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Abstract— Automatic facial micro-expression (ME) analysis
is a growing field of research that has gained much attention
in the last five years. With many recent works testing on
limited data, there is a need to spur better approaches that
are both robust and effective. This paper summarises the 2nd
Facial Micro-Expression Grand Challenge (MEGC 2019) held
in conjunction with the 14th IEEE Conference on Automatic
Face and Gesture Recognition (FG) 2019. In this workshop,
we proposed challenges for two micro-expression (ME) tasks—
spotting and recognition, with the aim of encouraging rigorous
evaluation and development of new robust techniques that can
accommodate data captured across a variety of settings. In
this paper, we outline the evaluation protocols for the two
challenge tasks, the datasets involved, and an analysis of the
best performing works from the participating teams, together
with a summary of results. Finally, we highlight some possible
future directions.

I. INTRODUCTION

Facial micro-expressions (MEs) are movements of the

face that occur in a spontaneous, involuntary fashion when

a person attempts to conceal or hide a particular emotion

upon experiencing it. These MEs can typically be found in

a high-stakes situations such as criminal interrogations and

interviews [1], political debates [2], and poker games [3]. As

such, computational analysis and automation of several tasks

on micro-expression video has become an emerging area in

face processing research, with an increasingly strong interest

in the last five years. A number of annotated datasets have

emerged: the SMIC dataset [4], and the FACS-coded Chinese

Academy of Sciences Micro-Expression Database II [5] and

Spontaneous Micro-Facial Movement Dataset (SAMM) [6],

giving rise to further advances in this field of study.

Since the inception of the first Micro-Expression Grand

Challenge (MEGC) 2018 [7], the second edition of this

workshop aims to spur new ideas and approaches with focus

on the two primary ME tasks: spotting and recognition.

Spotting ME remains a challenge due to the lack of ME

annotated long videos. Most methods proposed either mea-

sure feature differences between the frames [8] or use its

neutral video as individualised baselines [9]. The spotting

challenge introduces two long video benchmark datasets

and standardises the performance metrics. As for the ME

recognition task, a vast majority of works in literature have

mainly focused on building models and approaches that only

cater for a specific dataset; if a few datasets are used, models

or features are typically constructed individually for each

dataset. As such, the rigour and realism in evaluation is

most thoroughly lacking in current mode of practices. This

edition of the recognition challenge pushes the boundaries

of current evaluation schemes towards a comprehensive

composite database that comprises of samples collected from

different environments, from a diverse range of subjects.

This workshop aims to narrow the gaps found in these

tasks and to continuously promote interactions between

researchers and scholars from within this area of study, and

also those from broader areas of psychology and physiology.

Besides the two challenges, we also solicited original works

that address a variety of challenges in the computational

aspect of ME research, including that of other related fields

of neuroscience, psychology and physiology.

II. SPOTTING CHALLENGE

The goal of this challenge is to spot micro-movement

intervals (from onset to offset) in long video sequences. In

this challenge, we focus on detecting 57 micro-movements

of CAS(ME)2 database [10] and 159 micro-movements of

SAMM database [6].

A. Databases

CAS(ME)2 [10] and SAMM long videos [6] are among the

most recent databases with full annotations including FACS

coding, onset, apex, offset frames, and the intensity of the

facial movements. CAS(ME)2 [10] consists of 22 participants

with 97 long video sequences, but only 32 of the sequences

contained MEs. Meanwhile, SAMM long videos consist of

224 videos in total, i.e. 32 participants with 7 videos each,

with MEs existing in only 79 videos. For this challenge, we

focus only on sequences with MEs, where the organizers

have also provided the cropped version of the SAMM long

videos from [9]. For clarity, the summary of the databases

is shown in Table I.

TABLE I: Summary of CAS(ME)2 and SAMM long videos

for ME Spotting Challenge.

Database ME Sequences Resolution Frame rate (fps)

CAS(ME)2 32 640×480 30

SAMM 79 2040×1088 200



B. Performance Metrics

To evaluate the spotting performance, we first calculate

several standard measures: True Positive (TP), False Positive

(FP) and False Negative (FN). A spotted video interval

(detected onset frame to detected offset frame), denoted as

Wspotted, is categorised as TP if the following condition is

fulfilled:

Wspotted ∩Wgt

Wspotted ∪Wgt

≥ 0.5 (1)

where Wgt represents the ground truth ME interval, i.e.

