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ABSTRACT

Steganography and steganalysis in VoIP applications are important research topics as speech data is an appro-
priate cover to hide messages or comprehensive documents. In our paper we introduce a Mel-cepstrum based
analysis known from speaker and speech recognition to perform a detection of embedded hidden messages. In
particular we combine known and established audio steganalysis features with the features derived from Mel-
cepstrum based analysis for an investigation on the improvement of the detection performance. Our main focus
considers the application environment of VolP-steganography scenarios.

The evaluation of the enhanced feature space is performed for classical steganographic as well as for water-
marking algorithms. With this strategy we show how general forensic approaches can detect information hiding
techniques in the field of hidden communication as well as for DRM applications. For the later the detection of
the presence of a potential watermark in a specific feature space can lead to new attacks or to a better design of
the watermarking pattern. Following that the usefulness of Mel-cepstrum domain based features for detection is
discussed in detail.
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1. MOTIVATION AND THE APPLICATION SCENARIO OF VOIP
STEGANOGRAPHY

Digital audio signals are, due to their stream-like composition and the high data rate, appropriate covers for
a steganographic method, especially if they are used in communication applications. Dittmann' et. al and
Kraetzer? et. al describe for example the design and implementation of a VoIP based steganography scenario,
indicating possible threats resulting from the embedding of hidden communication channels into such a widely
used communication protocol. When comparing the research in image and audio steganalysis it is obvious that
the second one is mostly neglected by the information hiding community so far. While advanced universal
steganalysis approaches exist for the image domain (e.g. by Ismail Avcibas® et. al, Siwei Lyu? et. al, Yoan
Miche® et. al, Mehmet U. Celik® et. al or Jessica Fridrich”) only few approaches exist in the audio domain. This
fact is quite remarkable for two reasons. The first one is the existence of advanced audio steganography schemes,
like the one demonstrated by Kaliappan Gopalan® for example. The second one is the very nature of audio
material as a high capacity data stream which allows for scientifically challenging statistical analyses. Especially
inter-window analyses (considering the evolvement of the signal over time) which are possible on this continuous
media distinguish audio signals from the image domain.

Chosen from the few audio steganalysis approaches the works of Hamza Ozer? et. al, Micah K. Johnson'? et. al,
Xue-Min Ru'! et. al and Ismail Avcibas!? shall be mentioned here as related work. These approaches can be
grouped into two classes:

1. Tests against a self-generated reference signal: A classification based on the distances computed
between the signal and a self-generated reference signal (e.g. by Xue-Min Ru'! et. al) via linear predictive
coding (LPC), benefiting from the very nature of the continuous wave-based audio signals; or from Hamza
Ozer? et. al and Ismail Avcibas!'? by using a denoising function).

2. Classification against a statistical model for normal and “abnormal” behaviour: Micah K.
Johnson'® et. al show very good results for this technique based on two steganography algorithms by
generating a statistical model that consists of the errors in representing audio spectrograms using a linear
basis. This basis is constructed from a principal component analysis (PCA) and the classification is done
using a non-linear SVM (support vector machine).



In this work we introduce an approach for steganalysis which combines both classes to a framework for reliable
steganalysis in a Voice-over-IP (VoIP) application scenario and imply how it can be transferred to the general
application field of audio steganography. The VoIP application scenario assumes that while the VoIP partners
speak they transfer also a hidden message using a steganographic channel (for a more detailed description of this
scenario see Dittmann! et. al). It is assumed that this steganographic message is not permanently embedded
from start to end of the conversation. In VoIP scenarios we have therefore the advantage to capture voices in
such a way that we can assume that: Either the captured voice data is partly an unmarked signal which can be
used as training data for un-marked and by specific algorithms marked data, or the stream as input for a stego
classifier displays on the time based behaviour differences to determine between marked and un-marked signals
as the speech data comes from one speaker and has therefore non-changing speech characteristics. To simulate
this VoIP application scenario, we use a set of files which are used for training and analysis. Each file from this
set is divided into two parts, a first part for training to build a model and the second for analysis to test for
hidden channels. With this set-up we can simulate the streaming behaviour and non-permanent embedding of
hidden data.

For our evaluations we furthermore assume that it is possible to train and test models on the appropriate audio
material (in our application scenario the speech in VoIP communications as well as marked material for every
information hiding algorithm considered) without considering the legal implications such an action might have.

Our introduced framework, named AAST (AMSL Audio Steganalysis Tool Set), allows for SVM based intra-
window analysis on audio features as well as y2-test based inter-window analysis. In the case of AASTSs intra-
window analysis a model for each of a number of known information hiding algorithms can be created during
the observation of a communication channel or in advance. Based on this trained model a SVM is used to decide
whether a signal to be tested was marked with the algorithm for which this model was generated. Focusing on
the VoIP steganography scenario and with the goal to improve the security (with regards to integrity) of this
communication channel as well as the detection performance of the steganalysis tool used by Kraetzer? et. al,
new measures (features) were sought for with the assumption that the considered signal is a band limited speech
signal (which is the most common payload in VoIP communications). Measures using exactly this assumption
were found with the Mel-cepstral based signal analysis in the field of speech and speaker detection.

