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Melanoma is a malignant tumor arising in melanocytes from the basal layer of the
epidermis and is the fifth most commonly diagnosed cancer in the United States.
Melanoma is aggressive and easily metastasizes, and the survival rate is low.
Nanotechnology-based diagnosis and treatment of melanoma have attracted
increasing attention. Importantly, nano drug delivery systems have the advantages of
increasing drug solubility, enhancing drug stability, prolonging half-life, optimizing
bioavailability, targeting tumors, and minimizing side effects; thus, these systems can
facilitate tumor cytotoxicity to achieve effective treatment of melanoma. In this review, we
discuss current nanosystems used in the diagnosis and treatment of melanoma, including
lipid systems, inorganic nanoparticles, polymeric systems, and natural nanosystems. The
excellent characteristics of novel and effective drug delivery systems provide a basis for
the broad applications of these systems in the diagnosis and treatment of melanoma,
particularly metastatic melanoma.

Keywords: melanoma, nanotechnology, drug delivery, cytotoxicity, metastasis
INTRODUCTION

Epidemiology of Melanoma
Melanoma is a type of malignant tumor derived from melanocytes in the basal layer of the
epidermis. In the past few decades, the incidence of melanoma has increased rapidly in the
developed countries, including the United States, Australia, and Spain, with higher incidence rates
in fair-skinned individuals and older men (1). According to the latest SEER data, there were an
estimated 106,000 new cases of melanoma in the United States in 2021, accounting for 5.6% of all
cancer diagnoses, excluding non-melanoma skin cancer, which has become the fifth most
commonly diagnosed cancer in the United States (2). The incidence of melanoma in Australia
peaked around 2005, and continued decreases are expected owing to improvements in public health
campaigns and the use of sunscreen (3).

In terms of prognosis, melanoma accounts for more than 80% of skin cancer-related deaths,
despite representing a low percentage of total skin cancer cases (2). In the United States, with
improvements in prevention, screening, diagnosis, and treatment (particularly targeted therapies
and immunotherapies) in recent years, the 5-year overall survival rate of patients with melanoma
Abbreviations: DDSs, drug delivery systems; HuIFNb, human interferon B; −Si−O−, silanol; dSiO2, dense silica; MSN,
mesoporous silica; BMSN, biodegradable mesoporous silica; PD-1, programmed cell death-1.
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has increased to more than 93%. Although the 5-year survival
rate of patients with stage I–II disease is 99.4%, those of patients
with stage III and IV disease are 68.0% and 29.8%,
respectively (2).

Subtypes of Melanoma
Melanoma can be divided into many clinical subtypes according
to pathological type and molecular marker expression. Based on
pathological type, melanoma can be divided into four common
subtypes, as follows: superficial diffusion type, nodular type,
malignant melanoma freckles melanoma, and acral freckle-like
melanoma. Rarely, melanoma may also present as epithelioid
type, which shows characteristics of fiber proliferation, as well as
malignant pigmented nevus, balloon sample cells, spindle cells,
and giant pigmented nevus malignant melanoma. The superficial
diffuse type is most common in Caucasians, and acral freckle-like
melanoma is most common in individuals of Asian and African
descent (2).

Many studies have evaluated the relationships between
molecular biological characteristics, clinical histological
characteristics, and gene variations in melanoma in recent
years, and the results have shown that specific types of
melanoma are related to specific gene variations; therefore,
scholars have proposed a new classification method based on
molecular biological characteristics, which is more conducive to
the application of clinical diagnosis and treatment (4–6). The
new classification method can be divided into four basic types:
extremum, mucous, chronic sun damage (CSD), and non-CSD
(including unknown primary lesions). Notably, 28% of patients
with sun damage-related melanoma harbor KIT gene mutations,
whereas 10% harbor BRAF mutations and 5% harbor NRAS
mutations. KIT gene mutations are more common in patients
with acral and mucosal types, followed by BRAF mutations. The
majority of non-CSD types, including trunk melanoma, exhibit
BRAF gene V600E mutations (60%) or NRAS mutations (20%).

Diagnosis of Melanoma
Similar to other diseases, typical clinical manifestations, physical
examinations, imaging, and laboratory examinations (e.g., lactate
dehydrogenase measurement) are commonly used for the diagnosis
of melanoma (7, 8). The gold standard for melanoma diagnosis is
pathological examination including immunohistochemical
detection, which is of great value for evaluating melanoma stage,
treatment, and prognosis (6). Immunohistochemistry is mainly
used to assist in the identification of melanoma in pathological
examination; for example, S-100, HMB-45, and vimentin are
sensitive indicators for the specific diagnosis of melanoma (9, 10).

