-time.

Metrics. To measure tracking accuracy, we use mean-keypoint-
position-error (MKPE) which computes the average 3D Euclidean
distance in millimeters between estimation and ground truth key-
points over all frames. We further measure the temporal smoothness
of the estimation by estimating the keypoint acceleration as follows:

accit = Pit-1+ Pit+1 ~ 2Pit
where acc;; and p; ; are acceleration and keypoint position for the
ith keypoint in the tth frame. Given the absence of abrupt finger
motion for common VR/AR interaction cases, acceleration can be
a good approximate measure of temporal smoothness. We report

mean-keypoint-acceleration (MKA) which computes the average of
the acceleration of all the keypoints.

Quantitative evaluation. We divide tracking performance into two
scenarios: tracking in STEREO and tracking in MONOCULAR. Since the
distribution of hand poses is different in the stereo versus monocular
tracking regions, we simulate MONOCULAR by running our pipeline
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Table 1. Ablative study by using different variants of proposed KeyNet and
hand model obtained from different sources. We use generic, calibrated and
scanned to refer to the default hand model, the hand model obtained by
solving for the hand scale in sTEREO and the hand model obtained from a
scanning system respectively. We highlight the rows corresponding to our
proposed methods in the table in each section.

STEREO MONOCULAR

Method
MKPE MKA MKPE MKA
Ground truth NA 1.95 NA 1.95

KeyNet-S + scanned 114 5.47 15.1 6.49
KeyNet-N + scanned  17.6 2.13 29.7 2.50
KeyNet-F + scanned ~ 11.3 3.07 149  3.79

KeyNet + scanned 11.0 296 157 3.72
KeyNet + generic 19.7 2.85 38.8 3.36
KeyNet + calibrated 114 294 15,6 3.65
KeyNet + scanned 11.0 2.96 15.7 3.72

on the same frames of STEREO, except with one view dropped. This
produces a fair comparison as the same hand poses and backgrounds
are used for both conditions.

The middle section in Table 1 shows the performance of different
network architectures when using the hand model obtained from
a scanning system. Our proposed KeyNet generated similar MKPE
compared to the baseline KeyNet-S but with significantly lower
MKA in both sTEREO and MONOCULAR. This shows that our proposed
KeyNet architecture effectively improves temporal smoothness by
incorporating keypoint features without compromising accuracy.
Moreover, we verify the effectiveness of data augmentation, which
reduces the MKPE in STEREO/MONOCULAR from 17.6mm/29.7mm
(KeyNet-N) to 11.0mm/15.7mm (KeyNet). KeyNet-N generates lower
MKA by overly relying on temporal information and thus fails to
faithfully predict the hand poses. Notably, our KeyNet-F uses much
fewer weights (about 7% of the original size) compared to KeyNet
but still generates comparable accuracy and smoothness to KeyNet.

The bottom section in Table 1 shows the importance of solving
for the hand scale (Section 3.6). When a generic hand model is used,
the system accuracy is greatly degraded compared to using the hand
model obtained from a scanning system. This degradation is even
worse when the tracker runs in MONOCULAR since resolving depth
ambiguity in a single view depends heavily on the accuracy of the
hand model scale. Using our proposed method for resolving hand
scale, tracking accuracy approaches that of the hand model fitted to
a 3D scan.

Qualitative evaluation. Figure 7 shows a challenging case where
a hand is partially out of view. The baseline KeyNet-S model can’t
make meaningful prediction for the thumb tip. However, our pro-
posed KeyNet can effectively leverage tracking history to make a
better prediction. Figure 8 shows keypoint predictions by the base-
line KeyNet-S and proposed KeyNet in two different views. Our
proposed KeyNet again leverages the tracking history so that the
predictions are consistently correct across the two views.
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Ground truth Thumb tip
keypoints heat map

Input Extrapolated Predicted
image keypoints keypoints

KetNet-S
(baseline)

KetNet
(proposed)

Fig. 7. Temporally consistent predictions by KeyNet. The hand is par-
tially out of the image boundary in the input image but our proposed KeyNet
can still utilize tracking history to produce a plausible hand pose compared
to the baseline KeyNet-S.

