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bDepartment Of Medical Research, China Medical University Hospital, China Medical University, 40402, Taichung, Taiwan

cFaculty of Sciences and Mathematics, University of Nis̆, 18000, Vis̆egradska 33, Nis̆, Serbia

Abstract. In this paper we introduce contraction mappings of Meir-Keeler types on modular metric spaces
and investigate the existence and uniqueness of their fixed points. We give an example which demonstrates
our theoretical results.

1. Introduction

One of the interesting generalizations of metric space was proposed by Chistyakov [3, 5] under the name
of metric modular and modular metric spaces (or metric modular spaces). Indeed, this new notion, metric
modular, generates a metric space by providing a weaker convergence called the modular convergence
having a non-metrizable topology. Accordingly, the notion of modular metric space not only generalizes
the concept of metric space but also extends the notions of metric linear space, and classical modular linear
spaces founded by Nakano as extensions of Lebesgue, Riesz, and Orlicz spaces of integrable functions
[11, 12]. For more details of the structure of metric modular and modular metric space , see e.g. [5].

Besides the technical observations in the topological structure of metric modular and modular metric
space, Chistyakov [3] successfully established a fixed point theorem for contractive maps in modular
metric spaces. Following this initial results, a number of authors have reported several fixed point results
for certain mappings in modular metric spaces, see e.g. [1, 7, 10] and related references therein.

In this paper, our main goal is to investigate the existence and uniqueness of fixed point of Meir-Keeler
types mappings in the context on modular metric spaces. To illustrate the presented results we shall
consider an example.

2. A brief review on modular metric spaces

In this section, we recollect some basic definitions and fundamental results on modular metric spaces.
For further details on the subject, see [3, 5].

Let X be a nonempty set, w : (0,∞)×X×X −→ [0,∞]. We write wλ(x, y) := w(λ, x, y) for all λ > 0, x, y ∈ X
so that w = {wλ}λ>0 for which wλ : X × X −→ [0,∞].
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Definition 2.1. A function w : (0,∞) × X × X −→ [0,∞] is said to be a (metric) modular on X if it satisfies the
following three conditions for all λ, µ > 0:

a) wλ(x, y) = 0 if and only if x = y;

b) wλ(x, y) = wλ(y, x);

c) wλ+µ(x, z) ≤ wλ(x, y) + wµ(y, z) .

for all x, y, z ∈ X.

A mapping w is said to be a pseudomodular on X, if, instead of a), the function w satisfies only

wλ(x, x) = 0 for all λ > 0. (1)

A mapping w is called a strict modular on X if it satisfies (1) and for given x, y ∈ X, if there exists a
number λ > 0, which may depend on x and y so that wλ(x, y) = 0 implies x = y.

If for all λ, µ > 0, a modular (pseudomodular, strict modular) w on X satisfies

wλ+µ(x, z) ≤
λ

λ + µ
wλ(x, y) +

µ

λ + µ
wµ(y, z). (2)

instead of c), it is called as convex.
A convex modular satisfies

wλ(x, y) ≤
µ

λ
wµ(x, y) ≤ wµ(x, y) (3)

for all x, y ∈ X and 0 < µ ≤ λ, [3]. The condition (c) of Definition 2.1 implies that, for all x, y ∈ X,

wλ2 (x, y) ≤ wλ1 (x, y) (4)

holds for λ1 < λ2 for a modular w.

Definition 2.2. [3] Let w be a pseudomodular on X and x0 ∈ X. Then the sets

Xw = Xw(x0) = {x ∈ X : wλ(x, x0)→ 0 as λ→∞}

X∗w = X∗w(x0) = {x ∈ X : ∃λ = λ(x) > 0, such that wλ(x, x0) < ∞}

are said to be modular metric spaces (around x0).

