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Abstract: Automatic melanoma detection from dermoscopic skin samples is a very challenging task.
However, using a deep learning approach as a machine vision tool can overcome some challenges.
This research proposes an automated melanoma classifier based on a deep convolutional neural
network (DCNN) to accurately classify malignant vs. benign melanoma. The structure of the DCNN
is carefully designed by organizing many layers that are responsible for extracting low to high-level
features of the skin images in a unique fashion. Other vital criteria in the design of DCNN are the
selection of multiple filters and their sizes, employing proper deep learning layers, choosing the depth
of the network, and optimizing hyperparameters. The primary objective is to propose a lightweight
and less complex DCNN than other state-of-the-art methods to classify melanoma skin cancer with
high efficiency. For this study, dermoscopic images containing different cancer samples were obtained
from the International Skin Imaging Collaboration datastores (ISIC 2016, ISIC2017, and ISIC 2020).
We evaluated the model based on accuracy, precision, recall, specificity, and F1-score. The proposed
DCNN classifier achieved accuracies of 81.41%, 88.23%, and 90.42% on the ISIC 2016, 2017, and 2020
datasets, respectively, demonstrating high performance compared with the other state-of-the-art
networks. Therefore, this proposed approach could provide a less complex and advanced framework
for automating the melanoma diagnostic process and expediting the identification process to save
a life.

Keywords: skin cancer; melanoma; classification; deep convolutional neural networks

1. Introduction

Skin cancer is an invasive disease caused by the abnormal growth of melanocyte
cells in the body, which tend to replicate and spread through lymph nodes to destroy
surrounding tissues [1]. The damaged cells develop a mole on the external skin layer,
categorized as malignant or benign, whereas melanoma is considered cancer because
it is more dangerous and life-threatening. Skin cancer is a widespread and dangerous
disease globally, with 300,000 newly diagnosed cases and over 1 million deaths each month
worldwide in 2018 [2]. Melanoma is more prevalent globally, becoming the 19th most
common disease with the highest mortality rate [2]. As per the statistics of the International
Agency for Research for Cancer (IARC) [3], 19.3 million new cases were diagnosed with
cancer, with a mortality rate of about 10 million people in 2020. Moreover, the number
of new cases found in the United States were 100,350, and the number of people who died in
2020 were approximately 6850. According to the American Cancer Society [4], 106,110 new
melanoma cases were predicted to be diagnosed (nearly 62,260 in men and 43,850 in women)
and about 7180 melanoma patients were estimated to die in 2021. Some environmental and
genetic factors such as fair complexion, pollution, family history, and sunburn may lead to
the formation of skin cancer. The control over mortality rate due to cancer is challenging;
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however, the latest development in image processing and artificial intelligence approaches
may help diagnose melanoma early as early detection and prognosis can increase the
survival rate. Moreover, computer-aided diagnostic (CAD) tools save time and effort
compared with existing clinical approaches.

During diagnosis, an expert dermatologist performs a series of steps, starting with a
visual inspection of a skin lesion by the naked eye; then dermoscopy, which is a magnifying
lens to view lesion patterns in detail; and finally, a biopsy [5]. These conventional methods
are time-consuming, expensive, and laborious. Achieving an accurate diagnosis is entirely
subjective depending upon the expert’s skillset, resulting in variations in their predictions.
Many experts analyze lesions based on the ABCDE [6] metrics, which define the asymmetry,
border, color, diameter above 6 mm, and evolution over time. However, it requires intensive
knowledge and proficiency that might not be available in clinical settings. It is found that
the accuracy of correctly identifying skin lesions by a dermatologist is less than 80% [7].
Additionally, there is a limited number of expert dermatologists available globally in the
health sector.

To diagnose a skin lesion at the earliest stage and to solve the complexities men-
tioned above, comprehensive research solutions have been proposed in the literature using
computer vision algorithms [8]. The classification methods vary, including decision trees
(DT) [9], support vector machines (SVM) [10], and artificial neural networks (ANN) [11].
A detailed review of these methods is explained in the paper in Reference [12]. Many
machine learning methods have constraints in processing data, such as requiring high
contrast, noise-free, and cleaned images that do not apply in the case of skin cancer data.
Moreover, skin classification depends on features such as color, texture, and structural
features. The classification may lead to erroneous results with poor feature sets as skin
lesions consist of a high degree of inter-class homogeneity and intra-class heterogene-
ity [13]. The traditional approaches are parametric and require training data to be normally
distributed, whereas skin cancer data is uncontrolled. Each lesion consists of a different
pattern; thus, these methods are inadequate. For these reasons, deep learning techniques in
skin classification are very effective in assisting dermatologists in diagnosing lesions with
high accuracy. Several detailed surveys elaborate on the application of deep learning in
medical applications [14].

