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Abstract

Background: Optimization is the key to solving many problems in computational biology. Global optimization

methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient

methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools.

Results: We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R

version), that implements metaheuristics capable of solving diverse problems arising in systems biology and

bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear

programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for

Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian

inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The

code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and

examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization

benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it

outperforms other state-of-the-art methods.

Conclusions: MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains

of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular

structure allows the addition of further methods.

Background
Mathematical optimization plays a key role in systematic

decision making processes, and is used virtually in all

areas of science and technology where problems can be

stated as finding the best among a set of feasible solutions.

In bioinformatics and systems biology, there has been a

plethora of successful applications of optimization during

the last two decades (see reviews in [1-5]). Many problems

in computational biology can be formulated as IP prob-

lems, such as sequence alignment, genome rearrangement

and protein structure prediction problems [1,3], or the
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design of synthetic biological networks [6]. Deterministic

and stochastic/heuristic methods have been extensively

applied to optimization problems in the area of machine

learning [2]. In addition to combinatorial optimization,

other important classes of optimization problems that

have been extensively considered, especially in systems

biology, are cNLP and mixed-integer dynamic optimiza-

tion. Such problems arise in parameter estimation and

optimal experimental design [5,7].

A number of authors have stressed the need to use

suitable global optimization methods due to the non-

convex (multimodal) nature of many of these problems

[4,8,9]. Roughly speaking, global optimization methods

can be classified into exact and stochastic approaches.

Exact methods can guarantee convergence to global

optimality, but the associated computational effort is

usually prohibitive for realistic applications. In contrast,
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stochastic methods are often able to locate the vicinity

of the global solution in reasonable computation times,

but without guarantees of convergence. Metaheuristics

(i.e. guided heuristics) are a particular class of stochastic

methods that have been shown to perform very well in a

broad range of applications [5].

Motivated by this, we developed the software suite

MEIGO (MEtaheuristics for systems biology and bIoin-

formatics Global Optimization) which provides state of

the art metaheuristics (eSS and VNS) in open-source R

(here with the addition of the Bayesian inference method

BayesFit) and Matlab versions (it is also available in

Python via a wrapper for the R version). MEIGO covers

the most important classes of problems, namely (i) prob-

lems with real-valued (cNLPs) andmixed-integer decision

variables (MINLPs), and (ii) problems with integer and

binary decision variables (IPs). Furthermore, MEIGO

allows the user to apply parallel computation using coop-

erative strategies [10]. MEIGO can optimize arbitrary

objective functions that are handled as black-boxes. Thus,

it is applicable to optimize complex systems that may

involve solving inner problems (e.g. simulations or even

other optimization problems) to obtain explicit values for

the objective function and/or the possible constraints. For

example, CellNOpt [11], SBToolbox [12], AMIGO [13]

and Potterswheel [14] use eSS for dynamic model cal-

ibration. Some recent successful applications of eSS in

the field of systems biology can be found in [15-26]. It

has also been shown that eSS outperformed the various

optimization methods available in the Systems Biology

Toolbox [27].

Methods
Enhanced Scatter Search (eSS)

Scatter search [28] is a population-based metaheuristic

which can be classified as an evolutionary optimization

method. In contrast with other popular population-based

metaheuristics like, for example, genetic algorithms, the

population size, N , in scatter search is small, and the

combinations among its members are performed system-

atically, rather than randomly. The current population

is commonly named the “Reference Set” (RefSet). The

improvement method, which consists of a local search

to increase the convergence to optimal solutions, can be

applied with more or less frequency to the members of

this RefSet. A set of improvements has been implemented

in the enhanced scatter search method. Among the most

remarkable changes, we can mention the replacement

method. Unlike in the original scatter search scheme,

which uses a µ + λ replacement (i.e. the new pop-

ulation or RefSet will consist in the best N solutions

selected from the previous RefSet members and the new

offspring solutions), the enhanced scatter search uses a

1 + 1 replacement, similar to the strategy used in a very

efficient evolutionary method, Differential Evolution [29].