Treatment of Melanoma
Current treatment methods for melanoma mainly include surgical
treatment, adjuvant therapy, radiotherapy, photodynamic therapy,
systemic therapy, and transfer to mucosal melanoma treatment (6,
11) (Figure 1). Common surgical treatments are biopsy, enlarged
resection, sentinel lymph node biopsy, lymph node dissection, and
in-transit metastasis (for patients with stage III disease) (6).
Adjuvant therapy for melanoma is mainly based on the clinical
stage and risk grade of patients (12). At present, although there is a
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broad consensus on appropriate adjuvant therapy for low-,
medium-, and high-risk patients, there is still controversy
regarding adjuvant therapy for very high-risk patients. Specific
types of melanoma should be treated differently and individually.
For example, adjuvant therapy with interferon treatment is
important for high-risk patients. Radiotherapy for melanoma can
be divided into adjuvant radiotherapy and palliative radiotherapy.
Moreover, in patients with advanced melanoma, which is associated
with a poor prognosis and a lack of effective treatments, systemic
treatment based on internal medicine is typically applied. In recent
years, breakthroughs in individualized targeted therapies and
immunotherapies have led to improved outcomes in patients with
advanced melanoma (13–16).

Because most targeted drugs are not widely used in the clinical
setting in some countries, chemotherapy drugs, such as dacarbazine,
temozolomide, paclitaxel, and carboplatin, are essential (17–22).
Combined treatments have also been developed for mucosal
melanomas originating from the mucous membranes of the head
and neck, digestive tract, and genitourinary tract.
NANOTECHNOLOGY

Great progress has been made in the field of nanotechnology in
recent decades, particularly with regard to the application of
nanotechnology in medicine (23, 24). Nano-agents provide novel
strategies for the treatment of many diseases owing to their unique
characteristics of improving drug delivery. In the treatment of
cancer, for example, conventional chemotherapy drugs do not
specifically target the tumor and can also affect the body’s normal
cells, resulting in various complications and seriously affecting
patient’s quality of life. By contrast, nanotechnology can be used
FIGURE 1 | Therapeutic strategies for melanoma.
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to achieve targeted drug delivery, improve pharmacokinetics and
bioavailability, and overcome these barriers (25–28). Several
different types of nano-agents have been used in clinical studies,
including drug delivery, vaccine development, immunotherapy, and
imaging diagnosis. However, the full potential of nanotechnology in
clinical disease applications is far from being realized (29–31).

The most important approach involving nanomaterials is
nanocarrier drug delivery systems (DDSs), which can transport
active molecules, such as drugs, to the corresponding target in
the body using nanoparticles as carriers. Compared with free
drugs, DDSs are more specific and can greatly improve the
therapeutic effect of drugs, while reducing potential side effects
(32). The application of nano-DDSs in cancer treatment mainly
involves using nanotechnology and materials to deliver drugs to
tumor cells by passive or active targeting, thereby improving the
therapeutic effects of drugs. Passive targeting typically involves
the enhanced permeability and retention effect, whereas active
targeting applies specific recognition and targeting of tumor-
associated antigens by coupling monoclonal antibodies and
peptides on the outer surface of DDSs (33–35).

Nanotechnology and Melanoma
Melanoma is aggressive and easily metastatic; therefore, survival
rates are low. The clinical treatment of melanoma includes a variety
of treatment methods, such as drugs, surgery, radiotherapy. To
improve the efficacy of drugs, various new multitarget drugs are
often used in combination in the clinical setting. Nanotechnology-
based DDSs, such as nanoliposomes, can play key roles in the
clinical treatment of advanced melanoma because nanomaterials
can target drug delivery at the cellular level by overcoming biological
barriers in the body (32, 36, 37).

Nanomaterials have been used as DDSs for several types of
cancer, and nanotechnology-based diagnosis and treatment of
melanoma have also been proposed and investigated. First, as
described above, because of the size and surface characteristics of
nanomaterials, targeted drugs wrapped or loaded with
nanomaterials easily cross the biological barrier and can be
delivered specifically to melanoma cells, where they can exert
their cytotoxic effects. Second, nanomaterials can reduce the side
effects of off-target tissue toxicity and improve the efficacy of
drugs. In addition, nanosystems may prevent the biodegradation
of loaded drugs by the body, reduce drug removal, and prolong
the half-life of the drug, allowing for dose reductions (38).