If the inter-window analysis capability of AAST is used, a feature based statistical model for the behaviour of the
channel over time is computed and compared by x2-testing against standard distributions. Other innovations
(besides the combination of intra- and inter-window steganalysis in one framework) which are introduced in this
work are the Mel-cepstrum based features (MFCCs and FMFCCs) for audio steganalysis, the feature fusion as
well as initial results for inter-window analysis. These innovations and their impact are reflected in the test
objectives and results of this work.

This work has the following structure: An introduction and description of the application scenario is given in
section 1. In section 2 the new AAST (AMSL Audio Steganalysis Toolset) is introduced including in subsection 2.2
the set of features which can be computed. Consecutively follows the description of test objectives, test sets
and the test set-up as well as the test procedure in section 3. In section 4 the test results are presented and
summarised. Section 5 concludes the work by drawing conclusions and deriving ideas for further research in this
field.

2. THE PROPOSED STEGANALYSER

Dittmann' et. al described in 2005 a basic steganalysis tool which was subsequently enhanced by the research
group Multimedia and Security at the Otto-von-Guericke University of Magdeburg, Germany and used in pub-
lications concerned with audio steganalysis (e.g. Kraetzer'®? et. al). Its functions and measures were derived
from image steganalysis and it was shown that the introduced measures had only a limited relevance for the VoIP
speech steganography algorithm developed by Kraetzer? et. al. As a consequence we introduce new Mel-cepstral
analysis based measures, derived from advanced audio signal analysis techniques like speech and speaker detec-
tion, for audio steganalysis with the intention to advance the performance of the steganalysis tool introduced by
Dittmann® et. al.

The improved tool set, referred to as AAST (AMSL Audio Steganalysis Toolset), consists of four modules:



1. pre-processing of the audio/speech data

2. feature extraction from the signal

3. post-processing of the resulting feature vectors (for intra- or inter-window analysis)
4. analysis (classification for steganalysis)

In the following sections these modules are described in more detail.

2.1. Pre-processing of the audio/speech data

The core of AAST, the feature extraction process, assumes audio files as input media. Therefore audio signals in
other representations (e.g. the audio stream of a VoIP application) have to be captured into files. This is done
by the application of specific hardware or software based capturing modules on the host or in the network. In
the case of the VoIP application considered, a modified version of the IDS/IPS (Intrusion Detection/ Intrusion
Prevention System) described by Dittmann'# et. al is used as capturing device.

Additional pre-processing of the audio data (in our application scenario the speech data) handles the input and
provides basic functions for data filtering (bit-plane filtering, silence detection), windowing and media specific
operations like channel-interleaving/demerging.

2.2. Feature extraction from the signal

The core part of the steganalysis tool set is a sensor computing first order statistical features (sf;; sf; € SF; SF =
set of features in the steganalysis framework) for an audio signal. Based on the initial idea of an universal blind
steganalysis tool for multimedia steganalysis a set of statistical features used in image steganalysis was transferred
to the audio domain. Originally the set of statistical features (SF) computed for windows of the signal (intra-
window) consisted of: sf., empirical variance, sf., covariance, sfentropy entropy, sfrss,,, LSB ratio, sfrsp;,,
LSB flipping rate, sfmneqn mean of samples in time domain and sf,egian median of samples in time domain.
This set is enhanced in this work by:

® Sfmelys -y Sfmeie With C = number of MFCCs which is depending on the sampling rate of the audio
signal; for a signal with a sampling rate of 44.1 kHz C' = 29) computed Mel-frequency cepstral coefficients
(MFCCs) describing the rate of change in the different spectrum bands

® Sfmeifiy s Sfmeife With C' = number of FMFCCs with the same dependency on the sampling rate like
the MFCCs) computed filtered Mel-frequency cepstral coefficients (FMFCCs) describing the rate of change
in the different spectrum bands after applying a filtering function to remove the frequency bands carrying
speech relevant components in the frequency domain

The cepstrum (an anagram of the word spectrum) was defined by B. P. Bogert, M. J. R. Healy and J. W.
Tukey!® in 1963. Basically a cepstrum is the result of taking the Fourier transform (FT) or short-time Fourier
analysis'® of the decibel spectrum as if it were a signal. The cepstrum can be interpreted as information about
the rate of power change in different spectrum bands. It was originally invented for characterising seismic echoes
resulting from earthquakes and bomb explosions. It has also been used to analyse radar signal returns. Generally
a cepstrum S can be computed from the input signal S (usually a time domain signal) as:

§ = FT(log(FT(S))) (1)