This means that a RefSet member can only be replaced

by a solution that has been generated combining by the

former and another RefSet member. In other words, an

offspring solution can only replace the RefSet member that

generated it, and not any other. This strategy enhances

diversity and prevents the search from premature stagna-

tion by not allowing too similar solutions to be present

in the RefSet at the same time. The “go-beyond” strategy

to exploit combinations which explore promising direc-

tions has also been implemented. This strategy analyzes

the search directions defined by a RefSet member and

their offspring. If an offspring solution outperforms its cor-

responding RefSet member (i.e. the RefSet member that

generates it), then the method considers that the explored

direction is promising and a new solution is generated

within such direction, exploring an area beyond the seg-

ment defined by the RefSet member and its offspring

solution. The process is repeated until the new gener-

ated solutions do not outperform the previous ones and it

favours intensification in the current iteration. Addition-

ally, the use of memory is also exploited to select the most

efficient initial points to perform local searches, to avoid

premature convergence and to perturb solution vectors

which are stuck in stationary points. More details about

the enhanced scatter search scheme can be found in [30].

Variable Neighbourhood Search (VNS)

Variable Neighbourhood Search is a trajectory-based

metaheuristic for global optimization. It was introduced

by Mladenović and Hansen [31] and has gained popu-

larity in recent years in the field of global optimization.

VNS performs a local search by evaluating the objective

function around an incumbent solution and repeats the

procedure visiting different neighbourhoods to locate dif-

ferent local optima, among which the global optimum

is expected to be found. One of the key points of the

algorithm is the strategy followed to change the current

neighbourhood. VNS usually seeks a new neighbourhood

by perturbing a set of decision variables using a distance

criterion. Once a new solution has been created in the

new neighbourhood, a new local search is performed. The

typical scheme consists of visiting neighbourhoods close

to the current one (i.e. perturbing a small set of solu-

tions), until no further improvement is achieved. Then,

more distant neighbourhoods are explored. Apart from

this basic scheme, we have implemented advanced strate-

gies to avoid cycles in the search (e.g. not repeating the

perturbed decision variables in consecutive neighbour-

hood searches) in order to increase the efficiency when

dealing with large-scale problems (e.g. by allowing a max-

imum number of perturbed decision variables, like in the

Variable Neighbourhood Decomposition Search strategy

[32]). We have also modified the search aggressiveness
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to locate high quality solutions (even if they are not the

global optimum) in short computational times if required.

Other heuristics, like the “go-beyond” strategy (explained

above), that is used to exploit promising directions during

the local search, have been adapted from other meta-

heuristics for continuous optimization [30].

BayesFit

BayesFit is a Bayesian inference method for parameter

estimation that usesMarkov ChainMonte Carlo (MCMC)

to sample the complete probability distributions of param-

eters. This accounts for both experimental error and

model non-identifiability. It is available in the R version

of MEIGO and has been adapted from the Python pack-

age BayesSB [33]. The sampling of the probability distri-

butions uses a multi-start MCMC algorithm where the

number of visits to a position in the parameter space

is proportional to the posterior probability. The MCMC

walk is punctuated by a Metropolis Hastings (M-H)

criterion that allows more distant neighbourhoods to be

explored, based on a probabilistic calculation.

Cooperation

The cooperation scheme implemented inMEIGO is based

on the following idea: to run, in parallel, several imple-

mentations or threads of an optimization algorithm,

which may have different settings and/or random initial-

izations, and exchange information between them. Since

the nature of the optimization algorithms implemented

in MEIGO is essentially different, we distinguish between

eSS (the population based method) and VNS (the trajec-

tory based method), following the classification proposed

in [34] (currently there is no cooperation scheme for

BayesFit):

1. Information available for sharing: the best solution

found and, optionally for eSS, the RefSet, which

contains information about the diversity of solutions.

2. Threads that share information: all of them.

3. Frequency of information sharing: the threads

exchange information at a fixed interval τ .