There are mainly three types of skin cancer: basal, squamous, and melanocyte [15].
The most commonly occurring type of cancer, basal cell carcinoma, grows very slowly and
does not spread to other parts of the body. It tends to recur, so eradicating it from the
body is important. Squamous cell carcinoma is another type of skin cancer that is more
likely to spread to other body parts than basal cell carcinoma and penetrates deeper into
the skin. Melanocytes, the cells involved in the last type, produce melanin when exposed
to sunlight, giving the skin its brown or tan color. The melanin in these cells protects the
skin from sunlight, but if it accumulates in the body, it forms cancerous moles, also known
as melanoma cancer. Based on their tendency to cause minimal damage to surrounding
tissues, basal and squamous cancers are considered benign, whereas melanocyte-based
cancers are considered malignant and can be life-threatening. The most popular datasets
employed in this work is from the International Skin Imaging Collaboration (ISIC) [16],
which contains different skin lesions. There are mainly four types of lesions (see Figure 1)
in the ISIC 2016, 2017, and 2020 data: (a) Nevus (NV), (b) Seborrheic keratosis (SK), (c)
Benign (BEN) (d) Melanoma (MEL). NV cancer has distinct edges that primarily appear
on the arms, legs, and trunk in pink, brown, and tan colors. Next is the SK, of which
its non-cancerous appearance is waxy brown, black, or tan colors. Another non-cancerous
lesion type is BEN, which does not invade surrounding tissues or spread into the body.
Both NV and SK lesion types are considered BEN. Lastly, MEL is a large brown mole with
dark speckles; it sometimes bleeds or changes color over time. It is a dangerous type of
cancer that quickly spreads to other organs of the body. MEL is further divided into many
types: acral, nodular, superficial, and lentigo. This research aims to identify and distinguish
between MEL and BEN cancers.
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Figure 1. Different types of skin lesions: (a) MEL, (b) BEN, (c) NV, and (d) SK.

Although deep learning approaches are highly effective in processing complex data,
skin classification is still a challenging task due to a few reasons:

(a) Skin lesion classes in given datasets are highly imbalanced. For example, NV contains
more samples than SK and MEL in the ISIC 2017 set, and BEN samples are more
common than MEL in the ISIC 2020 set.

(b) Lesions contain noisy artefacts such as hairlines, gel bubbles, ruler marks, and poor
contrast.

(c) Lesion types are difficult to distinguish due to high intra-class differences and inter-
class similarities.

Moreover, there have been a few challenges during the design of classification ap-
proaches, such as (a) achieving a high prediction rate despite the class imbalance problem,
(b) less complex and lightweight network architectures, and (c) low inference time. Popular
deep learning pre-trained networks cannot be applied to skin cancer problems in general,
as those networks are trained on different datasets such as ImageNet. Hence, the proposed
research aims to develop, implement, and evaluate a deep learning-based, highly efficient
network for melanoma vs. benign classification. The contributions of the proposed work
are as follows:

• A new design of the DCNN model for classifying skin lesions as malignant or benign
on dermoscopic images is proposed by building multiple connected blocks to allow
for large feature information to flow directly through the network.

• The depth of the network is optimized by conducting several experimental trials on
the validation set by repeating sub-blocks with some specific ratio to form a deep
neural network.

• Each block of the network uses different parameters such as the number of kernels,
filter size, and stride to extract low- and high-level feature information from lesions.

• The proposed model achieves higher performance than other state-of-the-art methods
on the adopted ISIC datasets, with fewer filters and learnable parameters. Thus, it is a
lightweight network for classifying a large skin cancer dataset.

