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ABSTRACT

We describe the construction of MegaZ-LRG, a photometric redshift catalogue of over one
million luminous red galaxies (LRGs) in the redshift range 0.4 < z < 0.7 with limiting magni-
tude i < 20. The catalogue is selected from the imaging data of the Sloan Digital Sky Survey
(SDSS) Data Release 4. The 2dF-SDSS LRG and Quasar (2SLAQ) spectroscopic redshift
catalogue of 13 000 intermediate-redshift LRGs provides a photometric redshift training set,
allowing use of ANNz, a neural network-based photometric-redshift estimator. The rms pho-
tometric redshift accuracy obtained for an evaluation set selected from the 2SLAQ sample is
σ z = 0.049 averaged over all galaxies, and σ z = 0.040 for a brighter subsample (i < 19.0).
The catalogue is expected to contain ∼5 per cent stellar contamination. The ANNz code is
used to compute a refined star/galaxy probability based on a range of photometric parameters;
this allows the contamination fraction to be reduced to 2 per cent with negligible loss of gen-
uine galaxies. The MegaZ-LRG catalogue is publicly available on the World Wide Web from
http://www.2slaq.info.

Key words: catalogues – surveys – galaxies: distances and redshifts – cosmology: observa-
tions.

1 I N T RO D U C T I O N

Galaxy redshift surveys have been a cornerstone amongst probes
of the Universe since Hubble’s discovery of the cosmological ex-
pansion in 1929. Recent years have witnessed the construction of
exquisitely detailed maps of the local (z ∼ 0.1) Universe by the
2-degree Field Galaxy Redshift Survey (2dFGRS; Colless et al.
2001) and the Sloan Digital Sky Survey (SDSS; York et al. 2000).
These surveys have defined the new state-of-the-art in spectroscopic

⋆E-mail: a.collister@cantab.net (AC); lahav@star.ucl.ac.uk (OL)

detector technology, each constructing spectrographs capable of si-
multaneous observation of hundreds of objects. However, further
significant increases in the depth and area accessible to spectro-
scopic redshift surveys will rely on the development of a new gen-
eration of instruments.

Photometric redshifts, which are estimated from broad-band
galaxy colours rather than spectra, offer an invaluable interim so-
lution. Relative to multi-object spectroscopy, high-quality photom-
etry can be obtained far more quickly and for significantly fainter
sources. Photometric redshift estimators are numerous, but gener-
ally involve calibration against either an observed spectroscopic
training set (e.g. polynomial fitting, Connolly et al. 1995, or neural
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Figure 1. Spectroscopic redshift distribution of the 2SLAQ LRG sample
(13 115 galaxies), in redshift bins of width �z = 0.01.

networks, Firth, Lahav & Somerville 2003), or a small set of tem-
plate spectra (e.g. HYPERz; Bolzonella, Miralles & Pelló 2000; see
also Benı́tez 2000; Csabai et al. 2003). The accuracy of photometric
redshifts will never approach the precision possible with spectro-
scopic redshifts, but the efficiency of the method allows vastly wider
and deeper surveys to be conceived.

This paper describes the construction of the MegaZ-LRG pho-
tometric redshift catalogue. MegaZ-LRG comprises more than one
million intermediate-redshift (0.4 � z � 0.7) luminous red galaxies
(LRGs) selected from the imaging data of the SDSS Data Release
4 (DR4; Adelman-McCarthy et al. 2006). Lower redshift LRGs
(z � 0.45) are already targeted with the SDSS spectrograph across
the SDSS survey area (Eisenstein et al. 2001). By making use of the
photometric redshift technique, MegaZ-LRG provides redshift in-
formation (albeit less accurate than that provided by spectroscopic
study) for significantly more distant and for a far greater number
of LRGs. LRGs are particularly suited to the photometric redshift
technique due to the homogeneity of the population (Eisenstein et al.
2003) and, especially, the prominence of the 4000-Å break in their
spectra.

The construction of the MegaZ-LRG catalogue has been fa-
cilitated by the recent completion of the 2dF-SDSS LRG and
Quasar survey (2SLAQ; Cannon et al. 2006). 2SLAQ combined the
high-precision SDSS imaging with the exceptional spectroscopic
capabilities of the 2-degree field (2dF) instrument on the 3.9-m
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Figure 2. Map of MegaZ-LRG sample (small points covering the entire SDSS DR4 area), and 2SLAQ fields (black regions centred on equator). For clarity,
only 50 000 randomly selected MegaZ-LRG galaxies are shown. Equal area Aitoff projection of equatorial coordinates.