[onset, offset]. Otherwise, the detected interval is regarded

as FP. FN is counted when the algorithm failed to detect

the ground truth interval. To obtain an overall result, we use

F1-Score as denoted by:

F1-score =
2TP

2TP + FP + FN
(2)

C. Methods

The lone submission for the spotting challenge was by

Li et al. [11], which proposed the use of local temporal

patterns [12] (LTP-ML). The long video is divided into

short clips by a sliding window. Then, 12 facial regions-

of-interests (ROIs) are selected, and the sequences of these

ROIs are processed by PCA across the time axis to conserve

the main temporal movement. After distance calculation and

normalization, the local motion pattern is analyzed according

to the average ME duration (300 ms). Based on the general

LTP for ME sequences, local movements on the ROIs are

classified by a SVM classifier. Finally, the global spotting

result is obtained by a fusion process, which includes tem-

poral qualification, spatial selection and a merge process.

D. Results and Analysis

Table II shows the results of LTP-ML when compared to

the state of the art LBP-χ2-distance (LBP-χ2) method [8].

SAMMf represents the full frame (whole image) SAMM

while SAMMc represents the cropped face version. The

proposed LTP-ML performs better than the baseline LBP-

χ2 method. LBP-χ2 method spots the maximal movement

in the video sequence, and it works well in short videos

which contain only a single micro-expression. However, in

SAMM and CAS(ME)2, video sequences are longer and may

contain irrelevant facial movements or macro-expressions.

Meanwhile, LTP-ML spots micro-expression by recognizing

the local temporal pattern, i.e. facial movements of varying

motion patterns are better distinguished by this algorithm.

However, the high number of FP has deteriorated the overall

performance. This is due to the fact that the raw video

sequences are noisy and consists of macro-movements and

eye blinks.

III. RECOGNITION CHALLENGE

The 1st MEGC [7] saw the establishment of the cross-

database challenge, which used a combination of two

datasets (CASME II and SAMM), with objective class labels

as proposed in [13]. In this 2nd MEGC, the cross-database

challenge increases its coverage to include the classic SMIC

[4] dataset, which is one of the earliest spontaneous micro-

expression dataset to be created. The motivation behind this

challenge is to mimic a more realistic scenario by:

• Increasing the number of subjects considered in the sys-

tem, particularly with subjects, captured from different

environment and settings. This also increases the overall

number of video samples, which facilitates the use of

more contemporary machine learning or deep learning

techniques that are data-driven in nature;

• Using a reduced set of general emotion classes to better

accommodate contrasting types of emotions which have

been elicited from different stimuli and environment

setup. This also reduces the ambiguity in the elicited

emotions caused by such differences.

To enable all three datasets to be used together, a reduced

set of common emotion classes are used. The original

emotion classes are mapped to three distinct classes (original

classes in parentheses):

• Negative (i.e. ’Repression’, ‘Anger’, ‘Contempt’, ‘Dis-

gust’, ‘Fear’ and ‘Sadness’)

• Positive (‘Happiness’), and

• Surprise (‘Surprise’)

Videos containing other unrelated and undefined emotions

are omitted, particularly the ‘Others’ class from CASME II,

which consists of a diverse mix of all kinds of emotions.

These samples are likely to cause confusion to model training

if included together. Table III shows the summary of the

distribution of samples for all three datasets.

A. Composite Database Evaluation (CDE) Protocol

In contrary to the dual protocol used in MEGC 2018, this

challenge only adopts the Composite Database Evaluation

(CDE), i.e. samples from all datasets are combined into a

single composite database based on the reduced emotion

classes. Leave-one-subject-out (LOSO) cross-validation is

used to determine the training-test splits. With a total of

68 subjects (16 from SMIC, 24 from CASME II, 28 from

SAMM), evaluation is repeated 68 times by holding out

test samples of each subject group while the remaining

samples are used for training. This protocol mimics a realistic

scenario where people from diverse backgrounds (ethnicity,

gender, emotional sensitivities) are “enrolled” separately in

different environment and settings, in a single recognition

system. The LOSO cross-validation also ensures subject-

independent evaluation.

B. Performance Metrics

The composite database is clearly imbalanced in terms

of its class distribution, i.e. the distribution for sur-

TABLE II: F1-Score of LTP-ML and LBP-χ2 for ME

spotting from long videos.

Database SAMMc SAMMf CAS(ME)2

LTP-ML 0.0316 0.0229 0.0179

LBP-χ2 0.0055 N/A† 0.0035
†This method requires cropped faces, so SAMMf is not applicable.