2. Related Work

Skin cancer is prevalent around the world, becoming the cause of a large number of
deaths each year [17]. It is an aggressive disease; thus, it is vital to perform early detection
to save lives. Clinical experts visually observe lesions based on the ABCDE [6] criteria
followed by some histopathological tests. For automation of the classification process,
several artificial intelligence-based algorithms have been proposed that comprise the
standard phases such as preprocessing, feature extraction, segmentation, and classification.
Many classification approaches [18,19] were highly dependent upon handcrafted feature
sets, which have low generalization capability for dermoscopic skin images due to a deep
understanding of biological patterns. Lesions have a substantial visual resemblance and
are highly correlated because of their similarity in colors, shape, and size leading to poor
feature information [20]. Thus, handcrafted feature-based approaches are not suitable for
skin classification problems. The advantage of deep learning techniques is that they can
be directly applied to classification without any preprocessing phase. Deep networks are
efficient at calculating detailed features to perform accurate lesion classification compared
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with shallow networks. The first breakthrough of applying DCNN on skin cancer came
from Esteva et al. [5] used a pre-trained Inceptionv3 model on 129,450 clinical images to
perform classification in 2032 different diseases. Their network was compared against 21
board-certified medical experts to perform binary classification between the two deadliest
skin cancers: malignant and nevus. Experts testified that the proposed network could
identify skin cancer with high performance. Another work by Y. Li et al. [21] proposed a
lesion index calculation unit (LICU) that computes heat maps to filter coarse classification
outcomes from the FCRN model. This unit measures the contribution of each pixel from
the segmented map towards classification. The framework was evaluated on the ISIC 2017
dataset. J. Zhang et al. [22] proposed a CNN implementing an attention residual learning
(ARL) for skin classification consisting of multiple ARL blocks followed by global average
pooling and classification layers.

The network explored the intrinsic self-attention ability of a deep convolutional neural
network (DCNN). Each ARL block uses a residual learning mechanism and generates atten-
tion maps at lower layers to improve classification performance. Iqbal et al. [23] designed
a DCNN model for multi-class classification of a skin lesion on the ISIC 2017-19 datasets.
Their model consists of multiple blocks connected to pass feature information from top
to bottom of the network utilizing 68 convolutional layers. Similarly, Jinnai et al. [24] em-
ployed faster region-based CNN (FRCNN) to classify melanoma from 5846 clinical images
rather than dermoscopy. They manually created bounding boxes for lesion regions to
prepare the training dataset. The FRCNN outperformed ten board-certified dermatologists
and ten dermatology trainees, providing higher accuracy.

An investigation on increasing the performance of the model in terms of the area
under the curve (AUC), accuracy, and other metrics by creating ensemble CNN models
was proposed by Barata et al. [18]. The output from the classification layers of four dif-
ferent networks, such as GoogleNet, AlexNet, VGG, and ResNet, was fused to form an
ensemble model for three class classifications. Jordan Yap et al. [25] proposed a method
that considers several image modalities, including patient’s metadata, to improve the
classification results. The ResNet50 network was differently applied over dermoscopic
and macroscopic images, and their features were fused to perform the final classification.
Their multimodel classifier outperformed the basic model using only macroscopy with an
AUC of 0.866. Similarly, Gessert et al. [26] presented an ensemble model designed from
EfficientNets, SENet, and ResNeXt WSL to perform a multi-class classification task on the
ISIC 2019 dataset. They applied a cropping strategy on images to deal with multimodel
input resolutions. Moreover, a loss balancing approach was implemented to tackle imbal-
anced datasets. Srinivasu et al. [27] presented a DCNN based on MobileNetV2 and Long
Short-Term Memory (LSTM) for lesion classification on the HAM10000 dataset. Compared
with other CNN models, MobileNetV2 offered advantages in terms of a low computational
cost, a reduced network size, and compatibility with mobile devices. The LSTM network
retained timestamp information about the features calculated by MobileNetV2. The use of
LSTM with MobileNetV2 enhanced the system accuracy to 85.34%.

Another method was a Self-supervised Topology Clustering Network (STCN) given
by Wang. et al. [28] to classify unlabelled data without requiring any prior class information.
The clustering algorithm was used to organize anonymous data into clusters by maximizing
modularity. Features learned at different levels of variations such as illumination, point of
view, and background were considered by the STCN model. Some studies [29,30] utilized
pre-trained networks such as Xception, AlexNet, VGGNet, and ResNet using transfer
learning and compared their performance. The fully connected layers were changed to
use existing networks for skin lesion classification, and hyperparameters are required to
fine-tune to achieve the best performance. The systematic review articles in [14,31] can be
referred for detailed insights of deep learning approaches used for skin cancer classification.
The detailed survey article in [32] explained the possible solution to automatic skin cancer
detection system, considered various challenges of skin cancer problems, and provided
research directions to be considered for this problem.
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3. Materials and Methods
3.1. Datasets and Splitting