Anglo-Australian Telescope to produce a spectroscopic redshift cat-
alogue of ∼13 000 LRGs in the redshift range 0.4 < z < 0.7 (Fig. 1).

By necessity, the 2SLAQ survey was restricted to a limited num-
ber of fields located in the equatorial stripe of the SDSS survey area
(Fig. 2). Applying the 2SLAQ LRG selection to the entire SDSS
DR4 imaging area returns a sample of over one million galaxies.
The spectroscopic 2SLAQ catalogue constitutes a superb photomet-
ric redshift training set for this sample. The value of such a training
set is twofold: most importantly, it enables a detailed analysis of
the photometric redshift error distribution, but it can also be used to
calibrate the photometric redshift estimator. We make use of ANNz
(Collister & Lahav 2004), a neural network-based photometric-
redshift estimator, for which the existence of a well-representative
training set is essential.

The structure of this paper is as follows. In the next section we
describe the criteria used to select the MegaZ-LRG target sample
from the SDSS DR4 imaging catalogue. In Section 3 we explain the
ANNz photometric redshift technique and evaluate the accuracy of
the photometric redshifts obtained for the MegaZ-LRG catalogue.
In Section 4 ANNz is used to refine the star/galaxy separation in the
catalogue. Finally, Section 5 describes the MegaZ-LRG catalogue
itself.

2 TA R G E T S E L E C T I O N

MegaZ-LRG is based on SDSS five-band (ugriz; Fukugita et al.
1996; Smith et al. 2002) imaging data obtained with a large format
CCD camera (Gunn et al. 1998) mounted on a special-purpose 2.5-m
telescope (Gunn et al. 2006) located at Apache Point Observatory
in New Mexico. The photometric accuracy is on the order of a few
per cent, and the astrometric accuracy of the object positions is
approximately 0.1 arcsec (Pier et al. 2003). Technical details can be
found in York et al. (2000) and Stoughton et al. (2002).

2.1 Selection criteria

The neural network technique for photometric redshift estimation
relies on the training set being well representative of the target sam-
ple. Our catalogue selection is therefore based directly on that of the
2SLAQ LRG sample. The 2SLAQ selection criteria for identifying
LRGs at 0.4 < z < 0.7 are described in the following subsections
(see Cannon et al. 2006 for a more detailed explanation of the selec-
tion). All magnitudes are corrected for Galactic extinction following
Schlegel, Finkbeiner & Davis (1998). The various magnitude types
are described in Table 1.
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Table 1. Definitions of the different types of SDSS magnitude used in the MegaZ-LRG selection.

Type of magnitude Definition

PSF magnitude Magnitude corresponding to the best fit of the PSF
at the galaxy position. Useful for star–galaxy separation.

de Vaucouleurs magnitude Magnitude corresponding to the best fit of a de Vaucouleurs profile.
The best estimate of the total flux for faint LRGs.

Exponential magnitude Magnitude corresponding to the best fit of an exponential profile.
Model magnitude Uses the best fit of a de Vaucouleurs or exponential profile in the r band,

with the amplitude scaled to fit measurements in other filters.
This is the best estimator of the colour of the galaxy, because the same
aperture is used for all the filters.

Fibre magnitude The flux contained within the aperture of a spectroscopic fibre (3 arcsec in diameter).
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Figure 3. Distribution of i-band de Vaucouleurs magnitude for the MegaZ-
LRG target sample (dotted line) and the 2SLAQ training set (histogram).
The 2SLAQ histogram is scaled so that the two distributions have equal
integrated area in the region ideV < 19.8. The bin size is ideV = 0.01.

Magnitude limits are motivated primarily by the need for suffi-
cient flux for the 2dF spectrograph. The de Vaucouleurs magnitude
provides the best measure of the total flux for faint LRGs:

ifibre < 21.4; (1)

17.5 < ideV < 20.0. (2)

The 2SLAQ catalogue has high (∼90 per cent) completeness to
ideV < 19.8, but drops off sharply beyond this limit (Fig. 3). In fact
the nominal 2SLAQ flux limit is ideV = 19.8; the small number of
objects fainter than this were obtained in an early observing run
in which the flux limit was temporarily moved to ideV = 20.0 (see
Cannon et al. 2006 for details).