4. Number of concurrent programs: η.

Each of the η threads has a fixed degree of aggressive-

ness. “Conservative” threads have an emphasis on diver-

sification (global search) and are used to increase the

probability of finding a feasible solution, even if the

parameter space is rugged or weakly structured. “Aggres-

sive” threads have an emphasis on intensification (local

search) and they speed up the calculations in smoother

areas. Communication, which takes place at fixed time

intervals, enables each thread to benefit from the knowl-

edge gathered by the others. Thus this strategy has several

degrees of freedom that have to be fixed: the time between

communication (τ ), the number of threads (η), and

the strategy adopted by each thread. These adjustments

should be chosen carefully depending on the particular

problem we want to solve. Some guidelines for doing this

can be found in [10] and in the Additional files 1, 2, 3, 4

and 5 accompanying this paper.

Implementation
MEIGO runs on Windows, Mac, and Linux, and pro-

vides implementations in both Matlab and R. So far,

MEIGO includes: (i) eSS (Enhanced Scatter Search, [30]),

for solving cNLP and MINLP problems, and (ii) VNS

(Variable Neighbourhood Search), following the imple-

mentation described in [35], to solve IP problems (see

Figure 1). The R version of MEIGO also includes the

Bayesian parameter inference method BayesFit. Coop-

erative parallel versions (CeSS, CVNS), which can run

on multicore PCs or clusters, are also included. Coop-

eration enhances the efficiency of the methods, not

only in terms of speed, but also in terms of range: the

threads running in parallel are completely independent

so they can be customized to cover a wide range of

search options, from aggressive to robust. In a sense

the cooperation, as it has been designed, acts as a com-

bination of different metaheuristics since each of the

threads may present a different search profile. Four differ-

ent kernel functions per method are included depending

on the programming language chosen and the paral-

lelization capabilities. Parallel computation in Matlab is

Figure 1MEIGOworkflow. Figure depicting the global structure of

MEIGO.
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carried out making use of the jpar tool [36]. Parallel

computation in R can be performed using the package

snowfall [37].

The methods implemented in MEIGO consider the

objective functions to be optimized as black-boxes, with

no requirements with respect to their structure. The user

must provide a function that can be externally called for

evaluation, accepting as input the variables to be esti-

mated, and providing as output the objective value, φ, as

a function of the input parameters. For constrained prob-

lems, the values of the constraints are also provided as

output so that penalization functions can be calculated.

For eSS and VNS, the user must define a set of compul-

sory fields (e.g. the name of the objective function, the

bounds in the parameters, the maximum number of func-

tion evaluations). Further options take default values or

can be changed. After each optimization, all the neces-

sary results are stored in data files for further analysis

with the tools provided by the host platforms. BayesFit

is similarly robust to the form of the problem; in this

case the likelihood function is provided by the user and

this is incorporated into the calculation for the posterior

probability for the parameter set, given the data.

Importantly, MEIGO is an open optimization platform

in which other optimizationmethods can be implemented

regardless of their nature (e.g. exact, heuristic, probabilis-

tic, single-trajectory, population-based, etc.).

Illustrative examples
To illustrate the capabilities of the methods presented

here, a set of optimization problems, including cases from

systems biology and bioinformatics, have been solved and

are presented as case studies. The examples include (i) a

set of state of the art benchmark cases for global opti-

mization (from the Competition on Large Scale Global

Optimization, 2012 IEEE World Congress on Computa-

tional Intelligence), (ii) a metabolic engineering problem

based on a constraint-based model of E. coli, (iii) train-

ing of logic models of signaling networks to phospho-

proteomic data [38], and (iv) an additional toy logic model

[22] to compare BayesFit to eSS. The corresponding code

for these examples is included in the distribution of the

MEIGO software.