The dermoscopic datasets were obtained from the ISIC 2016 [33], ISIC 2017 [34],
and 2020 [35] challenges. The original ISIC 2016 and 2017 datasets contained fewer samples.
For example, the ISIC 2016 contained 900 samples with 727 BEN and 173 MEL samples,
and thte ISIC contained a total of 2000 samples with 374 MEL, 254 BKL, and 1372 NV
samples. The classes in these datasets were highly unbalanced, which can degrade the
model’s performance. Therefore, additional samples in each class were added from the ISIC
archive [16]. In the new distribution of samples among datasets, there are 1719 samples
with two lesion types, BEN and MEL, in the ISIC 2016 dataset. In the ISIC 2017 dataset,
there are 4172 lesion samples with different lesions types, such as SK, MEL, and NV. The SK
and NV lesions are benign cancer growths; thus, these two types are considered under
the BEN lesion type. Furthermore, the total number of images taken in the ISIC 2020 set
was 10,070, with two different lesion labels: MEL and BEN. The three datasets ISIC 2016,
ISIC 2017, and ISIC 2020 were divided into three subsets: training, validation, and test sets
(see Tables 1–3). For all of the datasets, 70% of total samples were taken in the training set,
10% was taken in the validation set, and the remaining 20% was provided for the test set.
The proportion of samples in the training set was kept higher to provide enough training
to the network. The network’s performance was monitored based on validation data for
hyper-tuning the parameters. Lastly, the test data were used to evaluate the network’s
performance. An additional dataset named PH2 [36] from the Dermatology Service of
Hospital Pedro Hispano, Matosinhos, Portugal, is employed. This set contained a total of
200 samples, with BEN and MEL lesion types.

Table 1. The ISIC 2016 data distribution among training, validation, and test sets.

Classes Training Samples Augmented Training Validation Samples Test Samples Total Samples
70% Samples 10% 20% 100%

MEL 512 692 98 146 756
BEN 692 692 73 198 963

Total 1200 1384 171 344 1719

Table 2. The ISIC 2017 data distribution among training, validation, and test sets.

Classes Training Samples Augmented Training Validation Samples Test Samples Total Samples
70% Samples 10% 20% 100%

MEL 1214 1708 173 347 1732
BEN 1708 1708 244 488 2440

Total 2922 3416 417 835 4172

Table 3. The ISIC 2020 data distribution among training, validation, and test sets.

Classes Training Samples Augmented Training Validation Samples Test Samples Total Samples
70% Samples 10% 20% 100%

MEL 3479 3570 497 994 4970
BEN 3570 3570 510 1020 5100

Total 7049 7140 1007 2014 10070

3.2. Data Normalization

For the ISIC 2016 and 2017 datasets, additional lesion samples were added to balance
the distribution. Some skin samples had similar lesion structures but different names,
making them difficult to distinguish. Thus, data normalization was applied to eliminate
data redundancy and operations such as updation and deletion of anomalies. To remove
data duplicacy, first, the image was converted to grayscale as I(x, y) to I′(x, y), and then,
its histogram was calculated from the images:

h1 = histogram(I(x, y)), h2 = histogram(I′(x, y)) (1)
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Afterwards, the mean of each image was determined using the average function:

h1 = mean(h1), h2 = mean(h2) (2)

The correlation index between images was calculated using following equation and
was compared. If the correlation between two images was greater than 0.99, the images
were considered identical and one copy was discarded. Tables 1 and 2 show the final
distributions of samples used for the experiments after elimination of redundant data.

Correlation =
∑x ∑y (I(x, y)− h1)(I′(x, y)− h2)√(

∑x ∑y (I(x, y)− h1)2
)(

∑x ∑y (I′(x, y)− h2)2
) (3)

3.3. Preprocessing Operations

Standard operations were applied to make image samples suitable for processing in
preprocessing. First, images were cropped to transform them into square images by locating
the lesions in the centre of the image. Each category consists of a varying dimension of
image resolution ranging from 576× 768 to 1024× 1024, with three color channels RGB.
Thus, each image was rescaled to 128× 128 dimensions using the bilinear interpolation
method while preserving their aspect ratio and minimizing the computational cost. There
was no need to apply any noise removal method for eliminating hairlines, gel bubbles, and
ruler and ink marks because the proposed DCNN model efficiently processes raw images
contaminated with artefacts.