Colour cuts are used to isolate the LRGs. All colours are calcu-
lated using model magnitudes; these provide unbiased colours since
they are based on an identical aperture in every band. The colour
selection is illustrated by Fig. 4:

0.5 < g − r < 3; (3)

r − i < 2; (4)

cpar ≡ 0.7(g − r ) + 1.2(r − i − 0.18) > 1.6; (5)

dperp ≡ (r − i) − (g − r )/8.0 > 0.5. (6)
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Figure 4. Colour distributions of 2SLAQ LRGs (squares) and MegaZ-LRG
targets (small points). For clarity, only a randomly selected subset of each
catalogue is shown.

The selection on cpar separates later-type galaxies from the LRG
sample. Cuts above lines of constant dperp select early-type galaxies
with increasingly high redshift. The main 2SLAQ sample is defined
by dperp > 0.55, but a small number of (lower redshift) LRGs were
observed below this boundary during the initial observing runs.

Effective star–galaxy separation is performed using the following
criteria (see also Section 4):

ipsf − imodel > 0.2 (21.0 − ideV); (7)

i-band de Vaucouleurs radius >0.2 arcsec. (8)

Note that the SDSS star–galaxy classification is not used.
Some final technical requirements: ‘Detected’ in both r and i;

nchild = 0; not SATURATED in any band; not NO˙PETRO in r

or i.
These selection criteria are extremely effective at identifying

LRGs in the redshift range of interest: 95 per cent of the objects tar-
geted by 2SLAQ are bona fide intermediate-redshift LRGs. The most
significant contaminant, accounting for virtually all of the remain-
ing 5 per cent, is M-type stars. These cannot be trivially separated
from the LRGs using gri colours, and the small angular diameters
subtended by galaxies at these distances mean that it is difficult to
distinguish between LRGs and point spread functions (PSFs) mor-
phologically. In Section 4 we make use of additional photometric
parameters to derive an enhanced, neural network-based star/galaxy
separation flag.
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2.2 The photometric target sample

The MegaZ-LRG photometric sample is selected from the SDSS
DR4 imaging catalogue using the criteria exactly as specified above.
Only PRIMARY objects are included in order to omit duplicate
observations. Submitting the selection criteria to the SDSS DR4
catalogue returns 1 214 117 objects. The de Vaucouleurs magnitude
and model colour distributions of the sample are compared with
those of the 2SLAQ LRG catalogue in Figs 3 and 4.

2.3 The training set

The final 2SLAQ LRG catalogue provides reliable spectroscopic
redshifts for 13 768 unique objects. In order to ensure consistency
between the training and target samples, we obtained the DR4 pho-
tometry for the 2SLAQ objects by coordinate matching against our
photometric target sample. Confident matches were found for 13 139
objects; changes introduced into the SDSS photometric pipeline
since the 2SLAQ targets were selected mean that the remainder
now fail the selection.

3 P H OTO M E T R I C R E D S H I F T S

3.1 ANNz

The ANNz photometric redshift code1 (Collister & Lahav 2004; Col-
lister 2006) is based on neural networks. In common with other ‘em-
pirical’ photometric redshift estimators, it relies on the existence of
a training set of objects with spectroscopic redshifts. This sample
should be representative of the target photometric sample in terms
of magnitude and colour–space distributions. Given a well-matched
training set, the neural network method is highly competitive with
commonly used photometric redshift estimators: it is less prone to
systematic errors than the spectral energy distribution (SED)-fitting
approach, and is found to provide the greatest accuracy amongst
similar training-set-based methods (Csabai et al. 2003; Firth et al.
2003). The primary drawback of the method is the need for obser-
vational training data, which can be expensive to obtain. One can
only apply the trained network to target objects which lie within
the parameter space sampled by the training data. The technique
is, therefore, not well suited to the traditional use of photometric
redshifts at faint magnitudes, where obtaining a sufficiently large
training set is likely to be impossible. Rather, its strength is in pro-
ducing very large redshift samples from the combination of a modest
spectroscopic survey and a much wider photometric sample.

The artificial neural network (ANN) is in essence a highly flexi-
ble, fully non-linear fitting function. The inputs to the function are
the photometric parameters (usually the galaxy magnitudes in each
of a range of filters), and the output is the redshift. The ANN function
incorporates a number of free parameters known as weights; these
are optimized (the network is ‘trained’) using the training set. The
training process involves minimizing a ‘cost function’: essentially
the sum over the training set of the squared differences between the
photometric and spectroscopic redshifts. The number of free param-
eters is controlled by the network architecture. Firth et al. (2003) in-
vestigate the influence of network architecture on performance. For
the same number of parameters, adding extra hidden layers is found
to give greater gains than widening existing layers. As the network

1 The ANNz software package may be obtained from http://www.star.ucl.
ac.uk/∼lahav/annz.html

complexity is increased, the accuracy eventually converges so that
no further improvement is gained by adding additional nodes. The
network architectures used in the following applications are chosen
(by trial-and-error) to be sufficiently complex for such convergence
to be achieved. Note that the cost function includes a ‘weight decay’
term that prevents weights becoming large unless they contribute a
significant improvement to the performance of the network.