It can be seen that, Xw ⊂ X∗w holds. If w is a metric modular on X, then the modular space Xw can be
equipped with a (nontrivial) metric generated by w given by

dw(x, y) = inf{λ > 0 : wλ(x, y) ≤ λ}

for any x, y ∈ Xw. If w is a convex modular on X, then Xw = X∗w holds and they are endowed with the metric

d∗w(x, y) = inf{λ > 0 : wλ(x, y) ≤ 1}.

Definition 2.3. [3, 4] Let Xw and X∗w be modular metric spaces.

• A sequence {xn} in Xw (or X∗w) is said to be w-convergent to x ∈ X if and only if wλ(xn, x) → 0 as n → ∞ for
some λ > 0. Then x is called the modular limit of {xn}.

• A sequence {xn} in Xw is said to be w-Cauchy if wλ(xn, xm)→ 0 as m,n→∞ for some λ > 0.

• A subset M of Xw or X∗w is said to be w-complete if any w-Cauchy sequence in M is an w-convergent sequence
and its w-limit is in M.

In [4], it is shown that, if w is a pseudomodular on X, the modular metric spaces Xw and X∗w are closed with
respect to w-convergence. In addition, if w is strict, then the modular limit is unique, if it exists. Moreover,
it can be easily seen that, limn→∞ wλ(xn, x) = 0 for some λ > 0 implies limn→∞ wµ(xn, x) = 0 for all µ > λ > 0.
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3. Fixed point results for Meir-Keeler type contractions on modular metric spaces

In this section, we discuss contraction mappings of Meir-Keeler type and restate their definitions in the
frame of modular metric spaces. After that, we give various fixed point results for such contractions and
study their generalizations.

In a metric space, Meir and Keeler defined a contraction mapping and proved a fixed point theorem,
which we call as Meir-Keeler fixed point theorem, generalizing Banach contraction principle, see [9].

Definition 3.1. A mapping T on a metric space (X, d) is said to be a Meir-Keeler contraction if, given ε > 0, there
exists δ > 0 such that for all x, y ∈ X,

ε ≤ d(x, y) < ε + δ =⇒ d(Tx,Ty) < ε.

Theorem 3.2. Let (X, d) be a complete metric space and let T be a Meir-Keeler contraction on X. Then T has a unique
fixed point x0, and for all x ∈ X, Tnx→ x0.

Later, it was pointed out by Ćirić [6] and Matkowski [8] that making a slight change on the contraction
condition of Meir-Keeler extends the class of mappings and they introduced a class of mappings containing
the class of Meir-Keeler type mappings. Then, a fixed point theorem generalizing the Meir-Keeler fixed
point theorem was given, see [6, 8].

Definition 3.3. A mapping T on a metric space (X,d) is said to be a Ćirić-Matkowski contraction if d(Tx,Ty) < d(x, y)
for every x, y ∈ X with x , y and for given ε > 0, there exists δ > 0 such that for all x, y ∈ X,

ε < d(x, y) < ε + δ =⇒ d(Tx,Ty) ≤ ε.

Theorem 3.4. Let (X, d) be a complete metric space and let T be a Ćirić-Matkowski contraction on X. Then T has a
unique fixed point x0, and for all x ∈ X, Tnx→ x0.

Observe that the difference between the two types of contraction mappings is that equality is allowed in
the contraction inequality of Ćirić-Matkowski mappings while in Meir-Keeler type mappings it is not.

Inspired from the above definitions of Meir-Keeler and Ćirić-Matkowski contractions, we define the
following modular space versions of such type of mappings.

Definition 3.5. Let X be a nonempty set, w a metric modular on X and X∗w be a modular metric space induced by w.