Besides its usage in the analysis of reflected signals mentioned above, the cepstrum has found its application in
another field of research. As was shown by Douglas A. Reynolds'” and Robert H. McEachern'® a modified cep-
strum called Mel-cepstrum can be used in speaker identification and the general description of the HAS (Human
Auditory System). McEachern models the human hearing based on banks of band-pass filters (the ear is known
to use sensitive hairs placed along a resonant structure, providing multiple-tuned band-pass characteristics; see
Hugo Fastl and Eberhard Zwicker!® or David J. M. Robinson and Malcolm O. J. Hawksford?°) by comparing the
ratios of the log-magnitude of energy detected in two such adjacent band-pass structures. The Mel-cepstrum is



considered by him an excellent feature vector for representing the human voice and musical signals. This insight
led to the idea pursued in this work to use the Mel-cepstrum in speech steganalysis.

For all applications which are computing the cepstrum of acoustical signals, the spectrum is usually first trans-
formed using the Mel frequency bands. The result of this transformation is called the Mel-spectrum and is used
as the input of the second F'T computing the Mel-cepstrum represented by the Mel frequency cepstral coefficients
(MFCCs) which are used as sfmel,; -, Sfmele i AAST. The complete transformation for the input signal S is
described in equation 2.

sf’mell

MelCepstrum = FT(MelScaleTransformation(FT(S))) = Sfj”f’.el? (2)
sfmelc

Figure 1 shows the complete transformation procedure for a FFT based Mel-cepstrum computation as intro-
duced by T. Thrasyvoulou and S. Benton?!' in 2003. Other approaches found in literature use LPC based
Mel-cepstrum computation. A detailed discussion about which transformation should be used in which case is
given by Thrasyvoulou?' et. al. From these discussion it is obvious that the FT based approach suffices the
means of this paper (since no inversion of the transformation is required in any of the analyses).
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Figure 1: FFT based Mel-cepstrum computation as introduced by Thrasyvoulou®! et. al

In the implementation of the AAST the pre-emphasis step is done by boosting the digitalised input signal by
approximately 20dB/decade. The window size window_size for the framing step in AAST is an application
parameter and set in the tests for this work to 1024 samples for the intra-window tests and to 32768 for the
inter-window analysis. Windowing is done using non-overlapping Hamming windows. For the computation of the
Fourier transforms the AAST uses functions from the libgsi?? package. The implementation of the consecutive
filtering steps is based on the description by Thrasyvoulou?! et. al.

In this paper a Modification of the Mel-cepstral based signal analysis is introduced. It is based on the
application scenario of VoIP telephony and the basic assumption which was already indicated in section 1: a
VoIP communication consists mostly of speech communication between human speakers. This, in conjunction
with the knowledge about the frequency limitations of human speech (see e.g. Fastl!? et. al), led to the idea
of removing the speech relevant frequency bands (the spectrum components between 200 and 6819.59 Hz) in
the spectral representation of a signal before computing the cepstrum. This procedure, which enhances the
computation described by equation 2 by a filter step, returns the FMFCCs (filtered Mel frequency cepstral
coefficients; s fmeif,, o) Sfmeifo in AAST) and is expressed in equation 3.

Sfmelfl
FilteredMelCepstrum = FT(SpeechBandFiltering(MelScaleTrans formation(FT(S)))) = Sff'fe.lfz

Sfmelfc



2.3. Post-processing of the resulting feature vectors

In the steganalysis tool set the post-processing of the resulting feature vectors is responsible for preparing the
following analysis by providing normalisation and weighting functions as well as format conversions on the
feature vectors. This module was introduced to make the approach more flexible and allow for different analysis
or classification approaches. Besides the operations (subset generation, normalisation, SVM training, etc) on
the vector of intra-window features computed in the second module, a second feature vector can be provided
by applying statistical operations like x? testing to the intra-window features, thereby deriving inter-window
characteristics describing the evolution of the signal over time.

2.4. Analysis

The subsequent analysis as the final step in the steganalysis process is either done using a SVM (Support Vector
Machine) for classification of the signals (in the case of intra-window analysis) or by x? (for inter-window analysis).
The SVM technique is based on Vapnik’s®? statistical learning theory and was used as a classification device
in different steganalysis related publications (e.g. by Johnson!® et. al, Ru'! et. al or Miche® et. al). For more
details on SVM classification see for example Chih-Chung Chang and Chih-Jen Lin?* or the section concerned
with SVM classification in steganography by Johnson!® et. al.

3. TEST SCENARIO

Two test goals are to be defined for this work: The primary goal is to reliably detect the presence of a given
hidden channel within the defined application scenario of VoIP steganography. The secondary goal is to show
the general applicability of our approach and the Mel-cepstral based features in speech and audio steganalysis.

In the following the defined sets, set-up, procedure and objectives for the tests necessary for the evaluation of
these goals are described.

3.1. Test sets and test set-up

This section describes the set of algorithms A, sets of test files TestFiles and the classification device used in
the evaluations.