Large-scale continuous global optimization benchmark

These are benchmark functions used in the Special Ses-

sion on Evolutionary Computation for Large Scale Global

Optimization, which was part of the 2012 IEEE World

Congress on Computational Intelligence (CEC@WCCI-

2012). These objective functions can be regarded as

state-of-the-art benchmark functions to test numerical

methods for large-scale (continuous) optimization. Infor-

mation about the functions as well as computer codes can

be downloaded from http://staff.ustc.edu.cn/~ketang/

cec2012/lsgo_competition.htm. Some of these functions

were previously solved in [10] using CeSS, a coopera-

tive version of the Enhanced Scatter Search metaheuris-

tic implemented in Matlab and available within MEIGO.

Large-scale calibration of systems biology models were

also presented and solved in that paper. Here we present

the solution of 3 of these functions (i.e. f10, f17 and f20)

using the R version of CeSS used by MEIGO. The conver-

gence curves for the solution of these benchmark func-

tions in R are coherent with those presented in [10], which

were solved with Matlab, and the results are also com-

petitive with the reference results for these functions pre-

sented in http://staff.ustc.edu.cn/~ketang/cec2012/lsgo_

competition.htm. The convergence curves corresponding

to these results are presented in Figures 2, 3 and 4.

Integer optimization benchmark problems

A set of integer optimization problems arising in pro-

cess engineering and coded in AMPL (A Modeling Lan-

guage for Mathematical Programming) were solved using

the Matlab version of VNS and making use of the

AMPL-Matlab interface files provided by Dr. Sven Leyffer,

available at http://www.mcs.anl.gov/~leyffer/macminlp/.

VNS solved all the problems and, in some cases, achieved

a better solution than the best reported one. A summary

of the tested problems is presented in Table 1. These

benchmarks have been solved using the Matlab version of

MEIGO under Windows only, since the dynamic library

to access AMPL files runs on Windows.

Metabolic engineering example

In this section we illustrate the application of the VNS

algorithm to a metabolic engineering problem. Here VNS

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

3
.5

4
.0

4
.5

5
.0

Computation Time (seconds)

O
b
je

c
ti
ve

 F
u
n
c
ti
o
n
 (

lo
g
a
ri

th
m

ic
)

LSGO benchmark, F10: cooperative (every 1h) vs. non cooperative threads

essR

CeSSR

Figure 2 Convergence curves for f10 function.
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Figure 3 Convergence curves for f17 function.

was used to find a set of potential gene knock-outs that

will maximize the production of a given metabolite of

interest. The objective function is given by flux-balance

analysis (FBA) where a steady-state model is simulated by

means of linear programming (LP). Themathematical for-

mulation is similar to that presented in [41]. FBA assumes

that cells have a biological objective that is often consid-

ered as growth rate maximization, minimization of ATP

consumption or both.

In this example we considered a small steady-state

model from E. coli central carbon metabolism, available

at http://gcrg.ucsd.edu/Downloads/EcoliCore. Here the

metabolite of interest is succinate and we considered the

biological objective as biomass maximization. To solve

the inner FBA problem we used openCOBRA (http://

0e+00 2e+04 4e+04 6e+04 8e+04 1e+05

−1
0

−5
0

5
1
0

Computation Time (seconds)

O
b
je

c
ti
v
e
 F

u
n
c
ti
o
n
 (

lo
g
a
ri
th

m
ic

)

LSGO benchmark, F20: cooperative (every 1h) vs. non cooperative threads

essR
CeSSR

Figure 4 Convergence curves for f20 function.

Table 1 Summary of solutions for integer programming

problems

Name nvar Ref.
Best reported Best VNS

solution solution

geartrain 4 [39] 7.78e-7 2.70e-12

mittelman 16 - 13.0 13.0

trimlon2 8

[40]

5.3 5.3

trimlon4 24 11.3 8.3

trimlon5 35 12.1 10.6

Data in boldface: solutions outperforming the best reported solution for that

problem.

opencobra.sourceforge.net/) with Gurobi as an LP solver

(http://www.gurobi.com/). For the problem encoding, 5

integer variables were chosen as decision variables, one

for each possible gene knock-out. Each of these variables

was allowed to vary from 0 (no knock-out) to 52, the total

number of possible genes to be knocked-out. Repeated

KOs were filtered by the objective function.

