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Restless legs syndrome (RLS) is a common sleep-related disorder for which the

underlying biological pathways and genetic determinants are not well understood. The

genetic factors so far identified explain less than 10% of the disease heritability. The

first successful genome-wide association study (GWAS) of RLS was reported in 2007.

This study identified multiple RLS associated risk variants including some within the

non-coding regions of MEIS1. The MEIS1 GWAS signals are some of the strongest

genetic associations reported for any common disease. MEIS1 belongs to the homeobox

containing transcriptional regulatory network (HOX). Work in C. elegans showed a link

between the MEIS1 ortholog and iron homeostasis, which is in line with the fact that

central nervous system (CNS) iron insufficiency is thought to be a cause of RLS. Zebrafish

and mice have been used to study the MEIS1 gene identifying an RLS-associated-SNP

dependent enhancer activity from the highly conserved non-coding regions (HCNR) of

MEIS1. Furthermore, this gene shows a lower expression of mRNA and protein in blood

and thalamus of individuals with the MEIS1 RLS risk haplotype. Simulating this reduced

MEIS1 expression in mouse models resulted in circadian hyperactivity, a phenotype

compatible with RLS. While MEIS1 shows a strong association with RLS, the protein’s

function that is directly linked to an RLS biological pathway remains to be discovered. The

links to iron and the enhancer activity of the HCNRs of MEIS1 suggest promising links

to RLS pathways, however more in-depth studies on this gene’s function are required.

One important aspect of MEIS1’s role in RLS is the fact that it encodes a homeobox

containing transcription factor, which is essential during development. Future studies

with more focus on the transcriptional regulatory role of MEIS1 may open novel venues

for RLS research.
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INTRODUCTION

Restless legs syndrome is a common neurological disorder. The prevalence of RLS cases based on
the minimum diagnostic criteria of the international RLS study group (IRLSSG) was estimated
between 3.9 and 14.3% of the adult population. It is more common in women than men
and the prevalence increases with age in the European and North American populations (1).
RLS is more prevalent in people with iron deficiency or kidney disease (2). Twin studies
and a familial aggregation analysis estimated the heritability of RLS between 54.0 and 69.4%,
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thus there is a strong genetic element to the disease (3–5). RLS
is a complex condition and environmental factors also contribute
to its development.

The first attempts to identify RLS genetic risk factors used
genome wide linkage (GWL) approaches in large multiplex
families, most of which had an autosomal dominant mode
of inheritance and one with autosomal recessive inheritance
pattern. The GWL identified loci with large genomic regions,
but no causative variant was identified by this approach and
the results have often not been reproducible (5–12). Considering
the complex nature of RLS, the genetic studies on RLS moved
forward to association studies in search for common variants
with low to moderate effect size.

SIGNIFICANCE OF MEIS1 IN THE RLS
GENETICS STUDIES

RLS is the first common sleep disorder for which genome
wide association studies (GWAS) was performed and genetic
risk loci identified. In 2007, the first genome-wide association
study on RLS using 401 patients with familial RLS and 1,644
control individuals of German and French-Canadian origin
identified common variants in three noncoding genomic regions
(13). The strongest association signal found is a 32 kb linkage
disequilibrium block in the intron 8 of MEIS1 gene (13). This
association has been replicated in several follow up studies in
both familial and sporadic RLS cases (odds ratio 1.92, 95% CI
1.85–1.99, p-value = 2.00E−280, from the latest report in 2017)
(14–17). Furthermore, common genetic variants with low effect
size were identified for RLS in 18 additional loci that each confer a
small risk for the disease (17).MEIS1 is a homeobox transcription
factor that belongs to the three amino acid loop extension
(TALE) family of homeodomain proteins; it is known to have
functions in hematopoiesis and vascular patterning (18, 19).
This protein forms heterodimeric or heterotrimeric complexes
with PBX or HOX proteins for higher DNA binding specificity
and affinity (20). It also plays roles in neurodevelopment as
well as the development of proximodistal limb axis, with high
expression in dopaminergic neurons of substantia nigra and red
nucleus (21–24).