In practice, the available training data are subdivided into ‘train-
ing’ and ‘validation’ samples. Only the training set is directly used to
train the network, but at each iteration of the minimizer the cost func-
tion is also evaluated on the validation set. This prevents overfitting
to the training data, by halting the training process once convergence
is observed for the validation set. Once training is complete, the tar-
get galaxies are submitted to the network in turn, and the output
from the network in each case is assigned as the photometric red-
shift. The accuracy is improved by independently training a number
of networks (on the same training data) and using the mean of their
outputs as the photometric redshift for each target galaxy. However,
for a well-matched training set (as we have here) the gain in accu-
racy when using such a ‘committee’ is usually minor. Full details
of the ANNz software may be found in Collister & Lahav (2004).

3.2 Photometric redshift evaluation for the 2SLAQ sample

Although the photometric target sample is expected to contain stel-
lar contamination, we remove stars from the 2SLAQ sample (using
their spectroscopic identification) before any photometric redshift
estimation. As a result, ANNz does not recognize stars at all and
assigns them extragalactic redshifts, but our tests show that the pho-
tometric redshift accuracy for the genuine galaxies is optimized by
this approach. The stellar contamination is discussed in more de-
tail in Section 4. Removing the stars reduces the 2SLAQ sample to
12 515 objects.

In order to allow the photometric redshift accuracy to be assessed
objectively, we separate out 8515 2SLAQ objects at random to be
used solely as an evaluation set. During the evaluation phase only
the remaining 4000 objects are used for training ANNz, and the eval-
uation set is treated strictly as a mock target sample. Figs 3 and
4 show that the evaluation set may be considered to be accurately
representative of our photometric target sample (although caution
is exercised at ideV > 19.8 and dperp < 0.55 where there are rela-
tively few training objects; see Section 3.2.1). We find that a 4000-
member training set is large enough to ensure convergence in terms
of the photometric redshift accuracy: virtually identical results are
obtained using a training set of 8000 members, but reducing the
training set to 2000 members results in a ∼5 per cent increase in the
overall photometric redshift error.

For photometric redshift estimation we use the model magnitudes
in griz as the inputs to ANNz. The model magnitudes are preferred
due to their use of equal apertures in each band; this allows un-
biased colour estimates, crucial to accurate photometric redshifts.
We do not make use of the u band primarily due to concern over a
time-varying red leak in this filter (SDSS DR4 web site) that could
introduce systematic coordinate dependence into the photometric
redshift errors. Irrespective of this concern, the low signal-to-noise
ratio in the u band relative to the other SDSS filters for LRGs means
that it is found to contribute no measurable benefit to the photometric
redshift accuracy.

An ANNz committee of four networks with a 4:10:10:1 architec-
ture (see Collister & Lahav 2004 for an explanation of this notation)
was trained using the 4000 object training set (split equally into
training and validation subsets). Each member of the 8515 object
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Figure 5. Photometric redshift accuracy for the LRG evaluation set de-
scribed in Section 3.2. The dashed lines show zspec = zphot and the interval
±σ 0(1 + zphot). The solid lines show the mean and standard deviation of
zspec as a function of zphot, evaluated in bins of zphot = 0.02.

evaluation set was then submitted to the trained committee in order
to obtain the photometric redshifts.

The photometric redshifts for the evaluation set are plotted against
the spectroscopic redshifts in Fig. 5. The photometric redshift ac-
curacy is characterized by the bias, 〈δz〉, where

δz ≡ zphot − zspec (9)

and the dispersion

σ 2
z = 〈(δz)2〉 − 〈δz〉2, (10)

or with the inevitable loss of accuracy due to the stretching of the
spectrum at increased redshift factored out,

σ 2
0 =

〈(

δz

1 + zspec

)2〉

−

〈

δz

1 + zspec

〉2

. (11)

Note that these are purely statistical measures which can only be
calculated for the evaluation set.