3.1.1. Information hiding algorithms used

For the evaluations in this work the set of algorithms A from Kraetzer?® et. al was reused and enhanced by one
new algorithm. For this work A;, A; € A denotes a specific information hiding algorithm with a fixed parameter
set. The same algorithm with a different parameter set (e.g. lowered embedding strength) would be identified
as A;j with j # i. The set of A is considered in this work to consist of the subsets Ag (audio steganography
algorithms) and Ay, (audio watermarking algorithms) with A = Ag U Ay.

Ag chosen: the following Ag are used for testing:

e Ag, - LSB (version Heutling051208): This is the algorithm used in the implementation of the VoIP steganog-
raphy application described by Vogel?S et. al and Kraetzer? et. al, for a detailed description of the algorithm
see these publications; parameter set: silence_detection = 1, embedding_strength = 100

o Ag, - Publimark (version 0.1.2): for detailed descriptions see the Publimark website?” and Lang?® et. al;
parameter set: none (default)

o Ag, - WaSpStego: A spread spectrum, wavelet domain algorithm, embedding ECC secured messages into
PCM coded audio files. The embedding is done by the modification of the signum of the lower third
of wavelet coefficients of each block. Detection is done by correlating the signums of these coefficients
with the output of the PSNR initialised with the same key as in the embedding case. Parameter set:
block width = 256, embedding_strength = 0.01

e Ag, - Steghide (version 0.4.3): for detailed descriptions see the Steghide website?® and Kraetzer®® et. al;
parameter set: default



e Ag. - Steghide (version 0.5.1): see Agy above; parameter set: default

Ay chosen: For evaluating digital audio watermarking algorithms we use the same four Ay, already considered
by Kraetzer?® et. al:

e Aw, - Spread Spectrum; parameter set: ECC = on, [ = 2000, h = 17000, a = 50000
o Ay, - 2A2W (AMSL Audio Water Wavelet); parameter set: encoding = binary, method = ZeroT'ree
o Ay, - Least Significant Bit; parameter set: ECC = on

o Ay, - VAWW (Viper Audio Water Wavelet); parameter set: threshold = 40, scalar = 0.1

Those four Ay are also described in detail in Lang and Dittmann.?®

3.1.2. Test files

Following the two test goals identified above, two different sets of test files (T'est Fiiles) are defined: Based on the
assumption, that a VoIP communication can be generally modelled as a two channel, speech communication with
one non-changing speaker per channel, one of the channels was simulated by using a long audio file (characteristics:
duration 27 min 24 sec, sampling rate 44.1 kHz, stereo, 16 bit quantisation in an uncompressed, PCM coded
WAV-file) containing only speech signals of one speaker. The signal (set of test files) used was recorded for
this purpose at the AMSL (Advanced Multimedia and Security Lab, Otto-von-Guericke University Magdeburg,
Germany). This set of test files is in the following denoted with TestFiles = long file.

For the evaluation of the second test goal (the general applicability of the AAST in audio steganalysis) the same
set of 389 audio files (classified by context into 4 classes with 25 subclasses like female and male speech, jazz,
blues, etc.; characteristics: average duration 28.55 seconds, sampling rate 44.1 kHz, stereo, 16 bit quantisation
in uncompressed, PCM coded WAV-files) is used as described by Kraetzer? et. al to provide for comparability
of the results in regard to the detection performance. This set of test files is in the following denoted with
TestFiles = 389 files.

As shown in figure 2 from both sets of test files modified sets TestFiles* = TestFiles U TestFiles™ (where
TestFiles™ is the result of completely marking Test Files with A;) are generated for each A;. This results in one
long file* and one 389 files* for each A;. For each TestF'iles* the output of AAST’s feature extraction process
is divided by the user defined ratio s¢,:s¢ (the ratios 64:16, 400:2200 and 2200:400 are chosen for the tests in this
work) into two disjoint subsets set_train and set_test (with s, = sizeof(set_train) and s;. = sizeof (set_test)).
The subset set_train (which contains an equal number of feature vectors originating from original and marked
audio material as well as a number of s, vectors from each file in TestFliles) is then used to train the classification
device used for the classification of the subset set_test.

Marked by A; TostFilest Jeature comp. set train
eares by AAST set of fecture
TestFiles TestFiles*
vectors ™
set_fest

Figure 2: Generation of the two sets for training and testing

3.1.3. Classification Devices

For the classification in the intra-window evaluations the libsym SVM (support vector machine) package by
Chih-Chung Chang and Chih-Jen Lin?* was used. Due to reasons of computational complexity we decided not
to change the SVM parameters (y and ¢ as well as the SVM kernel chosen (RBF) are left to default) for the
tests performed. This set of SVM parameters as well as the SVM chosen (libsvm) is denoted in the following by
SV Mmode = de fault.

For the inter-window evaluations the x? test included into AAST’s post-processing module was used. Its results
are subsequently analysed manually.