Input Middle finger tip  Ring finger tip Input Middle finger tip ~ Ring finger tip

image heat map heat map image heat map heat map

View 1

View 2

KeyNet-S (baseline) KeyNet (proposed)

Fig. 8. Spatially consistent predictions by KeyNet. Baseline model
KeyNet-S produces correct predictions for the middle and ring finger tips in
view 1 but produces 2 modes for each keypoint in view 2 due to more severe
occlusion. Our proposed KeyNet leverages the input keypoint features and
produces consistent predictions across the 2 views.

Table 2. We evaluate variants of our hand detection method through chang-
ing the number of views per frame available to DetNet (1 or 4) and toggling
detection-by-tracking (track or no-track). DetNet-F corresponds to the fast
model that can be run on a mobile processor. This table shows the precision
and recall metrics using different hand detection methods for each of the 4
camera views: top left (TL), bottom left (BL), bottom right (BR), top right
(TR).

Detection method TL BL BR TR
DetNet x 4 + no-track | 0.94/0.93 1/0.99 1/0.97 0.93/0.95
DetNet x 4 + track 0.98/0.99 1/1 1/1 0.99/1
DetNet x 1 + track 0.98/0.99 1/1 1/1 0.99/1
DetNet-F x 1 + track 0.98/0.99 1/0.99 1/1 0.99/1

5.4 Ablative studies of hand detection

Precision and recall metrics. We use precision and recall to mea-
sure the accuracy of each hand detection method. Specifically, we
define a positive prediction if the hand confidence predicted by
DetNet is greater than 0.5. We define a true positive prediction if it
satisfies three criteria: (1) the width of the predicted bounding box
is within 20% difference from that of the ground truth bounding box;
(2) all the projected ground truth keypoints lie within the cropped
image boundary; and (3) more than 16 ground truth keypoints are
within the full image boundary.
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Input image DetNet

Detection-by-tracking

Fig. 9. We follow a detection-by-tracking paradigm to localize hand. Lever-
aging results from tracking history makes our method robust to challenging
cases, e.g. , partial occlusion.

Quantitative evaluation. In our system, the views of the hands
in different cameras could be drastically different. For example,
the bottom cameras tend to capture more of the user’s body and
the surroundings as the background whereas top cameras tend to
capture more of the ceiling. This poses a problem for how hand
detection methods perform in each different view. Table 2 shows
precision and recall metrics using different hand detection methods
for each camera view. When we run DetNet for all the images at ev-
ery single frame, the performance of hand detection for the top two
cameras are noticeably worse than the bottom two cameras, sug-
gesting different performance of DetNet on different camera views.
Using detection-by-tracking approach as described in Section 3.3,
performance improved for all views and the performance differ-
ence between different views becomes much smaller. This shows
that detection-by-tracking is more robust than relying on DetNet
at every frame. We also show that if we limit DetNet to run on only
one view per frame in the optimized runtime setting, the metrics
are not obviously affected. This suggests our optimization strategy
has negligible impact on the system performance. Finally, our fast
model DetNet-F performs similarly to the default DetNet when we
enable detection-by-tracking.

Qualitative evaluation. Figure 9 shows a hand at the image bound-
ary where DetNet fails to detect the left hand, but the proposed
detection-by-tracking approach succeeds. More broadly, DetNet has
different performance in different image regions, especially if the
training data distribution is biased, whereas detection-by-tracking is
not sensitive to where the hand appears in an image and generates
consistent predictions across different image regions.

5.5 Evaluation on different hand motions

Our dataset consists of several types of hand motion designed to
realistically stress the tracking system. The finger motion sequence
is intended to test how well our system captures subtle finger mo-
tion in STEREO. The hand-hand sequence is intended to test how our
system handles mild inter-hand occlusions in sTEREO. The slow and
fast motion sequences are intended to test how our system captures
hand motion in a large volume (both in STEREO and MONOCULAR). Ta-
ble 3 shows the system performance for each sequence. Our system
generates the highest accuracy for the finger motion sequence.