For the evaluation set, the average photometric redshift error is
σz = 0.0488 or σ 0 = 0.0320, similar to that obtained for the same
sample by Padmanabhan et al. (2005). Fig. 6 shows how the photo-
metric redshift error varies with zphot: the ANNz photometric redshift
is seen to be an unbiased estimator for zspec over the range 0.45 <

zphot < 0.65, with |〈δz〉| < 10−3, and the dispersion increases with
redshift by no more than the expected factor of (1 + z). Very few
objects are assigned zphot < 0.45, and the average photometric red-
shift in this region is biased to higher values. At zphot > 0.65 the
dispersion noticeably worsens and the average photometric redshift
is positively biased.
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Figure 6. Photometric redshift residuals versus photometric redshift. The
dashed lines show the interval ±σ 0(1 + zphot) and the solid lines show the
standard deviation of zphot − zspec.
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Figure 7. As Fig. 6, but showing the photometric redshift residuals versus
spectroscopic redshift.

It is possible, using ANNz, to estimate the contribution to the er-
ror budget originating from the photometric noise (as described in
Collister & Lahav 2004). Unsurprisingly, this contribution increases
with redshift: at zspec < 0.5 the photometric noise is responsible for
an average photometric redshift uncertainty of σz = 0.021, but this
increases to σz = 0.031 for objects at zspec > 0.6. We also note that
the average scatter between the outputs of the individual ANNs in
the committee is 8 × 10−4.

Fig. 7 shows the photometric redshift residuals as a function of
the spectroscopic redshift, and makes it clear that the photomet-
ric redshift distribution is skewed with respect to the spectroscopic
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Figure 8. Spectroscopic redshift distributions in photometric redshift se-
lected bins of width �zphot = 0.05.

Table 2. Mean and variance of Gaussian distributions fit-
ted to the spectroscopic redshift distributions in photometric
redshift selected bins (Fig. 8).

μ σ

0.45 < zphot < 0.50 0.477 0.036
0.50 < zphot < 0.55 0.524 0.041
0.55 < zphot < 0.60 0.571 0.043
0.60 < zphot < 0.65 0.620 0.054

redshifts. Objects with lower spectroscopic redshifts tend to be as-
signed higher photometric redshifts on average, and objects with
higher spectroscopic redshifts are assigned lower photometric red-
shifts. Note that this bias is not relevant when using the photometric
redshifts to assign galaxies to bins: the mean spectroscopic redshift
in a photometric redshift-selected bin will be close to the central pho-
tometric redshift in that bin, and the distribution around the mean is
approximately symmetric.

Regardless of these general observations, it is critical in any ap-
plication of the catalogue that a careful, individual assessment of
the impact of the photometric redshift errors is made. As an exam-
ple, we show the spectroscopic redshift distributions in photometric
redshift-selected bins of width �zphot = 0.05 (Fig. 8). Gaussian fits
to these distributions are overplotted, and the mean and variance of
the fits are given in Table 2. The Gaussian provides a reasonable fit
to the distribution in each of the bins. However, particularly in the
0.45 < zphot < 0.50 bin, the actual distribution has a tighter core and
stronger wings than the fitted Gaussian. Padmanabhan et al. (2005)
obtain similar distributions from their independent photometric red-
shift estimation. Analyses based on these bins should take care that
this non-Gaussianity is taken into account: ideally one should use
the measured n(zspec) directly, rather than attempting to parametrize
the distribution. The evaluation set photometric and spectroscopic
redshifts have been made available with the MegaZ-LRG catalogue
for this specific purpose.

It is important to note that these spectroscopic redshift distribu-
tions are not expected to be appropriate to samples selected from
the complete MegaZ-LRG catalogue; they may only be used if cuts
are applied at ideV = 19.8 and dperp = 0.55 to bring the MegaZ-LRG
selection into line with the 2SLAQ sample (see Section 2.1).
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Figure 9. Dependence of the photometric redshift accuracy on the i-band
model magnitude. Points show the individual redshift errors for galaxies in
the evaluation set. The solid line shows σ z and the dashed line shows σ 0

(which may be considered a fairer measure since it corrects for the different
redshift distributions of samples defined by different magnitude ranges).

Fig. 9 displays the dependence of the photometric redshift accu-
racy on the i-band model magnitude. The redshift error increases
steadily until imodel ∼ 20, beyond which the accuracy degrades much
more rapidly as the limiting magnitude is approached. The photo-
metric redshift accuracy for the brightest objects is significantly
better than the average: considering only objects with imodel < 19.0,
we find σz = 0.0400 and σ 0 = 0.0276.