3.2. Test procedure

As an initial step all required sets of test files (TestFiles*) are generated as described in section 3.1.2. After
this step the four modules of the AAST described in section 2 are used to generate the statistical data and
classifications required for the evaluation of the test goals.

Pre-processing of the audio/speech data

For the intra-window evaluation the steganalyzer parameters sp are set to sp = (window_size = 1024, overlap =
none). In the inter-window evaluations the window size for the steganalysis process had to be increased to
sp = (window_size = 32768, overlap = none). In preliminary test smaller window sizes did not lead to useful
results for the x? analysis.

Feature extraction from the signal
By using this module the feature vectors are computed from the audio material. For this work we use additionally
to the single features sf, sf € SF the sets of features SF' (SF C SF) defined in table 1.

feature set (SF) | sf or SF in the set

SFstd {Sfeva sfcva Sfentropyv SfLSBmta stSBfl,ypv sfmeana sfmedian}
SFMFCC {Sfmel17 ceey Sfmelc}

SFryrcc {sfmeifrs s Sfmeife}

SFstqumrcc SFgqUSFurce

SFgaurMFcc SFeqaUSFrmrcc

Table 1: Definition of feature sets for evaluation

The maximum possible number of MFCCs and FMFCCs to be computed for audio material with 44.1 kHz
sampling rate is C' = 29.

Post-processing of the resulting feature vectors

For the intra-window evaluations in this step a pre-processing for the SVM application has to be done for each A.
After the feature vectors are computed each is identified as belonging to a original or marked file and the complete
vector field is normalised using the normalisation function of libsym. By dividing for each file in Test Fiiles* the
output of AAST’s feature extraction process by the user defined ratio si.:st. with sy = sizeof(set_train)
and s, = sizeof(set_test) two disjoint subsets of feature vectors (set_train and set_test) are generated. This
guarantees that set_train and set_test contain the same number of feature vectors from original and marked
files. The subset set_train is then used to train with the SVM the model M4, for each A;. This M4, will be
used in the analysis to perform the classification. In the training and testing for this work the SVM parameters
are set as described in section 3.1.3 (SV Mmode = de fault).

For the inter-window evaluation no SVM classification is required. Instead, a inter-window analysis by a x? test
for all sf € SF against three standard distributions (equal, normal and exponential distribution) is performed
here. For this the corresponding post-processing function of AAST is used.

Analysis (classification)

For inter-window analyses the models M4, generated in the previous step are applied to the subset set_test,
returning the detection probability pp,, for A; € A and the parameterisations used. For inter-window test the
output of the x? test is returned.

3.3. Test objectives

From the goals stated above (first: reliable detection of the presence of a given hidden channel constructed with
Ag, within the defined application scenario of VoIP steganography and second: proving the general applicability
of the presented approach and the Mel-cepstral based features in speech and audio steganalysis) the following
test objectives are derived (the basic assumptions, parameters and feature sets are summarised in tables 2 and 3
below):

O; optimising the detection probability pp, for the algorithm used in the VoIP application scenario (Ag,),
assuming the fact that a VoIP communication can be generally modelled as a two channel speech communi-
cation with one non-changing speaker per channel



O4 analysing the inter-window characteristics describing the evolving of the signal marked by Ag, over time by
applying x? testing to the fs (fs € FS)

O3 determining the relevance (for pp, ) of all features fs (fs € FS) for all selected A and fixed sp, SV Mmode
and TestFiles*

O4 determining the influence of the size of the model M4, on pp,, for signals marked by the selected A

O5 determining the gain in pp,,, by fusioning selected fs or F'S (fs € FS; F'S C FS) in the classification process

The test objective Oy is the obvious test goal within the focus of this work. A high pp, is proving the usefulness
of applying steganalysis to VoIP channels.

The second test objective briefly evaluates the possibilities for inter-window analysis on Ag, using the features
sf € SF. Test objectives O3, Oy and Os are aimed at determining the overall quality of our steganalysis
approach and the features used on a larger set of algorithms A. The fitness in steganalysis for all features as
well as the statistical transparency of the considered watermarking algorithms with regards to these features is
observed. Special attention is paid in these evaluations to the quality of the MFCCs and FMFCCs as features
for steganalysis.

In particular the test objectives O4 and Os are formulated to address the impact of the size of the model (in
feature vector computed per file in T'estFiiles*) on the classification and the gain on pp, by feature fusion.

To provide a reasonable sequence for the presentation of the research results, the test objectives derived from
the goals are ordered in a way to move from the most specific to a more general case. In the tests performed the
class of audio material used as a cover and the kind of energy spreading used by the steganographic algorithm is
first considered according to the application scenario identified in section 1 and then in a larger scope to identify
possible constraints to the applicability of this method.

Summarising sections 2 and 3, tables 2 and 3 list the basic assumptions, parameters and feature sets used in the
evaluation of the test objectives O; to Os .