TABLE III: 3-class sample distribution of all datasets for

CDE

Emotion Class SMIC CASME II SAMM 3DB-combined

Negative 70 88
†

92
‡ 250

Positive 51 32 26 109

Surprise 43 25 15 83

TOTAL 164 145 133 442
†Negative class of CASME II: Disgust and Repression.

‡Negative class of SAMM: Anger, Contempt, Disgust, Fear and Sadness.

prise:positive:negative classes are in the ratio of 1 : 1.3 :

3 1. To properly handle such class imbalances [14], the

performance is to be reported with two balanced metrics:

1) Unweighted F1-score (UF1): This metric is also

known as the macro-averaged F1-score. This flavour of F1-

score is a good choice in imbalanced multi-class settings

for providing equal emphasis on rare classes2. To compute

this, first obtain all the True Positives (TP), False Positives

(FP) and False Negatives (FN) over all k folds of LOSO

for each class c (of C classes), and proceed to compute

their respective F1-scores. The unweighted F1-score (UF1)

is determined by averaging the per-class F1-scores, F1c:

F1c =
2 · TPc

2 · TPc + FPc + FNc

(3)

UF1 =
F1c

C
(4)

2) Unweighted Average Recall (UAR): This metric is also

known as the balanced accuracy of the system. This is a

more reasonable metric in place of the standard Accuracy (or

Weighted Average Recall) metric which may be bias towards

classifiers that predict the larger classes well. In similar

manner, the per-class accuracy scores are first computed,

before averaging by the number of classes:

UAR =
1

C

∑

c

TPc

nc

(5)

where nc is the number of samples of the c-th class.

Both these metrics provide a balanced judgement whether

an approach can predict all classes equally well, hence

reducing the possibility that an approach could be well-fitted

to only work for certain classes.

C. Methods

This section summarises the methods proposed by the top

four submitting teams [16], [17], [18], [19], in terms of

recognition performance. There were a total of seven submis-

sions; four were accepted into the workshop proceedings, the

remaining three unaccepted submissions are not described in

this summary paper.

It is interesting to note that all four approaches opted to

utilize the apex frame as the choice of input as inspired by

1Accuracy of the system is 0.565 simply by making a random naive
Negative class prediction

2See the work of Forman & Scholz [15] which advocates this as the most
unbiased way of calculating F1-score in a k-fold cross-validation setting. It
caters well for cases of strong class imbalance.

the work of Liong et al. [20]. In the case of [18], a mid-

position frame between the onset and offset is used as the

approximated apex frame. We briefly summarize these four

approaches as follows:

1) Expression Magnification and Reduction (EMR) with

Adversarial Training [16]: The authors proposed a part-

based deep neural network approach with two domain

adaptation techniques – adversarial domain adaptation and

motion magnification and reduction, which help to enrich the

available training samples. Motivated by domain-adversarial

framework proposed in [21], the authors made use of macro-

expression samples from CK+ dataset [22] together with

micro-expression samples to minimize the combined loss

function. The authors did not disclose how the apex frame for

the SMIC samples were obtained as they were not annotated.

2) Shallow Triple Stream Three-dimensional CNN (STST-

Net) [17]: Motivated by the observation that very deep CNN

architectures do not perform well under limited ME data,

the authors proposed a shallow 3-D CNN which comprises

of three parallel streams, each with a different number

of feature maps to curb underfitting. Optical flow guided

features (optical strain, and the horizontal and vertical flows)

form the input cube for further network learning. The authors

also re-implemented a few notable approaches (e.g. [20]) and

some vanilla deep CNNs for the purpose of performance

benchmarking.

3) Dual-Inception Network [18]: The authors proposed a

two-stream two-block variant of the Inception network [23]

to learn a robust feature representation from the horizontal

and vertical components of TV-L1 optical flow information.

Their pipeline first takes the onset and mid-position (instead

of apex) frames to compute optical flow before allowing the

proposed network to learn from two identical streams con-

sisting of two stacked Inception blocks. Their corresponding

convolutional feature maps are merged, and appended with

one fully-connected layer and final softmax layer.

4) CapsuleNet [19]: With standard CNNs limited by

their weakness in representing part-whole relationships, the

authors proposed the use of Capsule Networks (CapsuleNet)

[24] which has been successful in general object recognition.

This is likely the first known use of Capsule Networks for

ME recognition. CapsuleNet takes in the ME apex frame To

avoid resizing the input frames to fit the original CapsuleNet

architecture, the authors used a ResNet18 to obtain reduced-

size local features for the primary capsule layer. Another

output capsule layer captures the learned weight matrix

which is refined via a dynamic routing process. They also

proved their method to be better than a few full-fledged CNN

models.