3.2.1 Accuracy in low-completeness training regions

As explained above, the 2SLAQ catalogue suffers from low com-
pleteness towards certain limits of the parameter space defined by
the cuts in Section 2. The regions of interest can be seen in Figs 3 and
4 to host large numbers of target objects, but relatively few training
objects. We now assess whether the scarcity of training data in these
regions adversely impacts the photometric redshift accuracy.

We first examine the photometric redshift errors for objects having
19.8 < ideV < 20.0. In fact, as Fig. 10 shows, the photometric red-
shift accuracy in this regime shows no suggestion of deterioration.
For the faintest objects, the photometric redshift accuracy is a much
stronger function of the model magnitudes since it is these which
are passed to ANNz and used to compute galaxy colours. The sig-
nificant stochasticity between the i-band de Vaucouleurs and model
magnitudes (Fig. 11) ensures that this dependence is not propagated
to ideV, and the photometric redshift accuracy in 19.8 < ideV < 20.0
is close to the average for the sample as a whole. Note that imodel

is determined using the best-fitting profile in the r band, whereas
ideV uses the de Vaucouleurs model fitted in the i band; these are not
equal, in general, even when the model magnitude is based on a de
Vaucouleurs profile. See York et al. (2000) for details.

A similar concern applies to the dperp < 0.55 region. The photo-
metric redshift error evaluated only on these objects is σz = 0.051,
σ 0 = 0.033; a little higher than the average but still an acceptable er-
ror level. Note that dperp is an excellent redshift indicator: lower dperp

implies lower redshift. These 0.50 < dperp < 0.55 objects typically
have zspec ∼ 0.45.
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Figure 10. As Fig. 9 but showing the dependence of the photometric redshift
accuracy on the i-band de Vaucouleurs magnitude. The low sensitivity of σ

to ideV may be attributed to the significant stochasticity between ideV and
imodel (Fig. 11). To allow more direct comparison, the dotted line shows σ z

for imodel.
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Figure 11. Comparison of the i-band de Vaucouleurs and model magnitudes
for the MegaZ-LRG sample.

3.3 Catalogue photometric redshifts

The photometric redshifts for the final MegaZ-LRG catalogue were
estimated using a new ANNz committee of four 4:10:10:1 networks,
trained on the entire 2SLAQ catalogue (except for the spectroscopi-
cally identified stars): 12 515 objects, equally assigned to the training
and validation subsets.

Fig. 12 shows the photometric redshift distribution of the MegaZ-
LRG catalogue together with both the spectroscopic and photo-
metric redshift distributions of the 2SLAQ evaluation sample. The
MegaZ-LRG catalogue contains considerably more objects around
zphot ∼ 0.45 than the 2SLAQ evaluation sample. This is due to the
admittance of objects having 0.50 < dperp < 0.55: there are 228 520
such objects in the catalogue, hence the significant boost to num-
bers at lower redshifts. If these objects are removed, the photomet-
ric redshift distributions of the MegaZ-LRG catalogue and 2SLAQ
evaluation set are very similar.
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Figure 12. Redshift distributions: (dotted histogram) photometric redshift
distribution of the MegaZ-LRG catalogue; (solid histogram) photometric
redshift distribution of the MegaZ-LRG catalogue including only objects
with dperp > 0.55; (dashed line) spectroscopic redshift distribution of the
2SLAQ evaluation set; (dot–dashed line) photometric redshift distribution
of the 2SLAQ evaluation set. The evaluation set distributions are normalized
to have the same integrated area as the MegaZ-LRG dperp > 0.55 histogram.
The histograms have bin width �z = 0.01.

4 E N H A N C E D S TA R / G A L A X Y S E PA R AT I O N

Neural networks have previously been successfully applied to the
star/galaxy separation problem by Bertin & Arnouts (1996), and
the ANNz photometric redshift code can be effectively and straight-
forwardly applied to the task. We have trained ANNz to perform
star/galaxy separation using the 2SLAQ catalogue as a training set.
Instead of using the spectroscopic redshift as the target network
output, we define δsg, such that δsg = 1 if the training object is a
galaxy, and δsg = 0 if it has been spectroscopically identified as a
star. The output of an ANN trained to predict δsg will be a continuous
quantity; it can be shown that this output may be interpreted as the
classification probability for the particular target object. The closer
δsg is to 1, the higher the probability that the particular target object
is a galaxy.

The ANN method has two especially attractive advantages: (i)
we can allow the network to consider as many parameters as we
believe may be relevant to the problem of star/galaxy separation,
and (ii) we do not need to construct ad hoc criteria such as those of
Section 2, but can simply leave it to the network to determine the
optimal classification scheme.