3.4. Data Augmentation

The ISIC datasets still suffer from imbalance problems after using additional lesion
samples because the data are highly skewed among several types of skin cancer. The data
imbalance problem causes the network to become biased towards classes with many sam-
ples compared with those with low samples. The datasets were highly imbalanced; for
example, the number of MEL samples was more than BEN in ISIC 2016, while that of
BEN samples was more than MEL in the ISIC 2017 and 2020 sets. Tables 1–3 illustrate the
distribution of data samples among different classes for three datasets. A few classes, such
as the 512 MEL samples in the ISIC 2016, the 1214 MEL in the ISIC 2017, and the 3479 MEL
samples in the ISIC 2020, were extended by generating more artificial samples using the
random oversampling method. To address the issues of data undersampling, skewness,
and image sample scarcity, data augmentation techniques were applied more to the under-
represented classes than oversampled classes. Moreover, online data augmentation was
applied during network training using three common operations: rotation from −300 to
+300, scaling with factors 0.8 in the X-direction and 1.0 in the Y-direction, and translation
by −5 and +5. These operations were only applied on the training sets, whereas validation
and test sets were not augmented and their original data distribution was used during the
validation and testing processes. Figure 2 shows the augmented samples for the classes
MEL and BEN.
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Figure 2. Augmented data samples using translation, rotation, and scaling.

3.5. Proposed DCNN Model

The architecture of DCNN, named the lesion classification network (LCNet) is de-
signed using 11 blocks organized as shown in Figure 3. The blocks 4 and 5, 7 and 8, and 10
and 11 are repeated at rates of 2, 4, and 2, respectively, from top to bottom to develop a
deep layered network. The network’s first layer accepts an input image dataset of 128× 128
with R, G, and B channels, followed by a convolutional operation that slides ‘8’ kernels of
size 3× 3 over an image with a stride value ‘2’. The primary purpose of this layer is to
calculate features, and to do so, a small matrix called a kernel slides over an image and
transforms the pixels’ values as follows:

Conv[x, y] =
s

∑
i=1

s

∑
j=1

(Ix−i,y−j ∗ Ki,j, n f ) (4)

where Conv[x, y] is the output of the convolution operation for pixel positions [x, y] in the
spatial domain, s is the kernel size, I is the input image, and K is the kernel or template
with multiple channels n f .

The output of this layer is in the form of a feature map that is passed to the next layer,
i.e., max-pooling to transform the feature map regions by taking their maximum value.
Pooling helps in reducing the size of feature maps. Each block consecutively uses three
main layers: convolutional, batch normalization (BN), and leakyReLU. The input feature
maps from previous layers are normalized using the batch normalization process in batches.
It regulates the learning process of the network and avoids overfitting problems. The acti-
vation function used is leakyReLU, which offers the advantage of having a slight slope for
negative values instead of the zero slope of the standard ReLU. The LeakyReLU function
transforms negative values to positive by multiplying with a scalar value ‘s = 0.3′ as:

leakyReLU =

{
x× s, x < 0
x, x ≥ 0

(5)
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Figure 3. The design of the proposed network, LCNet.

Block 1 is composed of convolutional, BN, and leakyReLU layers used twice. The first
convolutional layer contains ‘16’ kernels of size 1× 1, and the second has ‘32’ kernels of
size 3× 3 with a stride of ‘1’. A stride is defined as the number of steps to slide the filter
map on an image. As for block 2, it contains three layers as convolutional with ‘32’ filters
having the size of 3× 3 followed by leakyReLU and BN layer. The feature sets computed
by blocks 1 and 2 and the pooling indices from max-pooling are concatenated to form a
combined feature set, which then passes to block 3. Blocks 4, 7, and 10 follow a similar
pattern to block 1, except the number of kernels increases from 32, 64, 64, 128, 128, and 256.
The number of filters in blocks 5, 8, and 11 increased to 64, 128, and 256 of size 3× 3 in the
successive convolutional layers. Finally, in blocks 3, 6, and 9, the number of filters varies as
36, 32, and 64 of size 1× 1 followed by an average poling layer. This block used an average
pooling operation instead of max-pooling to calculate the average for each patch of the
feature map that overlaps the filter window. This layer downsamples to an average value
in the window with a filter size of 2× 2.

The blocks are repeated to form a deep network to extract lesion information such as
edges, colors, and complex lesion patterns in the form of a feature map. A global average
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pooling and fully connected layer are used at the end of the network for generating a single
feature vector corresponding to each class category. The softmax function calculates the
confidence score for interpreting the probability of falling into one of the given classes.
The number of learnable parameters and kernels generated by the proposed network is less
than other state-of-the-art networks, making it less complex and lightweight. For example,
the total learnable parameters and number of kernels used in the studies [23,37–39] were
256.7 M and 267.5 M, 4.8 M and 45.6 M, 58.3 K and 84.7 K, and 4.6 K, and 29.1 K respectively.
In contrast, the LCNet achieved high performances by optimizing the parameters and
kernels as 3.3 M and 3.1 K, respectively.