1. A map T : X∗w → X∗w is called a Meir-Keeler type contraction on X∗w if it satisfies the following condition.
Given ε > 0 there exists δ > 0 such that for all x, y ∈ X∗w

ε ≤ wλ(x, y) < ε + δ =⇒ wkλ(Tx,Ty) < ε, (5)

whenever w is convex and

ε ≤ wλ(x, y) < ε + δ =⇒ wkλ(Tx,Ty) < kε, (6)

whenever w is nonconvex, for some number 0 < k < 1 and all 0 < λ ≤ λ0 where λ0 > 0.
2. A map T : X∗w → X∗w is called a generalized Meir-Keeler type contraction on X∗w if it satisfies the following

condition.
Given ε > 0 there exists δ > 0 such that for all x, y ∈ X∗w

ε ≤Mλ(x, y) < ε + δ =⇒ wkλ(Tx,Ty) < ε, (7)

if w is convex and

ε ≤Mλ(x, y) < ε + δ =⇒ wkλ(Tx,Ty) < kε, (8)

if w is nonconvex, for some number 0 < k < 1 and all 0 < λ ≤ λ0 where λ0 > 0, and

Mλ(x, y) = max{wλ(x, y),wλ(x,Tx),wλ(y,Ty)}. (9)
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Definition 3.6. Let X be a nonempty set, w be a metric modular on X and X∗w be a modular metric space induced by
w.

1. A map T : X∗w → X∗w is called a Ćirić-Matkowski type contraction on X∗w if it satisfies the following
condition.
Given ε > 0 there exists δ > 0 such that for all x, y ∈ X∗w

ε < wλ(x, y) < ε + δ =⇒ wkλ(Tx,Ty) ≤ ε, (10)

whenever w is convex and

ε < wλ(x, y) < ε + δ =⇒ wkλ(Tx,Ty) ≤ kε, (11)

whenever w is nonconvex, for some number 0 < k < 1 and all 0 < λ ≤ λ0 where λ0 > 0.
2. A map T : X∗w → X∗w is called a generalized Ćirić-Matkowski type contraction on X∗w if it satisfies the

following condition.
Given ε > 0 there exists δ > 0 such that for all x, y ∈ X∗w

ε < Mλ(x, y) < ε + δ =⇒ wkλ(Tx,Ty) ≤ ε, (12)

if w is convex and

ε < Mλ(x, y) < ε + δ =⇒ wkλ(Tx,Ty) ≤ kε, (13)

if w is nonconvex, for some number 0 < k < 1 and all 0 < λ ≤ λ0 where λ0 > 0, and

Mλ(x, y) = max{wλ(x, y),wλ(x,Tx),wλ(y,Ty)}. (14)

Before starting to state and prove our fixed point results for the contractions defined above, we first
prove some auxiliary results to be used in our further discussion on modular metric spaces.

Lemma 3.7. Let w be a convex metric modular on X and X∗w be a modular metric space induced by w. Let {xn} be a
sequence in X∗w such that

wλ(x0, x1) < ∞, (15)

for all λ > 0. Suppose also that there exists λ0 > 0 and 0 < k < 1 such that

wkλ(xn+1, xn+2) ≤ wλ(xn, xn+1), (16)

for all n ∈N0 where 0 < λ ≤ λ0. Then, the sequence {xn} ∈ X∗w is w-Cauchy.

Proof. We shall show that the sequence {xn} ∈ X∗w, satisfying (15) and (16), is a w-Cauchy by a constructive
proof. We first, observe some estimations.

Owing to the fact that knλ < λ < λ0, the inequality (16) yields

wkn+1λ(xn+1, xn+2) = wk(knλ)(xn+1, xn+2) ≤ wknλ(xn, xn+1).

Recursively, we obtain that

wkn+1λ(xn+1, xn+2) ≤ wλ(x0, x1), (17)

for all n ∈N0 and 0 < λ < λ0. Now, by letting λ1 = (1 − k)λ0 < λ0, we conclude from (15) that

wknλ1 (xn, xn+1) ≤ wλ1 (x0, x1) < ∞, (18)

for all n ∈N0.
Regarding the above observations, we set λl = klλ1 for l = 2, 3 . . . .
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In what follows, we shall prove that the sequence {xn} ∈ X∗w is w-Cauchy. Since w is convex, then for any
positive integers m,n with n > m we have

wλc (xm, xn) ≤
λm

λc
wλm (xm, xm+1) +

λm+1

λc
wλm+1 (xm+1, xm+2)