Rare coding variants of MEIS1 were also proposed to
contribute to be the cause of RLS. An Arg272-to-His (p.R272H)
was found in one of 71 familial probands with RLS. However, a
case-control genotyping study of this mutation across a North
American cohort failed to validate this variant (25). In another
study, an excess of rare null alleles specific to MEIS1 isoform
1 was observed in RLS cases compared to controls in a burden
test on a German population (26). Lastly, in a study conducted
by Xiong et al. the thirteen MEIS1 exons (and their respective
splice junctions) were sequenced in 285 familial probands with
a confirmed clinical diagnosis and no variants were identified
(27). Hence coding variants are at most a very rare cause of RLS.
This is not surprising as the gene is involved in many different
developmental processes, so functional coding variants would
likely have many additional manifestations, in addition to RLS.

REDUCED MEIS1 EXPRESSION MAY
CONTRIBUTE TO THE DEVELOPMENT OF
RLS

After the publication of the first GWAS on RLS, a subsequent
study by Xiong et al. (27), used human lymphoblastoid cell lines
(LCL) as well as two different brain regions (thalamus and pons)
from RLS patients for an expression study. A q-RT-PCR followed
by western blot analysis showed that the patients who harbor the
MEIS1 risk haplotype (GG/GG, rs12469063–rs2300478) express
lower levels of MEIS1 mRNA and protein in LCL and thalamus
(Figure 1). The authors argued that lowerMEIS1 expression in a
subset of individuals can contribute to the development of RLS
symptoms (27).

Given the lower MEIS1 expression in a subgroup of patients,
in vivo studies on mouse models with heterozygous Meis1
knockout were conducted (23, 28). Young male and female mice
showed hyperactivity with no effect on anxiety-related behaviors,
providing a potential animal model to study RLS (Figure 1).
Furthermore, considering the age-related manifestation of RLS
symptoms in human, effects ofMeis1 haploinsufficiency was also
studied in middle aged mice in a study by Salminen et al. (29).
Meis1 haploinsufficiency was associated with a sex dependent
increase in the activity more specific to the initial of the rest phase
of animal, similar to the circadian rhythm of RLS symptoms
observed in human patients. Effects on sensorimotor system in
a sex dependent manner were also reported (29).

THE LINKS BETWEEN MEIS1 AND IRON
METABOLISM

Observations made using aCaenorhabditis elegansmodel showed
that post developmental inactivation ofUnc-62 (MEIS1 ortholog)
makes it one of the 64 genes that increase the worm’s life span.
Unc-62 in the worms has 25% identity with MEIS1 and almost
80% identity with its homeodomain. Adding iron chelators in
the culture media of the worms resulted in changes in the
effect of Unc-62 inactivation on worms’ lifespan, suggesting
that Unc-62 is involved in iron metabolism. The link between
Unc-62 and iron was also measured through its impact on the
expression of ferritin. It was found that post developmental
inactivation of Unc-62 using RNAi resulted in higher expression
of ferritin, a protein that plays a key role in iron metabolism
through its ability to store excess iron and to release it into
a soluble and nontoxic form (30). Thalamus samples obtained
from RLS patients also showed that individuals with the MEIS1
risk haplotype, who also have a reduced expression of MEIS1,
show an increased expression of both ferritin (FTN) light and
heavy chains. Furthermore, DMT1 gene expression was higher in
these individuals. DMT1 is a proton-coupled metal transporter
that carries iron from the extracellular domain to the cytoplasm
(Figure 1). This finding also supports a link between MEIS1
and iron metabolism where DMT1 transports iron into the
brain (31). More work remains to be done to clarify the exact
role of MEIS1 in iron metabolism relevant to RLS (32). Recent
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FIGURE 1 | A diagram, summarizing the links between MEIS1 and restless legs syndrome. Low brain iron level or genetic variations in MEIS1 have been found in RLS

patients. The consequences of low MEIS1 expression have been identified in human, C. elegans and mouse models (indicated in the figure).