We selected 15 SDSS photometric parameters to be used as in-
puts to the star/galaxy classifying ANN; these are listed in Table 3.
They include the object’s magnitude in each of the SDSS griz filters
(the u band is not used for the reasons outlined in Section 3), along
with a number of parameters describing the angular size and the
distribution of light within the object. Other parameters were con-
sidered, in particular the Petrosian magnitudes and radii, but these
were found to result in negligible improvement in the separation. As
in Section 3, we separated out an evaluation set of 9139 objects, now
selected from 13 139 2SLAQ objects since the stars are included.
A committee of four 15:20:20:1 networks was trained to predict δsg

using the remaining 4000 objects as the training set. The trained
committee was then applied to the evaluation set, in order to obtain
the predicted galaxy probability for each object. The initial stellar
contamination fraction in both the training and evaluation samples
was 5 per cent.
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Table 3. Photometric parameters used as inputs to ANNz for
star/galaxy separation. Apart from the dereddened model magnitudes
and the SDSS-type classification, all parameters are measured in the
i band, since these red objects exhibit greatest signal-to-noise ratio
in this filter. Note that only the four dereddened model magnitudes
were used during the photometric redshift estimation.

Parameter Description

dered g
dered r Dereddened model magnitudes
dered i
dered z
psfMag i PSF flux (dereddened)
fiberMag i Flux in 3-arcsec-diameter fibre radius (dereddened)
deVMag i de Vaucouleurs magnitude (dereddened)
expMag i Exponential fit magnitude (dereddened)
deVRad i de Vaucouleurs fit scale radius
deVAB i de Vaucouleurs fit axis ratio
expRad i Exponential fit scale radius
expAB i Exponential fit axis ratio
lnLStar i Star ln(likelihood)
lnLExp i Exponential disc fit ln(likelihood)
lnLDeV i de Vaucouleurs fit ln(likelihood)
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Figure 13. Effect of varying the ANNz star/galaxy separation threshold. The
solid line shows the number of stars passing the cut as a fraction of the total
number of objects admitted. The dashed line shows the fraction of genuine
galaxies which are discarded, as a fraction of the total number of genuine
galaxies in the original sample.

In order to perform separation one must decide on a threshold
probability for admittance to the galaxy sample. Increasing this
threshold leads to more aggressive removal of stars, but may also
cause more genuine LRGs to be discarded. Fig. 13 shows the effect
of varying the admittance threshold on the contamination level in
the evaluation set. A conservative suggestion would be to adopt a
threshold galaxy probability of 0.2: this is expected to reduce the
expected stellar contamination to 2 per cent, with the loss of only 0.1
per cent of the genuine galaxies. Alternatively, a more aggressive
threshold of 0.8 reduces the expected stellar contamination to just
0.5 per cent, but still preserves all but ∼1 per cent of the genuine
galaxies.

To obtain δsg values for each of the objects in the MegaZ-LRG cat-
alogue, a new committee of four 15:20:20:1 networks was trained,

now using the entire 2SLAQ catalogue as the training set (13 139
objects split equally into training and validation subsets). Apply-
ing an admittance threshold of 0.2 to the MegaZ-LRG catalogue
reduces its size to 1 190 682 objects. Note that the MegaZ-LRG cat-
alogue has not had any such cut applied, but δsg is provided for
each object. Star/galaxy separation may be performed by discard-
ing objects having δsg less than one’s preferred threshold (guided by
Fig. 13).

5 S U M M A RY: T H E M E G A Z - L R G C ATA L O G U E

We have selected a photometric sample from the SDSS DR4 imaging
catalogue using the criteria devised for the 2SLAQ LRG survey. This
MegaZ-LRG catalogue contains 1 214 117 objects in total. LRGs are
expected to comprise ∼95 per cent of the catalogue membership,
with the remaining ∼5 per cent dominated by M-type stars.

The 2SLAQ spectroscopic catalogue of ∼13 000 LRGs was used
to train the ANNz photometric redshift code. For each of the catalogue
objects, photometric redshifts were estimated based on the dered-
dened griz model magnitudes. The rms photometric redshift error
computed for an evaluation set selected from the 2SLAQ sample is
σz = 0.049, or σ 0 = 0.030.

ANNz was separately trained to perform star/galaxy separation
based on a set of 15 photometric parameters. A star/galaxy flag,
δsg, was estimated for each of the catalogue objects; this continuous
parameter may be interpreted as the probability that a particular
object is a galaxy rather than a star. The aggressiveness of star/galaxy
separation may be varied through the choice of threshold imposed
on the δsg parameter.