+ · · · +
λn−1

λc
wλn−1 (xn−1, xn),

=
kmλ1

λc
wkmλ1 (xm, xm+1) +

km+1λ1

λc
wkm+1λ1 (xm+1, xm+2)

+ · · · +
kn−1λ1

λc
wkn−1λ1 (xn−1, xn)

=
λ1

λc

n−1∑
l=m

klwklλ1
(xl, xl+1)

≤
λ1

λc
wλ1 (x0, x1)

n−1∑
l=m

kl

=
λ1

λc
wλ1 (x0, x1)km 1 − kn−m

1 − k
,

(19)

where

λc = λm + λm+1 + · · · + λn−1

= kmλ1 + km+1λ1 + · · · + kn−1λ1

=

n−1∑
l=m

klλ1 = kmλ1

(
1 − kn−m

1 − k

)
.

Since λ1 = (1 − k)λ0, then λ0 =
λ1

1 − k
and we have λc = km(1 − kn−m)λ0 < λ0. Hence, the inequalities (3)

and (19) imply

0 ≤ wλ0 (xm, xn) ≤
λc

λ0
wλc (xm, xn) ≤

λ1

λ0
wλ1 (x0, x1)km 1 − kn−m

1 − k
≤ kmwλ1 (x0, x1).

Accordingly, we find that
lim

m→∞
wλ0 (xm, xn) = 0,

which completes the proof. Thus, the sequence {xn} is w-Cauchy in X∗w.

The following Cauchy criteria is considered for a metric modular without convexity assumption.

Lemma 3.8. Let w be a metric modular on X and X∗w be a modular metric space induced by w. Let {xn} be a sequence
in X∗w such that

wλ(x0, x1) < ∞, (20)

for all λ > 0. Suppose also that there exists λ0 > 0 and 0 < k < 1 such that

wkλ(xn+1, xn+2) ≤ kwλ(xn, xn+1), (21)

for all n ∈N0 where 0 < λ ≤ λ0. Then the sequence {xn} ∈ X∗w is a w-Cauchy sequence.
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Proof. Let the sequence {xn} ∈ X∗w satisfy (20) and (21). Define a function vλ as

vλ(x, y) =
wλ(x, y)
λ

,

for all λ > 0 and x, y ∈ X∗w. Then vλ(x, y) is a convex metric modular on X. The inequality (21) can be written
in terms of vλ as

kλvkλ(xn+1, xn+2) ≤ kλvλ(xn, xn+1), (22)

that yields (16). Then, the conditions of the Lemma 3.7 hold and hence, the sequence {xn} ∈ X∗w is w-
Cauchy.

One of the main drawbacks of the metric modular is that it is not necessarily finite valued. Therefore,
one need to impose some finiteness conditions to guarantee the existence and uniqueness of fixed points of
contraction mappings on modular metric spaces. In our theorems we use the conditions stated below.

(C1) wλ(x,Tx) < ∞ for all λ > 0 and x ∈ X∗w.
(C2) wλ(x, y) < ∞ for all λ > 0 and x, y ∈ X∗w.
In the following, we present various existence and uniqueness theorems based on the fixed points of

the mappings given in Definition 3.5. Our first existence-uniqueness theorem is related with fixed points
of generalized Meir-Keeler type contractive mappings on modular metric spaces induced by convex metric
modular.

Theorem 3.9. Let X be a nonempty set and let w be a strict convex metric modular on X. Suppose that X∗w is a
complete modular metric space induced by w and T : X∗w → X∗w is a generalized Meir-Keeler type contraction, that
is, T satisfies (7). If the condition (C1) is satisfied, then the mapping T has a fixed point in X∗w. If in addition, the
condition (C2) is satisfied, then the fixed point of T is unique.