Various nanosystems, including lipid systems, inorganic
nanoparticles, polymeric systems, and natural nanosystems, have
been used for the diagnosis and treatment of melanoma (37, 39).
Forexample, liposomes, solid lipidnanoparticles, andnanoemulsions
have been developed as lipid nanosystems, whereas silica
nanoparticles, gold nanoparticles, copper nanoparticles, and
nanotubes have been used as common inorganic nanoparticle
systems. Polymerization systems include polymeric micelles,
nanospheres, polymeric nanoparticles, hydrogels, and dendritic
macromolecules, andexosomesarea typeofnaturalnanosystem(36).

Liposome Systems
Among various nanoparticle platforms, lipid systems deliver
excellent performance in terms of physical stability, controlled
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release, and biocompatibility. Moreover, such lipid systems are
usually biodegradable, show low side effects, and have relatively
high physical stability. Therefore, lipid systems, including
liposomes, solid lipid nanoparticles, and nanoemulsions, have
been extensively studied and applied to clinical diseases.

Liposomes have been used as a type of double nano DDS in
cancer treatment owing to their good pharmacokinetic
characteristics. Furthermore, liposomes can significantly increase
the circulation half-life of drugs and have been shown to enhance
the efficacy of drugs in melanoma, particularly for drugs targeting
the cell cycle, such as paclitaxel (40, 41). Bedikian et al. reported
that the sheath package corpuscle (composed of sphingomyelin/
cholesterol) of vincristine liposomes increased circulating half-life,
accumulated at the tumor site, and increased therapeutic efficacy,
enabling improved outcomes without altering drug dosage (40).
Additionally, Matsumoto et al. also showed that cationic
liposomes containing the human interferon B (HuIFNb) gene
(IAB-1) showed higher antitumor activity than the treatment of
melanoma with HuIFNb protein (42).

In addition, liposomes may have applications in the
development of vaccines to treat and prevent melanoma.
Gargett et al. studied a multicomponent dendritic cell-targeted
vaccine, Lipovaxin-MM, which is administered intravenously for
the treatment of metastatic melanoma (43). During the 12-week
study period, Lipovaxin-MM was confirmed to be well tolerated
without obvious immunogenicity and clinical toxicity, and the
preliminary results suggested that Lipovaxin-MM may have
applications as an immunotherapy in melanoma. Cancer
vaccines, which have been studied extensively in basic and
clinical trials, are characterized by the use of subunit antigens,
which have relatively simple chemical compositions,
manufacturing processes, and storage requirements; however,
the tumor microenvironment is complex, particularly in
advanced tumor models, and additional strategies may be
required to achieve curative responses (44–46).

Inorganic Nanoparticles
Inorganic nanoparticles, including silica nanoparticles, gold
nanoparticles, copper nanoparticles, and nanotubes, have good
biocompatibility and enable simultaneous imaging and drug
delivery (47, 48). However, these nanoparticles may not permit
specific targeting to the affected region and generally need to be
coupled with other targeting ligands. As an example, titanium
dioxide is a weak dark compatible nanocrystal material with
photocatalytic activity. The photoactivity of neat TiO2 is limited
to the ultraviolet region, which limits its application in
photodynamic therapy. Kozinska et al. applied functionalized
fullerenes and surface-modified TiO2 as a photosensitizer for
melanoma treatment and demonstrated that novel inorganic
nanoparticles can achieve photodynamic killing of melanoma
cells; this novel inorganic TiO2 nanoparticle complex was shown
to have a longer retention time in vivo and to be nontoxic and
stable under conditions without light irradiation (47). Ferreira
et al. also evaluated a mouse melanoma model in which
europium (III)-yttrium vanadate nanoparticles were
functionalized with 3‐chloropropyl-trimethoxysilane with folic
acid; compared with cisplatin alone, cisplatin nanoparticles
March 2022 | Volume 12 | Article 858185
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modified with or without folic acid exhibited strong antitumor
effects (49). Sapino et al. also constructed an inorganic
nanoparticle system composed of aminopropyl-functionalized
mesoporous silica nanoparticles (NH2-MSNs) as a topical carrier
system for quercetin delivery and studied the effects of the topical
carrier system on the proliferation of JR8 humanmelanoma cells;
these NH2-MSNs were found to have strong antiproliferative
effects in melanoma cells (50).