studies suggest that DMT1 is expressed in endosomes of brain
capillary endothelial cells denoting the blood-brain barrier (BBB)
(33). The best well-established neurobiological abnormality in
RLS is reduced brain iron, despite a normal peripheral iron
level. The fact that some, but not all RLS patients, respond to
intravenous (IV) iron provides an opportunity to interrogate
the underlying pathways differing between responders versus
non-responders. This led some studies to focus their attention
toward the iron uptake at the blood-brain barrier (34). A
preliminary analysis ofMEIS1 expression showed elevatedMEIS1
levels in the microvasculature isolated from RLS brain tissue
by comparison to the tissues of control individuals. Moreover,
a cell culture model of the BBB showed that treatment with
an iron chelator increased the MEIS1 expression, while iron
loading conversely decreased MEIS1 expression (unpublished
data presented in a review article on the links between iron and
RLS by Connor et al.; the small sample size in this report indicates
thatmore investigations remain to be done to further validate this
observation) (35, 36). These data suggest a novel role for MEIS1
in the BBB that warrants further examination. There are also
observations revealing peripheral hypoxia to be associated with
RLS symptoms (37). Hypoxia pathway is activated in a number
of cell types of RLS patients; this activation can result from or
be related to cellular iron deficiency (38). Another study used
LCLs and showed MEIS1 down regulation by RNAi techniques
resulted in an increase in transferrin-2 receptor and ferroportin
and a decrease in hepcidin mRNA expression (39, 40). The
authors suggest thatMEIS1might control cellular iron transfer to
mitochondria and cellular export of iron (40). Putting together all
these findings, the data suggest that decreased acquisition of iron

by the brain cells is an RLS related pathophysiology, for which a
possible role forMEIS1 can be accounted.

MEIS1 HAS AN ALLELE DEPENDENT
CIS-REGULATORY FUNCTION IN
TELENCEPHALON (A STUDY IN MICE AND
ZEBRAFISH)

A cluster of highly conserved non-coding regions (HCNRs)
in the MEIS1 locus suggests the presence of cis-regulatory
elements (23). Considering that most variants found by GWAS
are located in the regulatory regions, Spieler et al. conducted
a study to identify the cis-regulatory role of the common
intronic variants in MEIS1 HCNRs (23). They studied an RLS
associated variant (rs12469063), which is in the HCNR 617
of MEIS1, in transgenic mice and zebrafish using a reporter
assay. They found that in mice, rs12469063 lies within a
region of high interspecies conservation with neural enhancer
activity and has an allele-specific functional impact. This
study found that the risk allele of rs12469063 decreases the
enhancer activity of this region in LGE and MGE (lateral
and medial ganglionic eminences). The effect of rs12469063
on MEIS1 enhancer function in the LGE/MGE region suggests
that RLS may involve the basal ganglia because these regions
give rise to the basal ganglia [also discussed in a review
by Salminen et al. (41)]. The enhancer activity of HCNR
harboring the RLS associated rs12469063 happens in this mouse
model during development, which suggests its predisposition to
RLS occurs during embryonic development (Figure 1). Affinity
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chromatography showed that CREB1 has higher binding affinity
to the RLS risk allele compared to the protective allele of
rs12469063. A reporter screen in the zebrafish confirms the
enhancer activity of HCNR observed in the mice and found two
more transcriptionally active enhancers to this region. HCNR 617
harboring rs12469063 is the only RLS-SNP dependent enhancer
region (23, 42).