Table 3. Tracking accuracy and temporal smoothness of our system evalu-
ated on different motion sequences. MKA GT measures MKA of the ground
truth keypoints.

sequence MKPE MKA MKA GT
finger motion 9.4 2.1 1.4
hand-hand 11.4 2.2 1.4
slow motion 11.8 3.8 2.3
fast motion 14.7 5.9 3.5

Ground truth Tracked Tracked
hand meshes keypoints hand meshes

Ground truth

|
mage keypoints

Fig. 10. Qualitative results on our evaluation dataset. Each row shows

the input image, ground truth keypoints, reconstructed hand mesh and
corresponding estimations (from left to right).

Inter-hand occlusion in the hand-hand sequence is more chal-
lenging and the accuracy of our system drops slightly compared
to the finger motion sequence. Notably while we did not train our
KeyNet with any hand-hand data, our system still handles some
challenging cases reasonably well. Range of motion is much larger
in slow motion and fast motion sequences. As a result, more frames
are tracked in MONOCULAR only and the overall tracking accuracy
dropped compared to the other two sequences where hands are
always tracked in sTEREO. Figure 10 shows some examples from
each sequence.
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Fig. 11. PCK plots on public benchmarks. From left to right, we show the percentage of correct keypoints with respect to different error thresholds across
all frames on STB[Zhang et al. 2016], Dexter+object[Mueller et al. 2017] and EgoDexter[Sridhar et al. 2016] benchmarks. The AUC is shown in the legend. The
depth-based method [Sridhar et al. 2016] is drawn with dashed line in the middle plot.

5.6 Evaluation on public data sets

In addition to evaluating on the test set that we collected, we also
show evaluation results on three public data sets: Stereo Hand Pose
Tracking Benchmark (STB) [Zhang et al. 2016], EgoDexter (ED)
[Mueller et al. 2017] and Dexter+Object (D+O) [Sridhar et al. 2016].
Each data set contains RGB images only, and we convert these RGB
images to monochrome images before running our tracker. Our
DetNet is designed specifically for our own camera configuration
and therefore doesn’t generalize to these data sets. Hence, we man-
ually provide the bounding box either for the first frame or when
the tracking fails similar to the labeling method we introduced in
Section 4.2 and rely on detection-by-tracking for the rest of the
frames. We take the resulting keypoints from the skeleton and
report Percentage of Correct Keypoints (PCK) curves. The intent of
this exercise is to better understand whether our system generalizes
to non-egocentric viewpoints and hand-object interactions since
neither is explicitly handled either in our pipeline or data collection.

Evaluation on STB. We follow the split used in [Zimmermann and
Brox 2017a] resulting in 15000/3000 training/testing stereo image
pairs. We solve for the user hand scale on a training sequence and use
the resulting hand model for tracking in the evaluation sequences.
Our tracker always takes two views simultaneously for both training
and evaluation. To resolve the difference in keypoint definitions,
we further fit a linear mapping from the keypoints tracked by our
tracker to the ground truth keypoints provided by the dataset, using
the training sequences. The 3D PCK curve is shown in Figure 11.
From the PCK curve, our result is slightly worse than the state-
of-the-art method today. Figure 12 shows some example frames
from STB. These poses are commonly seen from egocentric cameras
despite being captured from outside-in cameras. We observed most
failure cases happen in the last 600 frames in the test set, which
contain poses that are not commonly observed from an egocentric
point of view (See Figure 13(b)). If we evaluate only on the the first
2400 frames, the AUC reaches 0.992 while the AUC is only 0.929
on the last 600 frames. We further incorporated STB training data
to train another KeyNet. When we use this new KeyNet, the AUC
score increases to 0.987 with 0.995 on the first 2400 frames and 0.954
on the last 600 frames. .
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Evaluation on D+0. D+0O contains data from a single RGB cam-
era with 2 users interacting with objects. Due to the inherent scale
ambiguity of a monocular viewpoint, we generate a hand model for
each user by taking a base model and sweep over the hand scale,
selecting the model with the best tracking accuracy according to
the ground truth labels. By doing this, we hope to understand the
upper-bound of our tracking accuracy on this data set. Comparing
to methods that do not use depth, we achieve state of the art results
on this data set (see Figure 11). Some example results can be seen in
Figure 12. Because this dataset only contains sparse labels for the
visible fingertips, the most challenging frames with heavy occlu-
sion have no labels and hence, do not affect the overall metric. For
example our system generates an incorrect pose (problematic index
and ring finger positions) for the case shown in Figure 13(d) but the
PCK curve is not affected by this frame.