In addition, through advances in coordination chemistry, the
abundant silanol groups (−Si−O−) on the surface of silica or in
mesoporous channels have been directly used for radiolabeling of
nonchelating compounds and easily modified with appropriate
chelating compounds for chelate-based labeling. SiO2-based
nano-inorganic material systems, including dense silica
(dSiO2), mesoporous silica (MSN), biodegradable MSN
(bMSN), and hollow MSN nanoparticles, have also been used
in positron emission tomography imaging systems for patients
with metastatic melanoma, providing a highly sensitive,
noninvasive, and quantitative readout of organ/tissue
distribution, pharmacokinetics, and tumor targeting efficiency.
Thus, SiO2-based inorganic nanomaterials may have promising
applications in the diagnosis of melanoma (51).

Polymeric Systems
Polymeric systems include polymeric micelles and nanospheres,
polymeric nanoparticles, hydrogels, and dendrimers. Zou et al.
provided a unique and secure platform for theranostic aggregates
to construct a co-self-assembly of poly(ethylene glycol)-b-poly
(dithiolane trimethylene carbonate-co-iodinated trimethylene
carbonate) (PEG-P[DTC-IC]) and cRGD-PEG-P(DTC-IC) block
copolymers as intelligent polymer antioxidants. Compared with that
of iodinated nanosystems, the synthesis process of these polymeric
nanosystems is simpler and overcomes the limitations of high
viscosity and few applications. Similar to liposome systems,
polymeric nanosystems can not only significantly enhance the
computed tomography imaging of tumors but also mediate
effective targeted chemotherapy for melanoma (52). Wang et al.
constructed a cRGD-targeted polymeric oncolytic peptide LTX-315
and CpG adjuvant to combine with an anti-programmed cell death-
1 (PD-1) antibody system; this approach provided strong, long-term
immunotherapy for mouse malignant B16F10 melanoma and
established a novel class of durable immunotherapy for hard-to-
target and metastatic tumors, including melanoma (53). Although
polymeric systems are diverse and have excellent nanodrug delivery
properties, like other nanoplatforms, some polymeric nanoparticle
systems exhibit poor physical stability and high toxicity, which
limits their translation to the clinical setting.

Natural Nanosystems
Exosomes are nanovesicles containing various biomolecules.
Exosomes are produced by cells through exocytosis and are
taken up by target cells. They are involved in physiological and
pathological processes and can transmit biological signals
between local and distant cells. Therefore, exosomes can be
modified as drug carriers for therapeutic intervention in diseases.

Exosomes can be used as natural nano DDSs owing to their
unique characteristics (54–57). Exosomes are cellular vesicles
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composed of double membranes and have diameters ranging
from 30 to 150 nm. Additionally, these vesicles can carry various
biomolecules, including proteins, lipids, and nucleic acids, can
pass through cell membranes and the blood–brain barrier, and
can target specific cells (58–60). Circulating exosomes can be
detected in blood samples, providing a promising diagnostic
strategy for melanoma. In addition, exosomes have been
evaluated as vehicles for delivery of therapeutic vaccines in
melanoma (61). Monitoring exosomal programmed death
ligand-1 (PD-L1) levels may enable prediction of the response
to immunotherapy (60, 61). Upregulation of PD-L1 enhances
interactions with the PD-1 receptor on T cells and triggers an
immune checkpoint reaction, thereby allowing escape of
immune monitoring (62, 63). However, in metastatic
melanoma, melanoma cells typically express PD-L1, and the
addition of interferon-g stimulation increases exosomal PD-L1
levels; this results in the inhibition of CD8 T-cell function and
promotes tumor growth, which explains the resistance to PD-1
and treatment failure observed in many patients. Accordingly,
tumor PD-L1 has been used as a predictive biomarker of clinical
response (64).
CONCLUSIONS

Current therapy for melanoma has reached a limit of clinical
responses. Nanotechnology has enabled the development of
smaller, safer, and more accurate DDSs, and an increasing
number of melanoma drugs are being packaged into
nanocapsules as novel treatment systems. Some conventional
melanoma drugs have low solubility in water buffer systems,
poor bioavailability, rapid metabolism, and low stability, limiting
their clinical potential and therapeutic use. Compared with
traditional treatment methods, nano-encapsulation of drugs
into the body can result in increased solubility, enhanced drug
stability, improved epithelial permeability and bioavailability,
longer half-life, increased tumor targeting, and minimal side
effects. Thus, nano DDSs are expected to improve the therapeutic
efficacy of the delivered drugs in patients with melanoma.

Future development challenges mainly focus on further
understanding of the mechanisms that make nanosystems
more effective than traditional drug formulations for
melanoma. Overall, nano DDSs show good histocompatibility,
enhanced drug targeting, low toxicity, and many other
excellent characteristics, conferring broad applications
in the diagnosis and treatment of melanoma, particularly
metastatic melanoma.
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