MEIS1 REGULATES SKOR1

Expression studies of the RLS associated loci of BTBD9,
MAP2K5, and SKOR1 (previously called LBXCOR1) did not
find changes in their levels of expression in lymphoblasts or
two brain regions (pons and thalamus) of RLS patients (43).
However, RLS patients with the MEIS1 risk haplotype were
observed to have a reduced expression of SKOR1, in addition
to a reduced expression of MEIS1 (Figure 1) (43). Follow
up studies using siRNA targeting MEIS1, electromobility shift
assays and luciferase reporter assays suggested the expression
of SKOR1 to be under the regulatory control of MEIS1. This
transcription factor action of MEIS1 is due to its direct binding
on two distinct promoter regions of SKOR1 (43). Hence the
dysregulation of MEIS1 might predispose to RLS both directly
and indirectly, possibly throughout its regulatory role on other
genes like SKOR1. A new SNP reported in this study is 8.7 kb
upstream SKOR1 ATG start site, which acts as a regulatory
SNP (rSNP). The risk allele in this locus reduces the binding
affinity of MEIS1 to the SKOR1 promotor and results in reduced
expression of SKOR1 (43). SKOR1 acts as the transcriptional
corepressor of LBX1, a homeodomain transcription factor.
Skor1 expression in the Mice embryonic CNS is present in a
certain subset of post-mitotic neurons generated posterior to
the midbrain-hindbrain border. Skor1 is selectively expressed
in the dorsal horn interneurons of developing spinal cord in
Mice, where Lbx1 is required for proper specification. It is
suggested that SKOR1 probably mediates the sensory inputs of
RLS, among others. Despite the importance of SKOR1 in RLS
genetic, only little is known regarding the actual function of
this gene in RLS underlying pathways. The current literature
only suggests that MEIS1 dysregulation may causes SKOR1
dysregulation possibly leading to the sensory phenotypes of
RLS (44).

MEIS1 AND OTHER SLEEP RELATED
DISORDERS LIKE INSOMNIA, PLMS AND
RBD

Insomnia is characterized by problems in falling asleep or
maintaining asleep. With a heritability estimate of 38 and
59% in men and women, respectively, genetic factors must
play a crucial role in insomnia. Recent genetic studies
of insomnia using cases from the UK biobank showed
that MEIS1 has the strongest association signal, suggesting
MEIS1 may be a shared genetic risk factor for RLS and
insomnia (45–47). Some reports argue that the phenotype

overlap could only drive some, and not all of the MEIS1’s
association with insomnia, thus suggesting that MEIS1 has
a pleiotropic effect on RLS and insomnia (45). However,
other reports suggest that the association of MEIS1 with
insomnia only comes from the inclusion of RLS cases (48).
Such inconsistencies might be due to the heterogeneous
phenotypic definition of insomnia itself which can lead
to the inclusion of a substantial number of RLS cases.
Furthermore, GWAS on periodic leg movement during sleep
(PLMS), which are present in approximately 80% of RLS
cases, also shows association with MEIS1 (49–53). This
pleiotropic effect can arise from MEIS1’s wide expression
pattern during the development (54). So far, no genetic links
between RBD (REM sleep behavior disorder) and MEIS1 have
been reported.

CONCLUSION

MEIS1 region is one of the several loci found to be associated
with RLS genetic, which overall explain less than 10% of RLS
heritability. The many roles for MEIS1 in development make
the study of its role in RLS challenging. MEIS1 establishes
motor neuron pool identity and their target-muscle connectivity
(55), it also regulates the proximodistal limb axis development
(21). This protein is highly expressed in dopaminergic neurons
of the substantia nigra and red nucleus, though what it
does in these cells remains unknown (22–24). Meanwhile,
the biology of RLS is poorly understood, with the most
consistent abnormality being altered iron homeostasis with
brain iron deficiency (56–59). Data presented in this report
suggest that the role of MEIS1 in RLS involves, among
possibly other functions, altered iron homeostasis via altered
transcriptional regulatory activity in RLS pathways. More in
depth follow up studies on the function of MEIS1 with more
focus on its regulatory role as a transcription factor might
shed more light on the underlying pathways involved in RLS.
To reach this goal, it will be essential to have access to
RLS patients brain material carrying different genotypes of
the RLS GWAS signals and to detailed clinical data to be
used as covariates in the analyses. This combination would
increase the likelihood of identifying elements that are critical
to the onset and progression of RLS. This clinical data
includes patient iron levels, their response to medication, age
at onset, familial or sporadic RLS, presence or absence of
PLMS, diagnosis by a physician and information about the
patients’ other health conditions. The next step could involve
the use of model organisms to further validate and investigate
RLS related mechanisms.
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