Evaluation on ED. ED contains fast free hand motion and com-
plex hand-object interactions from an egocentric camera. We get
hand models using the same method as for D+O. We again achieve
state-of-the-art results on this data set (see Figure 11). However, this
dataset has the same issues as D+O in that challenging frames do
not contain ground truth labels. We show some example results in
Figure 12. Our tracker performs well on the free hand motion se-
quences and some frames of the hand-object interactions. However,
it fails catastrophically when an object severely occludes a hand
(see Figure 13).

5.7 Typical failures and future work

Figure 13 summarizes some typical failure cases of our system. The
problem of poor performance on uncommon viewpoints of the hand
could be resolved with better sampling of those viewpoints in the
training set. The failures for hand-hand and hand-object interactions
reflect both the limitation of our system design and the fundamental
difficulty of these tasks. We believe jointly reasoning about the two
hands and handheld objects is an important direction for a better
hand-tracking system.
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Fig. 13. Our system usually fails under complicated hand-hand interactions (a), uncommon view of the hand for egocentric cameras (b) and hand-object

interactions (c), (d).

6 CONCLUSION

We have presented a practical real-time hand-tracking system for
VR/AR interaction. The system uses four egocentric fisheye cameras
with partially overlapping FOV, enabling a large tracking volume.
Our proposed hand detection network, DetNet, combined with a
detection-by-tracking strategy gracefully handles hands moving
between the multiple cameras. Our proposed keypoint estimation
network, KeyNet, also leverages tracking information to achieve
spatially and temporally consistent keypoint predictions, enabling
our system to generate accurate, low-jitter hand motion suitable
for interaction. Our model-based pose estimation and hand scale
calibration use a traditional linear blend skinning rig, making it
easy to incorporate into interactive experiences. Most previous
work has only focused on individual components, making it hard to
understand how a hand-tracking system can perform in practice. In
our work, we demonstrate that enabling experiences using hand-
tracking requires a system level design from camera configuration
to output representation.

There remain many limitations of our work. Our system can han-
dle interactions driven by a single hand in the air, but the proposed
architecture is not designed to reason about hand-hand or hand-
object interactions. Both hand-hand and hand-object interactions
are critical for immersion and are a direction for future work. Our
hand scale calibration is limited to varying a single parameter of the
hands (scale), which may not deliver sufficient accuracy for some
scenarios.
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A  NETWORK ARCHITECTURES

DetNet. The input to DetNet is a VGA (640x480) resolution image.
Table 4 shows the DetNet-F architecture. The backbone contains a
4 X 4 average pooling layer downsampling the image to 160x120
resolution. We use the efficient inverted residual building block (IRB)
[Dai et al. 2019; Sandler et al. 2018] to build our network. This
efficient architecture takes 5ms to evaluate a single image on a
Hexagon v62 DSP. Our default DetNet uses Resnet34 [He et al. 2016]
as the backbone with the rest of the network the same as DetNet-F.
This architecture takes 2ms to evaluate a single image on a NVIDIA
GTX 1080 GPU.