Proof. Let x0 be any element in X∗w. Define the sequence {xn} ∈ X∗w as xn = Tnx0 for all n ∈ N and assume
that wλ(xn, xn+1) > 0 for all λ > 0 and n ∈ N0. Indeed, if wλ f (xn0 , xn0+1) = 0 for some λ f > 0 and n0 ∈ N0,
then xn0 would be a fixed point of T.

In what follows, we shall show that {xn} is a Cauchy sequence. Since T satisfies the condition (7), then
for any ε > 0 there exists δ > 0 and λ0 > 0 such that

ε ≤Mλ(xn, xn+1) < ε + δ =⇒ wkλ(Txn,Txn+1) < ε. (23)

for all 0 < λ ≤ λ0, with 0 < k < 1, where

Mλ(xn, xn+1) = max{wλ(xn, xn+1),wλ(xn,Txn),wλ(xn+1,Txn+1)}
= max{wλ(xn, xn+1),wλ(xn, xn+1),wλ(xn+1, xn+2)}
= max{wλ(xn, xn+1),wλ(xn+1, xn+2)}.

(24)

Since wλ(xn, xn+1) > 0 for all λ > 0 and n ∈N0, then, ε ≤Mλ(xn, xn+1) for some ε > 0. On the other hand, the
condition wλ(x,Tx) < ∞ for all λ > 0 and x ∈ X∗w implies that Mλ(xn, xn+1) < ∞. Thus we have

ε ≤Mλ(xn, xn+1) < ε + δ.

If for some n ∈N0 we have Mλ(xn, xn+1) = wλ(xn+1, xn+2), then the condition (23) implies

ε ≤ wλ(xn+1, xn+2) < ε + δ =⇒ wkλ(xn+1, xn+2) < ε,

and hence,

wkλ(xn+1, xn+2) < ε ≤ wλ(xn+1, xn+2),
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which contradicts (4) since kλ < λ. Therefore, for all n ∈ N0 we have Mλ(xn, xn+1) = wλ(xn, xn+1) and the
condition (23) implies

ε ≤ wλ(xn, xn+1) < ε + δ =⇒ wkλ(xn+1, xn+2) < ε,

and hence,

wkλ(xn+1, xn+2) < wλ(xn, xn+1).

Then, by Lemma 3.7, the sequence {xn} ∈ X∗w is a w-Cauchy sequence and since X∗w is w-complete, it
converges to a limit x ∈ X∗w.

We will show next that this limit x is a fixed point of T. Since the sequence {xn} ∈ X∗w converges to x ∈ X∗w,
then for any ε > 0 there exists N0 ∈N0 such that

wλ0 (xn, x) <
ε
2
, for all n ≥ N0, (25)

and suppose that
ε
2
≤ wλ0 (xN0−1, x), that is N0 ∈ N is the smallest number for which (25) holds. From the

third condition of metric modular we have

w(k+1)λ0 (x,Tx) ≤ wλ0 (x, xN0 ) + wkλ0 (xN0 ,Tx) <
ε
2

+ wkλ0 (TxN0−1,Tx). (26)

On the other hand, the contractive condition (7) of the mapping implies that for this ε there exists δ > 0
such that

ε
2
≤Mλ0 (xN0−1, x) <

ε
2

+ δ =⇒ wkλ0 (TxN0 ,Tx) <
ε
2
. (27)

where 0 < k < 1, λ0 > 0 and

Mλ0 (xN0−1, x) = max{wλ0 (xN0−1, x),wλ0 (xN0−1,TxN0−1),wλ0 (x,Tx)}. (28)

Clearly,
ε
2
≤ wλ0 (xN0−1, x) ≤Mλ0 (xN0−1, x) <

ε
2

+ δ,

which implies
wkλ0 (TxN0 ,Tx) <

ε
2
.