D. Results & Analysis

In this section, we report the top four submissions of

the challenge and provide some analysis and observations.

In total, we received submissions from seven participating

teams. The results reported in this section were reported

by the respective submitted papers, and verified again using

the submitted output logs. We will not be reporting results



TABLE IV: Results of the top four submissions to the Recognition Challenge against various baseline and recent methods

(first 3 rows).

Method
Full SMIC CASME II SAMM

UF1 UAR UF1 UAR UF1 UAR UF1 UAR

LBP-TOP [25] 0.5882 0.5785 0.2000 0.5280 0.7026 0.7429 0.3954 0.4102

Bi-WOOF [20] 0.6296 0.6227 0.5727 0.5829 0.7805 0.8026 0.5211 0.5139

OFF-ApexNet [26] 0.7196 0.7096 0.6817 0.6695 0.8764 0.8681 0.5409 0.5392

Quang et al. [19] 0.6520 0.6506 0.5820 0.5877 0.7068 0.7018 0.6209 0.5989

Zhou et al. [18] 0.7322 0.7278 0.6645 0.6726 0.8621 0.8560 0.5868 0.5663

Liong et al. [17] 0.7353 0.7605 0.6801 0.7013 0.8382 0.8686 0.6588 0.6810

Liu et al. [16] 0.7885 0.7824 0.7461 0.7530 0.8293 0.8209 0.7754 0.7152

from the other three unaccepted papers, all of which, fared

poorer overall compared to the four reported here. Prior

to submission, all participants have also been requested to

provide their code implementations in GitHub. This would

encourage reproducibility of the proposed methods, and also

invite future researchers to contribute to this field of study.

Table IV summarizes the performance (in both UF1 and

UAR) of the four submitting methods, against the hand-

crafted LBP-TOP [25] and Bi-WOOF [20] baselines, and

also a recent neural network method named OFF-ApexNet

[26] proposed for ME recognition on composite (combined)

databases.

Overall, the method by Liu et al. [16] emerged as the

method with the best overall result on the full composite

database, outperforming the other competing submissions on

the SMIC and SAMM subsets. The work of Liong et al. [17]

is notably strong on the CASME II, obtaining the highest

balanced accuracy (UAR) across the board.

From these results, we highlight a number of interesting

observations.

1) The EMR method with adversarial training [16] per-

form exceedingly well on the SAMM database, more

than 0.11 higher (UF1) than the closest competi-

tor. Their domain adaptation using expression-reduced

CK+ samples appears to work well in the SMIC and

SAMM, but not so for CASME II, which contain

predominantly Chinese subjects.

2) The method of Zhou et al. [18] chalked up reasonably

strong scores, by opting to use the mid-position frames

as a reasonable substitute for the “apex” frame (they

observed that most apex frames are located in the mid-

dle part of the sequence) rather than the more precisely

annotated apex frames. This actually circumvents the

lack of apex information, particularly for the case of

SMIC. Of course, this is somewhat inconclusive until

further studies are conducted on fixed methods.

3) The top 3 works all used optical flow as their choice of

input data, rather than relying on pixel intensities. This

points towards the advantages of employing more dis-

criminative information for cases of extremely subtle

facial changes.

4) SMIC and SAMM remained the more challenging

datasets, as compared to CASME II. There could

be various possible reasons: the SMIC dataset was

captured at a slower frame rate and lower resolution

whereas the SAMM dataset contains quite a diverse

range of age and ethnicity. These factors are likely

to contribute towards limited recognition capability in

these two datasets.

IV. CONCLUSION AND FUTURE CHALLENGES

This summary paper highlights the second Facial Micro-

Expressions Grand Challenge (MEGC) workshop and the

two sub-challenges for ME spotting and recognition. With

a total of eight submissions for both sub-challenges, the

highest ever obtained, we observe an encouraging momen-

tum in ME research with further interesting avenues worth

investigating.

This challenge focuses on the tasks of ME spotting and

recognition; the latter still obviously more popular than the

former. As ME spotting is still an important and practical

problem, we urge the research community to give more atten-

tion to novel propositions and ground-breaking ideas. Robust

and accurate spotting of ME occurrences from long videos

or unconstrained “in-the-wild’ settings could be beneficial to

advance this field further. Further to this workshop, the idea

of domain transfer or adaptation is one that could be viable

for harnessing additional micro-expression cues from various

sources such as gestures, body language and physiological

signals.
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