KeyNet. The iput to KeyNet is a 96x96 resolution image and a 63
dimensional keypoint feature vector. Table 5 shows the KeyNet-F
architecture. It uses the same IRB as used in DetNet. This efficient
architecture takes 14ms to evaluate 4 images on a Hexagon v62 DSP.
Our default KeyNet again uses a variant of Resnet34 as the backbone
with conv2_x, conv3_x and conv4_x as the "backbone image layers”
and conv5_x as the "backbone fused layers”. The resuling network
takes 8ms to evaluate 4 images on a NVIDIA GTX 1080 GPU.
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MEgATrack: Monochrome Egocentric Articulated Hand-Tracking for Virtual Reality

Table 4. Architecture for DetNet-F

Stage/Output Input Operator Expsize Out Channels Stride Repeat
Backbone 1 X 640 X 480 AvgPool2d 4 x 4 - 1 4 1
1x160 x 120 Conv2d 3 X 3, BN, Relu - 32 2 1
32 X 80 X 60 IRB3x3 96 32 2 1
32 X 40 X 30 IRB3x3 96 32 1 1
32 x40 % 30 IRB3x3 192 64 2 1
64 X 20X 15 IRB3x3 384 64 1 2
64 X 20 X 15 IRB3x3 384 64 2 1
64X 10X 8 IRB3x3 384 64 1 3
64X 10X 8 IRB3x3 384 96 1 1
96 X 10 X 8 IRB3x3 576 96 1 2
96 X 10 X 8 IRB3x3 576 128 2 1
128 X 5% 4 IRB3x3 768 128 1 2
160 X 5 X 4 128 X5 X 4 IRB3x3 768 160 1 1
Hand center 160 X 5 X 4 Conv2d 1 X 1, BN - 4 1 1
4XxX5x%x4 AvgPool2d 5 x 4 - 4 1 1
2%x2 4xX1x1 Reshape 2 x 2 - 1 - 1
Hand radius 160 X 5% 4 Conv2d 1 x 1, BN - 2 1 1
2X1x1 2X5%x4 AvgPool2d 5 x 4 - 2 1 1
Hand cls 160 X 5% 4 Conv2d 1 x 1, BN - 2 1 1
2X5%4 AvgPool2d 5 x 4 - 2 1 1
2X1x1 2XxX1x1 Sigmoid - 2 - 1
Table 5. Architecture for KeyNet-F
Stage/Output Input Operator Exp size Out Channels Stride n
Backbone image 1x 962 Conv2d 3 x 3, BN, Relu - 32 2 1
32 x 482 IRB3x3 1 32 1 1
32 x 482 IRB3x3 96 32 2 1
32 X 242 IRB3x3 192 32 1 1
32 X 242 IRB3x3 192 64 2 1
64 x 122 64 x 122 IRB 3 x 3 384 64 1 2
Backbone keypoints 63 7 Linear, Relu ST 4608 - Y
32 x 122 4608 Reshape 12 x 12 - 32 - 1
" Backbone fused ~  64x 122,32x12¢ ~ "~~~ Comcat ST T 9% B
96 x 122 IRB3x3 384 64 1 2
64 x 122 IRB 3 x 3 384 64 1 3
64 x 122 IRB3x3 384 96 1 1
96 x 122 IRB3x3 480 96 1 2
96 x 122 IRB3x3 576 128 2 1
128 X 62 IRB3x3 768 128 1 2
128 X 62 128 X 62 IRB3x3 768 160 1 1
Keypoint heatmap 160 x 62 Conv2d 3 X 3 pad2, BN, Relu - 63 1 1
63 x 82 ConvTranspose2d 2 X 2 - 42 2 1
21 x 182 42 x 162 Conv2d 3 X 3 pad2, BN, Relu - 21 1 1
Keypoint distance 160 X 62 AvgPool2d 6 X 6 - 160 6 1
160 x 12 Conv2d 1 x 1, Relu - 378 1 1
21X 18 378 x 12 Reshape 18 - 21 - 1
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