Then, we conclude that for each ε > 0,

w(k+1)λ0 (x,Tx) ≤ wλ0 (x, xN0 ) + wkλ0 (xN0 ,Tx) <
ε
2

+
ε
2

= ε, (29)

and hence, w(k+1)λ0 (x,Tx) = 0. Therefore, x is a fixed point of T.
Finally, we will prove the uniqueness of the fixed point. Assume that x , y are fixed points of T. Then,

we have wλ0 (x,Tx) = wλ0 (y,Ty) = 0 and hence

Mλ0 (x, y) = max{wλ0 (x, y),wλ0 (x,Tx),wλ0 (y,Ty)} = wλ0 (x, y) > 0.

If for all ε > 0 we have wλ0 (x, y) < ε, then we would conclude wλ0 (x, y) = 0 which completes the proof
of uniqueness. Otherwise, since by the assumption wλ0 (x, y) < ∞, then there exists δ > 0 such that
ε ≥ Mλ0 (x, y) = wλ0 (x, y) < ε + δ which implies wkλ0 (Tx,Ty) = wkλ0 (x, y) < ε. However, kλ0 < λ0 and hence
we get ε ≤ wλ0 (x, y) ≤ wkλ0 (x, y) < ε which is a contradiction. We conclude that

wkλ0 (x, y) = 0,

that is, the fixed point of T is unique.
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Our next result is an existence-uniqueness theorem for fixed points of generalized Meir-Keeler type
contractive mappings on modular metric spaces induced by a nonconvex metric modular.

Theorem 3.10. Let X be a nonempty set and let w be a strict metric modular on X. Assume that X∗w is a complete
modular metric space induced by w and T : X∗w → X∗w is a generalized Meir-Keeler contraction mapping, that is (8)
holds. If the condition (C1) is satisfied, then the mapping T has a fixed point in X∗w. If in addition, the condition (C2)
is satisfied, then the fixed point of T is unique.

Proof. The proof mimics the proof of the previous theorem. First, we take an arbitrary x0 in X∗w and define
the sequence {xn} ∈ X∗w as xn = Tnx0 for all n ∈ N0. Suppose that wλ(xn, xn+1) > 0 for all λ > 0 and n ∈ N0,
otherwise the existence proof would be done. We will show that {xn} is a Cauchy sequence. From the
condition (8), for any ε > 0 there exists δ > 0 such that

ε ≤Mλ(xn, xn+1) < ε + δ =⇒ wkλ(Txn,Txn+1) < kε. (30)

for all 0 < λ ≤ λ0, with some λ0 > 0 and 0 < k < 1. Here

Mλ(xn, xn+1) = max{wλ(xn, xn+1),wλ(xn,Txn),wλ(xn+1,Txn+1)}
= max{wλ(xn, xn+1),wλ(xn, xn+1),wλ(xn+1, xn+2)}
= max{wλ(xn, xn+1),wλ(xn+1, xn+2)}

(31)

The condition wλ(x,Tx) < ∞ for all λ > 0 and x ∈ X∗w implies that Mλ(xn, xn+1) is finite, that is,

ε ≤Mλ(xn, xn+1) < ε + δ.

On the other hand we cannot have Mλ(xn, xn+1) = wλ(xn+1, xn+2) for any n ∈N0 because this would yield

wkλ(xn+1, xn+2) < kε < ε ≤ wλ(xn+1, xn+2),

which is not possible. Therefore, for all n ∈ N0 we have Mλ(xn, xn+1) = wλ(xn, xn+1) and the condition (30)
implies

ε ≤ wλ(xn, xn+1) < ε + δ =⇒ wkλ(xn+1, xn+2) < kε,

and hence,

wkλ(xn+1, xn+2) < kwλ(xn, xn+1).

By the Lemma 3.8, the sequence {xn} ∈ X∗w is a w-Cauchy sequence and since X∗w is w-complete, it converges
to a limit x ∈ X∗w. The proof of the fact that the limit x of the sequence {xn} is a fixed point of the map T, and
the uniqueness of the fixed point is similar to the proof given in Theorem 3.9, hence, we omit it.

Further, we state an existence and uniqueness theorem for generalized Ćirić-Matkowski type contrac-
tions. The proof is quite similar to the proofs of Theorems 3.9 and 3.10, therefore, we give only the
statement.