Additionally we also implemented and solved the prob-

lem with a genetic algorithm from the Matlab Global

Optimization Toolbox. The point here was to cross-check

the VNS results, not to perform an extensive comparison

between the performances of GA and VNS. However we

found that for our particular problem and encoding, VNS

achieved the optimal solution more often (see Figures 5

and 6). The Wilcoxon rank sum test with continuity cor-

rection for comparing means provides a p-value of 0.068

(or 0.021 if we remove the outlier VNS solution) show-

ing that the solutions provided by VNS are significantly

better. Please note that the GA was used out of the box

(with default settings). Results can vary when using other

Figure 5 Histogram of the solutions obtained by VNS over 10

runs for the metabolic engineering example.

http://gcrg.ucsd.edu/Downloads/EcoliCore
http://opencobra.sourceforge.net/
http://opencobra.sourceforge.net/
http://www.gurobi.com/
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Figure 6 Histogram of the solutions obtained by the genetic

algorithm over 10 runs for the metabolic engineering example.

encodings and further tuning of the search parameters. In

any case, the purpose was to illustrate how this class of

problems can be easily solved using VNS.

Training of logic models of signalling networks to

phospho-proteomic data

In this section we compare the performance of vari-

able neighborhood search (VNS) and a discrete genetic

algorithm (GA) implementation in training a logic model

of a signalling network to phospho-proteomic data [38].

The problem is formulated as follows: one starts from

a signed directed graph, containing the prior knowledge

about a signaling network of interest. This graph contains

directed edges among nodes (typically proteins) and their

sign (activating or inhibitory). From this graph, one gen-

erates all possible AND and OR gates compatible with the

graph. That means, if there are more than one edge arriv-

ing at a node, these are combined as OR and AND gates.

Mathematically, this is encoded as an hyper graph, where

edges with two or more inputs (hyperedges) represent

a logical disjunction (AND gate). OR gates are encoded

implicitly, by means of edges with only one input arriving

at a node. See [38] for details.

To calibrate such models, the authors formulated the

inference problem as a binary multi-objective problem,

where the first objective corresponded to how well the

model described the experimental data and the second

consisted of a complexity penalty to avoid over-fitting:

θ(P) = θf (P) + α· θs(P) (1)

where θf (P) = 1
nE

∑s
k=1

∑m
l=1

∑n
t=1

(

BM
k,l,t(P) − BE

k,l,t

)2

and θs(P) = 1
vse

∑r
e=1 vePe such that Bk,l,t(P) ∈ {0, 1} is the

value (0 or 1) as predicted by computation of the model’s

logical steady state [42] and BE
k,l,t ∈[0, 1) is the data value

for readout l at time t under the kth experimental condi-

tion. θf (P) is the mean squared error and α · θs(P) is the

product between a tunable parameter α and a function

denoting the model complexity (each hyper edge receives

a penalty proportional to the number of inputs. E.g. an

AND gates with 3 inputs is penalised 3 times as a single

edge. OR gates arise implicitly from the combination of

single input edges.).

Noticeably, the binary implementation of this prob-

lem contains redundant solutions in the search space.

This can be addressed by compressing the search space

into a reduced set containing only the smallest non-

redundant combinations of hyperedges [38] (equivalent

to the Sperner hypergraph). By doing this, the problem

is transformed from a binary to an integer program-

ming problem that was solved in [38] using a genetic

algorithm.

Here, we implemented this benchmark by using the

Matlab version of CellNetOptimizer (CNO or CellNOpt,

available at http://www.cellnopt.org/downloads.html).

The prior-knowledge network and data-set are also pub-

licly available and thoroughly described at http://www.

ebi.ac.uk/~cokelaer/cellnopt/data/ExtLiverPCB.html.