The proposed deep neural model was inspired by many advanced frameworks [23,40]
specifically designed to classify skin lesions, which is a challenging task for clinical experts
to address in actual practice. Similar to these networks, the idea of designing a network
with multiple blocks to form a DCNN is incorporated. However, there are many architec-
tural differences between the proposed architecture and DCNN in [23,40]. The proposed
network has a different number of layers, kernel size, and number of kernels used at each
convolutional and max-pooling layer. As opposed to the model presented in [23], all blocks
were sequentially repeated in the ratio of 2:4:2, forming a network with a total of 31 con-
volutional layers, which is fewer than the network presented by Iqbal et al. Furthermore,
in our case, a different number of kernels was used in each convolutional layer in all blocks,
whereas in the network given in /citeiqbal2021automated, each block had a fixed number
of filters. Unlike the model presented by M.S. Ali et al. in [40], the LCNet makes use of mul-
tiple blocks and utilizes information from multiple channels by concatenating the features
of each block to pass information to the next. Alternatively, the model presented by M. S.
Ali used five blocks serially connected, followed by dropout and a fully connected layer.

A deep neural network generally suffers from computational cost and limited memory
issues. Thus, the original images are rescaled to lower dimensions to tackle this issue. This
rescaling operation ensures that contextual information about lesions is not lost for a skin
classification task. Additionally, the skewed distribution of lesion samples is handled using
augmentation operations and the random oversampling method. This method creates
more samples in underrepresented classes to balance the distribution. The presence of
noise artefacts and a high ratio of inter-class similarities and intra-class differences make
the classification process highly challenging. Therefore, the proposed network with 31
convolutional layers can efficiently extract low- to high-level information. The network
weights are optimized using the backpropagation algorithm that reduces loss based on the
gradient value. It uses a stochastic gradient optimizer (SGDM) [41] to update the network
weights and biases to reduce the loss value by applying small changes in the direction of
optimization.

θi+1 = θi − α5 L(θi) (6)

where the number of iterations represented as i, α > 0 is the learning parameter (set as
‘0.001’), θ is a parameter vector, and 5L(θi) is the gradient of the loss function. At each
iteration, the algorithm evaluates the gradient and updates parameters over a mini-batch
set. The larger weight values can cause a network to be stuck in the local minima. Thus,
the momentum γ is added in the gradient descent algorithm to reduce the oscillations as
follows:

θi+1 = θi − α5 L(θi) + γ(θi + θi+1) (7)

Furthermore, the LCNet utilizes a cross-entropy loss [42] function that measures the
error between the prediction score P and target T. The weighted cross-entropy loss function
calculates the error as follows:

Loss =
1
N

K

∑
i=1

N

∑
j=1

wiTij log(Pij) (8)
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where the number of observations is presented as N, K is the number of classes, and w is a
vector of weights determined by the network for each class. The hyperparameters used for
the LCNet are summarized in Table 4.

Table 4. Hyperparameter selected for the proposed LCNet.

Learning
Algorithm

Learning
Rate

Mini-Batch
Size Epochs Activation

Function Data Augmentation Momentum Regularization

SGDM 0.001 32 100 LeakyReLU
Random oversampling,

rotation, translation,
and scaling

0.99 0.0005

4. Results and Discussion

Several experiments for skin lesion classification were conducted on different der-
moscopic lesion images to evaluate the performance of the LCNet. It was tested on three
different sets, the ISIC 2016, ISIC 2017, ISIC 2020, and PH2 for two classes, MEL and BEN.
Other state-of-the-art methods depend highly on the noise removal preprocessing steps
and region of interest (ROI) specific feature calculation for achieving a high classification
rate. In contrast, the LCNet does not require extensive preprocessing operations and ex-
traction of lesion features. It is trained end-to-end on dermoscopic images to distinguish
melanoma and other lesion types. The hyperparameters (see Table 4) are finalized after
several experiments and monitoring the network’s highest performance on the validation
data. The network training was performed on the hardware configuration of GeForce GTX
1080 Ti with a computation capacity of ‘7.5’. Moreover, the inference time on ISIC 2016 with
344 test images was 3.77 s, that on ISIC 2017 with 835 test images was 15.7 s, and that on ISIC
2020 with 2014 test images was 61.6 s. Various classification performance metrics such
as precision (PRE), recall (REC), accuracy (ACC), specificity (SPE), F1-Score, [43,44], and
learnable parameters were considered to evaluate the model. The mathematical formulas
used to calculate the values of these metrics are given as follows:

ACC =
TP + TN

TP + FP + TN + FN
(9)

PRE =
TP

TP + FP
(10)

REC =
TP

TP + FN
(11)

SPE =
TN

TN + FP
(12)

F1-Score =
2TP

2TP + FP + FN
(13)

In a confusion matrix, TP, FP, TN, and FN represent true positives, false positives,
true negatives, and false negatives. TP represents the number of lesion samples correctly
classified as melanoma, TN represents the number of lesion samples correctly classified
as benign, FP represents the ratio of samples incorrectly classified as melanoma, and FN
represents the images determined to be benign when they are melanoma. An ACC is
defined as the fraction of correctly identified samples and the total number of predictions
based on these parameters. Other parameters, PRE and REC, are very significant metrics
used to evaluate the model’s performance as PRE measures all positive predicted rates.
In contrast, REC calculates the true positive ratio out of all positively identified samples.
The model’s ability to identify TN of each class is measured by a metric called SPE. Lastly,
F1-Score measures the harmonic mean of PRE and REC by considering FP and FN. Its value
close to 1 indicates the perfect PRE and REC.
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The scarcity of lesion samples in different classes prevented bias using data augmenta-
tion and oversampling methods. The impact of using data oversampling on the network’s
performance is shown in Table 5, which explains that there is an increase in the values
of metrics on all datasets, where a drastic change is noticed on ISIC 2017. The reason
for this is that the original ISIC 2017 dataset was highly imbalanced, giving poor results.
In data extension, first, the training of the LCNet was performed on the augmented training
set using the fine-tuned hyperparameters. The training progress was monitored on the
validation set of the ISIC datasets. The validation set contains a different proportion of
lesion samples from all classes, and the hyperparameters were tuned on the validation set
to improve the performance. Thus, the final values were selected based on the best output
offered by the network on the validation set having the lowest loss and high accuracy.
Finally, the trained model with fine-tuned parameters was used to evaluate the test set
unseen by the network.

Table 5. Impact of data oversampling on the performance of LCNet.

Approach
ISIC 2016 ISIC 2017 ISIC 2020

ACC PRE REC ACC PRE REC ACC PRE REC

Without oversampling 0.773 0.779 0.765 0.607 0.529 0.518 0.886 0.874 0.896
With oversampling 0.814 0.818 0.813 0.882 0.785 0.878 0.904 0.904 0.903

Figure 4 shows the graphical view of the LCNet on the ISIC 2016, 2017, and 2020
validation sets by plotting their performance between accuracy and number of epochs. It
displays the network’s accuracy progressively increasing towards higher values over the
subsequent increase in the number of iterations per epochs. Early stopping criteria were im-
plemented to stop the model’s training if accuracy did not improve and the corresponding
loss did not decrease; hence, the LCNet converges after 80 epochs. The higher performance
is noticed on the ISIC 2020 dataset due to a large number of samples present in it.

Figure 4. Classification accuracy and loss curves of the LCNet with the number of epochs on the
validation set (a) MEL vs. BEN lesion classes ISIC 2016, (b) MEL vs. SK and NV lesion classes ISIC
2017, and (c) MEL vs. BEN lesion classes ISIC 2020.

Similarly, Figure 5 demonstrates the true positive vs. false positive curves [45], il-
lustrating the trade-off between sensitivity and specificity achieved by the model with
the area under the curve (AUC) as ‘0.9033’, ‘0.8658’, and ’0.9671’ on the ISIC 2016, 2017,
and 2020 test sets. In Table 6, the performance of the LCNet is illustrated on all datasets
based on the classification metrics explained above. The LCNet model obtained ACC, PRE,
and REC of 81.41%, 81.88%, and 81.30%, respectively, for the binary classification of MEL
vs. BEN on the ISIC 2016 dataset. At the same time, the values for these metrics on the
ISIC 2017 test set for the classification of classes, i.e., MEL vs. NV and SK, were 88.23%,
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78.55%, and 87.86%, respectively. Furthermore, on the ISIC 2020 and PH2 sets, the values
for ACC, PRE, and REC achieved by the model were 90.42%, 90.48%, and 90.39% and 76.0%,
67.8%, and 75.3%, respectively. Moreover, the LCNet surpassed the other state-of-the-art
approaches for skin lesion classification, as given in Table 7. It compares the methods with
the best results highlighted in bold based on metrics such as ACC, PRE, REC, SPE, F1-Score,
and learnable parameters. Only the ACC and SPE on the ISIC 2017 of the [46] were higher
than in the proposed model, whereas the PRE of the LCNet is the highest among all given
studies. In addition, the number of learnable parameters of LCNet is less, making it a
lightweight and less complex network.