Theorem 3.11. Let X be a nonempty set and let w be a strict metric modular on X. Let X∗w be a complete modular
metric space induced by w and T : X∗w → X∗w be a generalized Ćirić-Matkowski type contraction, that is, T satisfies
(12) if w is convex and (13) if w is nonconvex. If the condition (C1) is satisfied, then the mapping T has a fixed point
in X∗w. If in addition, the condition (C2) is satisfied, then the fixed point of T is unique.

These results have various consequences some of which we give below as corollaries. First, due to the
fact that

wλ(x, y) ≤Mλ(x, y) = max{wλ(x, y),wλ(x,Tx),wλ(y,Ty)},

we can easily conclude the following fixed point results for Meir-Keeler or a Ćirić-Matkowski contractions
on modular metric spaces.
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Corollary 3.12. Let X be a nonempty set and let w be a strict metric modular on X. Assume that X∗w is a complete
modular metric space induced by w and that T : X∗w → X∗w is a Meir-Keeler or a Ćirić-Matkowski type contraction
mapping, that is, T satisfies either (5) or (10) if w is convex and satisfies either (6) or (11) if w is nonconvex. If the
condition (C1) is satisfied, then the mapping T has a fixed point in X∗w. If in addition, the condition (C2) is satisfied,
then the fixed point of T is unique.

Our last consequences can be observed directly from the inequality

wλ(x, y) + wλ(x,Tx) + wλ(y,Ty)
3

≤ max{wλ(x, y),wλ(x,Tx),wλ(y,Ty)}.

Corollary 3.13. Let X be a nonempty set and let w be a strict convex metric modular on X. Let X∗w be a complete
modular metric space induced by w and T : X∗w → X∗w satisfy either of the conditions (A) or (B).
Given ε > 0 there exists δ > 0 such that for all x, y ∈ X∗w

(A)

ε ≤
wλ(x, y) + wλ(x,Tx) + wλ(y, yT)

3
< ε + δ =⇒ wkλ(Tx,Ty) < ε. (32)

(B)

ε <
wλ(x, y) + wλ(x,Tx) + wλ(y, yT)

3
< ε + δ =⇒ wkλ(Tx,Ty) ≤ ε. (33)

for some number 0 < k < 1 and all 0 < λ ≤ λ0 with λ0 > 0. If the condition (C1) is satisfied, then the mapping T has
a fixed point in X∗w. If in addition, the condition (C2) is satisfied, then the fixed point of T is unique.

Corollary 3.14. Let X be a nonempty set and let w be a strict metric modular on X. Let X∗w be a complete modular
metric space induced by w and T : X∗w → X∗w satisfy either of the conditions (I) or (II).
Given ε > 0 there exists δ > 0 such that for all x, y ∈ X∗w

(I)

ε ≤
wλ(x, y) + wλ(x,Tx) + wλ(y, yT)

3
< ε + δ =⇒ wkλ(Tx,Ty) < kε. (34)

(II)

ε <
wλ(x, y) + wλ(x,Tx) + wλ(y, yT)

3
< ε + δ =⇒ wkλ(Tx,Ty) ≤ kε. (35)

for some number 0 < k < 1 and all 0 < λ ≤ λ0 where λ0 > 0. If the condition (C1) is satisfied, then the mapping T
has a fixed point in X∗w. If in addition, the condition (C2) is satisfied, then the fixed point of T is unique.

Motivated by the example of modular metric discussed in [13] we give next an example of a generalized
Meir-Keeler type mapping on a modular metric space to illustrate our relevant fixed point results.

Example 3.15. Let X = A ∪ B ⊂ R2, where A = {(a, 0) | 0 ≤ a ≤ 1} and B = {(0, b) | 0 ≤ b ≤ 1}. Consider the
mapping T as

Tx =


(
0,

a
2

)
if x = (a, 0) ∈ A(

b
2
, 0

)
if x = (0, b) ∈ B.