Test objective | basic assumption | algorithms tested | type of analysis

O VoIP steganalysis S1 intra-window (SVM)

(o2} VoIP steganalysis S1 inter-window (x2)

O3 audio steganalysis VA; € A intra-window (SVM)

Oy audio steganalysis VA; € A intra-window (SVM)

Os audio steganalysis VA; € A intra-window (SVM)

Table 2: Assumptions made in the evaluation of the test objectives O1 to Os

Test objective sp TestFiles™ StriSte feature sets
O, window-size = 1024 long file* 400:2200 and 2200:400 V SF defined in table 1
(2 window_size = 32768 | longfile* n.d. (not defined) Vsf €SF
O3 window_size = 1024 389 files* 64:16 Vsf € SF
Oy window_size = 1024 389files™, longfile* 64:16, 400:2200 and 2200:400 Vsf €SF
Os window_size = 1024 389 files*, longfile* 64:16, 400:2200 and 2200:400 | V SF defined in table 1

Table 3: Parameters and features used in the evaluation of the test objectives O1 to Os

4. TEST RESULTS

This section describes the results for the test objectives O; to O5. The results presented here are summarised
from a far larger set of test results, which is provided in full detail as additional material on http://wwwiti.
cs.uni-magdeburg.de/~kraetzer/publications.htm. For improved readability all lines are removed from the
following tables which do not carry at least one result above pp, = 52% (which is considered in this work to
be the lower boundary for discriminating features; we assume that detection probabilities above 50 % and below
52 % might still be a result of a random classification on a non-discriminating feature). Additionally all results
above pp, = 52% are marked italic.

Test objective O; (optimisation of ppg, ):

Table 4 shows the relevance of single features on the PDs, for two different ratios of sy-:s1. (400:2200 and
2200:400). The highest result in this test is found with ppg = 74.375% at the shown parameterisation for the
feature sfrsp,,, and Si:sie = 2200:400. This table also shows a higher average result for the FMFCCs when
comparing them with their MFCC counterparts.



feature St = 400; st = 2200 St = 2200; st = 400 feature St = 400; st = 2200 St = 2200; ste = 400
Sfmelg 53.7955 53.375 Sfmelfiy 52.75 52.625
Sfmelg 51.9091 52 Sfmelfis 52.7273 52.375
Sfmelqo 52.6136 51 Sfmelfyis 53.6591 57
Sfmelys 51.9091 52.125 Sfmelfig 52.4545 51.875
Sfmelqy 51.4545 52.25 S fmel foq 54.0227 53.5
Sfmelqg 52 51.125 Sfmelfoy 52 54.5
Sfmelqg 52.8182 51.75 Sfmelfoo 53.1818 53.5
Sfmelgy 54.1136 54 Sfmelfos 57.3864 57.125
Sfmelos 56.8864 56.125 Sfmelfoy 50.75 52.625
Sfmelos 58.25 58 Sfmelfos 58.7273 57.875
Sfmeloy 51.9091 52.375 Sfmelfag 54.7045 54.625
Sfmelos 52.4091 52.75 Sfmelfor 56.8409 56.5
Sfmelor 52.4318 52.75 Sfmelfog 51.6364 52.75
Sfmelog 54.8636 56.125 stSBf”p 54.9545 69.125
Sfmelfs 52.5227 53.125 SfLSBLg: 74.1818 74.375

Table 4: pp for all sf € SF where ppg, < 52%

Table 5 shows the impact of selected feature fusions on PDs, for the same two ratios of sy,:5; used above.
Perfect results with pp s = 100% can be found at the shown parameterisation for SFryroc and SFgqurmroc
at $4-:8.0 = 2200:400. Since SFryroc C SFsaqurmroc the evaluations could be limited to this feature set.

feature set Str = 400; ste = 2200 Str = 2200; s¢e = 400
SFstq 72.8864 77.875

SFyrcc 64.1818 67

SFeiqumFcc 71.7278 79

SFryvrcc 98.2273 100

SFstaurmFoc | 96.9318 100

Table 5: ppg, for selected feature sets F'S C FS

A detection probability pps, = 100% indicates that, by applying the corresponding model to a intra-window
based classification of a vector field generated by AAST using the feature set SFpjroc on audio material of the
same type as longfile* (i.e. speech) and with the same parameterisations as described in section 3, the result
would be a perfect classification into marked and un-marked material.

Test objective O, (inter-window analysis for Ag,):

By applying the inter-window analysis by a x? test for all sf € SF against three standard distributions (equal,
normal and exponential distribution), a maximum distance of 3.5596% between un-marked and marked material
can be found in sfc1f,6 in the case of an assumed exponential distribution. This result is shown in figure 3.
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Figure 3: Normalised distances of all elements of SFstqurmrcc in a X2 test against an assumed exponential
distribution




Generally a larger distance in between un-marked and marked material can be seen in the FMFCCs than in
MFCCs. The average distances computed are 0.88% and of 0.74%.