The MegaZ-LRG catalogue may be obtained from http://www.
2slaq.info. For each of the 1,214,117 objects in the catalogue we
provide the photometric redshift and δsg parameter calculated as de-
scribed above. To allow any of the full range of SDSS photometric
parameters to be straightforwardly obtained we also include each
object’s SDSS objID. A basic set of photometric parameters is in-
cluded with the catalogue for convenience (Table 4). An example
listing of six objects from the MegaZ-LRG catalogue is provided in
Table 5.

Measurements of large-scale structure within photometric red-
shift slices in the MegaZ-LRG catalogue are presented in Blake
et al. (2006). An independent analysis by Padmanabhan et al. (2006),
based on a similar sample, has produced consistent results. A study
of non-linear clustering within MegaZ-LRG (Collister 2006) is to
appear shortly, and the MegaZ-LRG catalogue is due to be ex-
tended to make use of the additional area provided in the SDSS Data
Release 5.

Table 4. Parameters included in the MegaZ-LRG photomet-
ric redshift catalogue.

objID SDSS objID
ra J2000 right ascension
dec J2000 declination
dered u
dered g
dered r Dereddened model magnitudes
dered i
dered z
deVMag i Dereddened de Vaucouleurs magnitude
z phot ANNz photometric redshift
delta sg ANNz galaxy probability
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Table 5. Example extract of six objects from the MegaZ-LRG catalogue.

objID ra dec dered u dered g dered r dered i dered z deVMag i z phot delta sg

587722952230174879 236.309 −0.430 22.482 21.051 19.339 18.540 18.119 18.392 0.455 0.987
587722952230175340 236.338 −0.579 22.864 22.350 21.209 19.972 19.584 19.781 0.644 0.987
587722952230175431 236.246 −0.449 22.171 22.449 21.089 19.965 19.643 19.613 0.600 0.998
587722952230175557 236.299 −0.573 24.406 21.805 20.501 19.714 19.184 19.955 0.514 0.266
587722952230175583 236.307 −0.436 24.250 22.456 20.886 19.793 19.613 19.956 0.570 0.999
587722952230175590 236.311 −0.513 22.855 22.185 20.872 20.099 19.720 19.973 0.513 0.999

AC K N OW L E D G M E N T S

We thank Filipe Abdalla and Sarah Bridle for helpful comments and
discussion during this work, and all members of the AAO staff who
helped to run and maintain 2dF during the course of the 2SLAQ
survey.

AC was supported by an Isle of Man Department of Education
Postgraduate Studies Grant. OL acknowledges a PPARC Senior Re-
search Fellowship. CB acknowledges support from the Izaak Walton
Killam Memorial Fund for Advanced Studies, and from the Cana-
dian Institute for Theoretical Astrophysics National Fellowship pro-
gramme.

Funding for the SDSS and SDSS-II has been provided by the Al-
fred P. Sloan Foundation, the Participating Institutions, the National
Science Foundation, the US Department of Energy, the National
Aeronautics and Space Administration, the Japanese Monbuka-
gakusho, the Max Planck Society and the Higher Education Funding
Council for England. The SDSS web site is http://www.sdss.org/

The SDSS is managed by the Astrophysical Research Consortium
for the Participating Institutions. The Participating Institutions are
the American Museum of Natural History, Astrophysical Institute
Potsdam, University of Basel, Cambridge University, Case West-
ern Reserve University, University of Chicago, Drexel University,
Fermilab, the Institute for Advanced Study, the Japan Participation
Group, Johns Hopkins University, the Joint Institute for Nuclear As-
trophysics, the Kavli Institute for Particle Astrophysics and Cosmol-
ogy, the Korean Scientist Group, the Chinese Academy of Sciences
(LAMOST), Los Alamos National Laboratory, the Max-Planck-
Institute for Astronomy (MPIA), the Max-Planck-Institute for
Astrophysics (MPA), New Mexico State University, Ohio State
University, University of Pittsburgh, University of Portsmouth,
Princeton University, the United States Naval Observatory and the
University of Washington.

R E F E R E N C E S

Adelman-McCarthy J. K. et al., 2006, ApJS, 162, 38
Benı́tez N., 2000, ApJ, 536, 571
Bertin E., Arnouts S., 1996, A&AS, 117, 393
Blake C. A., Collister A. A., Bridle S. L., Lahav O., 2006, preprint (astro-

ph/0605303)
Bolzonella M., Miralles J.-M., Pelló R., 2000, A&A, 363, 476
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