Notice that if we take the metric on R2 as

d((x1, y1), (x2, y2)) = |x1 − x2| + |y1 − y2|,
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and x = (1, 0), y = (0, 1), we compute

M((1, 0), (0, 1)) = max{d((1, 0), (0, 1)), d((1, 0),T(1, 0)), d((0, 1),T(0, 1))}

= max{2,
3
2
,

3
2
} = 2,

and
d(T(1, 0),T(0, 1)) = d((0,

1
2

), (
1
2
, 0)) = 1.

Then, for ε =
1
2

whenever
1
2
≤M((1, 0), (0, 1)) = 2 <

1
2

+ δ,

d(T(1, 0),T(0, 1)) = 1 >
1
2
.

Thus on the metric space (X, d), T is not a generalized Meir-Keeler contraction.
Now, we define the modular wλ : (0,∞] × X × X→ [0,∞] as

wλ(x, y) =


|a1 − a2|

λ
if x = (a1, 0), y = (a2, 0) ∈ A

|b1 − b2|

λ
if x = (0, b1), y = (0, b2) ∈ B

a + b
λ

if x = (a, 0) ∈ A, y = (0, b) ∈ B.

It can be seen that wλ is a strict nonconvex metric modular on X. In addition, the set

X∗w = {x ∈ X | wλ(x, x0) < ∞} = X,

because wλ(x, y) < ∞ for all x, y ∈ X and λ > 0.
Then we have three possibilities as explained below.
Case I. Let x = (a1, 0), y = (a2, 0) ∈ A. Then

Mλ(x, y) = max{wλ(x, y),wλ(x,Tx),wλ(y,Ty)}
= max{wλ((a1, 0), (a2, 0)),wλ((a1, 0), (0,

a1

2
)),wλ((a2, 0), (0,

a2

2
))}

= max{
|a1 − a2|

λ
,

a1 + a1
2

λ
,

a2 + a2
2

λ
}

= max{
|a1 − a2|

λ
,

3a1

2λ
,

3a2

2λ
} ≤

3
2λ

and
wkλ(Tx,Ty) = wkλ

((
0,

a1

2

)
,
(
0,

a2

2

))
=
|a1 − a2|

2kλ
≤

1
2kλ

.

If for any ε > 0

ε ≤Mλ(x, y) ≤
3

2λ
< ε + δ,

then 2λε ≤ 3 and hence,

wkλ(Tx,Ty) ≤
1

2kλ
< kε

whenever k2 >
1

2λε
≥

1
3

. Therefore, for
1
√

3
< k < 1 the condition (8) holds.

Case II. Let x = (0, b1), y = (0, b2) ∈ B. This case mimics the case I, so, the condition (8) is satisfied for
1
√

3
< k < 1.
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Case III. Finally we take x = (a, 0) ∈ A, y = (0, b) ∈ B. Then

Mλ(x, y) = max{wλ(x, y),wλ(x,Tx),wλ(y,Ty)}

= max{wλ((a, 0), (0, b)),wλ((a, 0), (0,
a
2

)),wλ((0, b), (
b
2
, 0))}

= max{
a + b
λ

,
3a
2λ
,

3b
2λ
} ≤

2
λ
.

In this case we have

wkλ(Tx,Ty) = wkλ

((
0,

a
2

)
,

(
b
2
, 0

))
=

a + b
2kλ

≤
1

kλ
.

If for any ε > 0

ε ≤Mλ(x, y) ≤
2
λ
< ε + δ,

then λε ≤ 2 and hence,

wkλ(Tx,Ty) ≤
1

kλ
< kε

whenever k2 >
1
λε
≥

1
2

. Therefore, the condition (8) holds for
1
√

2
< k < 1.

Then, choosing k as k > max{
1
√

3
,

1
√

2
} =

1
√

2
we conclude that for all x, y ∈ X, the conditions of Theorem 3.10

are satisfied for
1
√

2
< k < 1 and hence, the mapping T has a unique fixed point which is x = (0, 0).
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