Test objective O3 (feature relevance for all sf € SF for all A):
As already stated above, pp 4 = 52% is considered in this work to be the lower boundary for discriminating
features. Table 6 shows the pp, for each single feature sf € SF for each A.

Asl AS2 A5‘3 AS4 A55 AWl AW2 AW3 AW4 rel. feat.

Sfmell 50.3615 51.842 52.5466 52.8297 52.635 55.6716 50.371 52.8458 50.233

Sfm,elz 49.9197 51.1583 50.7471 50.6507 51.2516 56.8204 52.75 50.5141 50.2651
Sfme13 50.3856 50.37 50.5302 50.3374 51.0046 54.9325 51.4597 50.4659 50.3856
SmeLG 49.9759 51.0296 50.9078 50.9801 51.2681 53.0045 51.2903 51.1729 50.0964
smeL7 50.1928 50.4987 50.3133 50.49 51.2516 52.83136 51.0806 50.6587 50.6105
Sfmelqy 50.008 50.0724 50.715 50.5382 51.2516 52.1369 51.0161 50.6025 50.0643
Sfmelfq 50.0482 50.5872 51.8959 51.1889 51.6222 74.7349 54.379 50.6507 51.1247
Sfmelfo 50.0482 51.3755 51.1327 51.0684 51.5316 68.7179 56.9032 51.1086 50.482

Sfmelf3 49.9839 50.5068 50.6507 50.6186 50.6094 62.6767 52.1613 50.5864 50.3213
Sfmel,f4 50.3374 51.295 51.1648 51.0122 51.3834 53.9765 50.3871 51.0925 50.233

Sfmclf5 50.2892 51.5927 54.8924 53.125 52.8574 56.74 51.5323 52.2735 50.8435
SmeLfG 50.6186 52.9038 50.49 52.3297 53.2609 50.4579 53.9485 53.2214 50.5463
Sfmng7 50.0321 51.3514 54.8924 51.8557 51.4575 52.0967 52.3468 51.3817 50.8917
Sfmelfg 49.8313 53.0647 54.1934 53.8239 53.6644 54.5549 53.2177 53.91283 49.7831
Sfmelfio 49.9679 50.925 52.0485 52.2418 52.1657 60.0096 51.0645 51.5183 50.3213
Sfmelfiy 50.2008 51.4559 51.4139 52.1208 51.1117 50.9158 54.0645 51.7915 50.5784

Sfmelfio 50.1687 51.1583 52.1771 51.6067 51.5399 59.5859 52.0161 51.5103 50.3535
Sfmelfis 49.8634 52.204 52.884 53.5106 53.2362 65.866 52.621 52.5868 50.3695
Sfmelfia 50.4258 50.555 50.8114 50.6266 51.0375 56.2982 50.6048 50.5945 49.6064
Sfmelfyis 49.8634 51.4559 52.9483 52.6751 52.4292 69.0071 51.4516 52.1449 50.9399
Sfmelfig 49.9036 52.5901 51.8718 52.7796 52.7668 54.5469 51.0645 52.8438 50.1205
Sfmelfiy 49.9197 50.5309 51.2612 51.4219 51.2269 59.8529 51.7097 50.5463 49.7269
Sfmelfig 50.2892 53.0808 53.2857 53.1491 52.9233 52.8877 | 50.7097 53.2616 50.4097
Sfmelfig 50.1044 50.6194 50.5382 50.6909 51.0952 50.5222 58.2177 50.5784 49.7188

Sfmel faq 50.482 50.5792 52.7715 52.6912 51.0952 63.1828 52.0565 52.894 50.3294
Sfmelfay 50.1526 53.0084 51.4862 53.3821 53.2773 51.9682 52.2258 58.117 50.3936
Sfmel foo 50.4017 50.4826 50.5784 50.6346 51.2105 55.2378 51.7258 50.5945 51.0363
Sfmelfos 50.6105 51.4318 50.964 52.9643 52.141 55.9929 50.7258 51.7674 50.5623

Sfmelfoy 50.1767 50.6998 50.8435 50.8515 50.6588 50.8033 52.4194 50.6828 50.474
Sfmelfag 50.2651 52.936 52.6751 583.8017 | 51.2516 53.8641 49.9758 52.1771 50.6587

Sfmel fog 49.992 51.2066 51.8075 51.9441 50.3953 55.1655 49.7177 51.1488 50.3695
sfev 51.1086 50.9009 52.0807 | 51.0765 51.2516 87.1144 50.9758 51.7915 51.4058
Sfentropy 50.1848 51.5042 50.4097 51.1648 51.3916 63.7371 50.7581 51.687 50.241

SfLSBflip 51.5263 52.4051 51.8638 52.2253 52.1574 53.8178 51.5806 52.2092 51.446
SfLSByat 55.4627 57.5129 59.8329 57.6317 60.9848 64.2433 60.7339 57.7121 52.402

HO UFRNFUOFWRFOQORFODFEOOLFE JWN B WOt FENNN - == =N o

Sfew 50 51.0135 50.49 50.8596 51.474 57.1417 50.75 51.0202 50.1526
Table 6: PDa, for all sf € SF where PDy, < 52% (8tr:81.=064:16). Additionally for each line the number of DDy, < 52%
is given.