In order to assess the performance of both algorithms

we solved each problem 100 times using VNS and the GA

implementation from CNO. In the allowed time budget,

VNS returned solutions that were on average better than

those found by the GA (see Figure 7). The Welch Two

Sample t-test for comparing means provides a p-value of

3.5 · 10−14, which clearly shows that VNS outperforms

GA for this problem. Since both methods are sensitive to

the tuning parameters, we tried to tune both algorithms

fairly. Also, we note that the solution of this problem in
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Figure 7 Histogram of solutions obtained by VNS and GA over

100 runs for the logic model example.

http://www.cellnopt.org/downloads.html
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Figure 8 The covariance in marginal posterior distributions between the parameters “egf_n_sos” and “egf_k_sos” computed by BayesFit.

The red lines in the marginal posterior distributions indicate the values of the parameters that produced the best fit to the data. The model and data

are from [22].

its original, binary implementation can be solved using

deterministic methods based either on Integer Linear

Programming [43,44] or Answer Set Programming [45].

Training of logic ODEs to in-silico generated data

Here, in order to demonstrate the additional information

that can be derived from the probability distributions of

optimized parameters, we compared the R implementa-

tions of BayesFit and eSS. The problem is again based on

a logic model where, this time, the topology of the model

is known and the goal is to optimize the parameters of

the transfer functions used to generate a continuous sim-

ulation of the model. The parameters were optimized to

reduce the distance between the model simulation and

in silico generated data. This example is as described in

section 6 from [22]; the only difference is that the model

used here is the compressed model used to generate the in

silico data in [22]. BayesFit produced a good fit to the data,

comparable to that of eSS (Mean Squared Error: BayesFit,

0.007; eSS, 0.005). One of the advantages of estimat-

ing parameters by Bayesian inference is that parameter

identifiability can be deduced from the marginal distri-

butions for each parameter. For example Figure 8 shows

two parameters of a single interaction between the species

“egf” and “sos” in the model; these parameters n and k,

control the shape of the transfer function between the two

species [22]. From this figure, the covariation between the

2 parameters is evident. The best fit parameters (red line)

lie in one region of high probability. However, there are

additional correlated peaks in the marginal distributions

of the two parameters, which suggests different parameter

values could also produce a strong fit to the data.

Conclusions
Here, we present MEIGO, a free, open-source and flexi-

ble package to perform global optimization in R, Matlab,

and Python. It includes advanced metaheuristic methods.

Furthermore, its modular nature (Figure 1), enables the

connection to existing optimization methods.

Availability and requirements
Project name: Metaheuristics for global optimization in

systems biology and bioinformatics (MEIGO)

Project home page: http://www.iim.csic.es/~gingproc/

meigo.html

Operating system(s):Windows, Linux, Mac OS X

Programming language:Matlab 7.5 or higher and R 2.15

or higher

Licence: GPLv3

Additional files

Additional file 1: MEIGO - Matlab’s users manual. The file includes the

user’s manual of the Matlab version of MEIGO.

Additional file 2: MEIGO - R’s user’s manual. The file includes the users

manual of the R version of MEIGO.

Additional file 3: Test of options for the integer programming

benchmark problems. The file includes the test carried out with the

different search options to solve the integer programming benchmark

problems as well as the extracted conclusions.

Additional file 4: MEIGOMatlab version source code and examples.

The file includes the source code of the Matlab version of MEIGO and the

examples included in the users manual.

Additional file 5: MEIGO R version source code and examples. The file

includes the source code of the R version of MEIGO and the examples

included in the users manual.

http://www.iim.csic.es/~gingproc/meigo.html
http://www.iim.csic.es/~gingproc/meigo.html
http://www.biomedcentral.com/content/supplementary/1471-2105-15-136-S1.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-15-136-S2.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-15-136-S3.pdf
http://www.biomedcentral.com/content/supplementary/1471-2105-15-136-S4.zip
http://www.biomedcentral.com/content/supplementary/1471-2105-15-136-S5.zip
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