Table 6 shows the 36 (out of 65) features sf, sf € SF which are relevant for at least one A;. If a pp 4, 1s larger
than 52% it is printed italic to improve readability. The last column of table 6 indicates that out of these 36

features 22 have relevance for 1 to 4 A;, 13 have relevance for 5 to 8 A; and only one (sfrsg,.,,) is relevant for
all A.

Test objective O, (influence model size):

When comparing the ppg in tables 4 and 6 it is obvious that the models applied to obtain the results for table 4
(sizeof (set_train) = 400 and 2200) are better fitting for Ag, than the models derived with fewer feature vectors
(sizeof (set_train) = 64). Generally the results imply that a larger model (in terms of feature vectors computed
per file) is better than a smaller model.

Test objective Os (feature fusion):

The results already seen for the feature fusion for Ag, are confirmed by the results for the fusions on all A
displayed in table 7. For the highest fusion result achieved for every A; is generally better than the best pp "
for any single feature sf, sf € SF.



As, Asgy Asg Asy Asy Awy Aw, Aws, Awy,
SFsia 57. 1015 54.5447 61. 0138 60. 4193 61. 1989 88.8496 61. 8468 59. 3107 54. 9004
SFyroco 51.1086 53.5634 56.0733 58.8901 52.9397 75.6668 57.9597 53.7034 52.8358
SFtauomMEce 54.6674 | 55.9041 | 60.8451 | 59.383 59.7579 | 91.0427 | 68.9194 | 58.0334 | 55.4868
SFravpec 52.9884 | 58.832 64.4441 | 59.8429 | 58.7698 | 95.0755 | 67.6935 | 59.0215 | 57.559,
SFstaUFMFCC 56.4508 59.97483 67.2156 60.6523 60.8696 97.5177 71.629 60.5559 59.5085

Table 7: pp,. for selected feature sets 'S C FS (s¢r:51c=64:16)
5. SUMMARY

The results for the five test objectives defined in section 3.3 show the following: in the intra-window tests for
test objective Oy a prediction rate of ppg, = 100% could be reached for Ag,, even if the intra-window tests for
objective Oz do not lead to useful results for this algorithm. The feature relevance tests for all sf € SF for all
A show that for different A different sf are relevant. Only one feature (sfrsp,,,) is relevant for all A with the
given parameterisations. Regarding the model size (which is equal to the size of set_train) it is implied in the
results from O4 that increasing the number of vectors computed per audio signal might increase the quality of
the model and therefore pp, too. More tests are necessary to substantiate this implication. From the feature
fusion tests for Os it can be seen that the fusion has a positive impact on the detection probability. To reach
optimal results it might be useful to apply a fusion only to SF where each sf € SF is considered relevant for
the A under observation.

Test objective As, As, As, As, Asg Aw, Aw, Aws, Aw,

O1 100% n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Oo 3.56% n.d. n.d. n.d. n.d. n.d. n.d. n.d.

O3 55.4627% 57.5129% 59.8329% 57.6317% 60.9848% 87.1144% 60.7339% 57.7121% 52.402%
Oy 100% n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

Os 57.1015% 59.9743% 67.2156% 60.6523% 61.1989% 97.5177% 71.629% 60.5559% 59.5035 %

Table 8: max(pDAi) computed in the evaluation of test objectives O1 to Os

The maximum values for all pp, computed in the evaluation of test objectives Oy to O are summarised in
table 8. Concluding these figures and the knowledge gained from the tests it can be said that the two test goals
described in section 3: first a reliable detection of a hidden channel constructed using Ag, within the defined
application scenario of VoIP steganography, and second the demonstration of the general applicability of our
approach and the Mel-cepstral based features in speech and audio steganalysis have been successfully reached.

From the findings presented here room for further research can be found considering the following aspects: The
tests from O and O should be applied as well to all other A;, first to review results from long file on a larger scale
(as already mentioned above) and second to further evaluate our approach for inter-window statistical detection.
Furthermore the number of algorithms evaluated should be increased, either by varying the parameters for the A
already considered or by adding new algorithms to the test set. From this we hope to gain information whether
classes of algorithms can be identified. This step would also generate more My, which would be a necessary
input for a intra-window based, automatic audio steganalysis tool. For this also more evaluations on model
quality determination are necessary.

Changes on the global AAST parameters (window_size, overlap, etc) should be evaluated to find for each A;
a Ma, with a pp,, = 100% and the smallest set_train required to maximise the performance of our intra-
window analysis approach. Further research should also be focused on the classification technique used. Other
classification techniques (e.g. kNN-classification) might lead to a easier discrimination approach for different A;.
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