Figure 5. Classification accuracy and loss curves of the LCNet with the number of epochs on the
validation set (a) MEL vs. BEN lesion classes ISIC 2016 (b) MEL vs. SK and NV lesion classes ISIC
2017 (c) MEL vs. BEN lesion classes ISIC 2020.

Table 6. Performance of the LCNet on the adopted datasets.

ISIC 2016 ISIC 2017 ISIC 2020 PH2

ACC PRE REC ACC PRE REC ACC PRE REC ACC PRE REC

0.814 0.818 0.813 0.882 0.785 0.878 0.904 0.904 0.903 0.760 0.678 0.753

Table 7. Performance comparison of LCNet with other state-of-the-art methods.

Methods/Authors Dataset ACC% PRE% REC% SPE% F-Score% Learnable Parameters (Millions)

Al-Masni, M. A. [47] ISIC 2016 81.79 —– 81.80 71.40 82.59 —–
Zhang J. [48] 86.28 68.10 —– —– —– —–
Tang P. [46] 86.30 72.80 32.00 99.70 —– —–
Proposed model 81.41 81.88 81.30 80.83 81.05 3.32 M
Mahbod, A. [37] ISIC 2017 87.70 —– 87.26 82.18 —– 256.7 M
Harangi, B. [38] 86.60 —– 55.60 78.50 —– 267.5 M
Li, Y. et al. [21] 85.70 72.9 49.00 96.10 —– —–
Al-Masni, M. A. [47] 81.34 75.67 77.66 75.72 —– 54.35 M
Iqbal, I. [23] 93.25 93.97 93.25 90.64 93.47 4.8M
Proposed Model 88.23 78.55 87.86 88.86 78.20 3.32 M
Kwasigroch, A. [49] ISIC 2020 77.00 —– —– —– —– 7.18 M
Proposed Model 90.42 90.48 90.39 90.39 90.41 3.32 M

In Table 8, the performances of baseline CNN models such as ResNet18, Inceptionv3,
and AlexNet are displayed. These popular networks were fine-tuned on the adopted
datasets, and a comparison was shown between them and the LCNet model. For tuning
them, the same hyperparameters setting were used as for the proposed model (see Table 4).
It can be seen in Table 8 that the proposed model outperformed given networks. The metrics
ACC, PRE, and REC represent the prediction score of the models on the ISIC 2016, 2017,
and 2020 test sets, classifying lesion classes by giving better insight into correctly classified
and misclassified samples based on the evaluation metrics. The proposed network achieved
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0.5% more ACC than ResNet18, 1.5% than Inceptionv3, and 16% more than the AlexNet
model on the ISIC 2016 dataset. Similarly, on the ISIC 2017 dataset, LCNet gained 13.2%
higher ACC than ResNet18, 10.8% higher ACC than Inceptionv3, and 14.2% higher ACC
than the AlexNet network. Lastly, the ACC of ResNet18 was slightly more than LCNet
with a ratio of 0.4%, whereas LCNet outperformed Incpetionv3 and AlexNet by a higher
margin. It is observed that the proposed LCNet model gained a higher accuracy on all
datasets, which is higher among other popular models.

Table 8. A comparison between proposed LCNet with baseline CNN models on the ISIC 2016, 2017,
and 2020 datasets.

Approach
ISIC 2016 ISIC 2017 ISIC 2020

ACC PRE REC ACC PRE REC ACC PRE REC

ResNet18 0.809 0.789 0.809 0.750 0.640 0.571 0.908 0.898 0.888
Inceptionv3 0.799 0.809 0.811 0.774 0.691 0.612 0.486 0.297 0.492
AlexNet 0.654 0.595 0.643 0.740 0.670 0.660 0.754 0.691 0.685
Proposed model (LCNet) 0.814 0.818 0.813 0.882 0.785 0.878 0.904 0.904 0.903

The experimental outcomes prove that the proposed model performs better for binary
skin cancer classification tasks. PRE, REC, and ACC are relatively higher on the ISIC 2020
datasets. In contrast, these metrics observed lower values on ISIC 2017 and 2016 than the
ISIC 2020 due to the fewer samples in each class. It is analysed that the deep learning-based
LCNet model requires a large dataset for efficient network training. The primary advantage
of the proposed model is that the inference time is very low on test sets and have a smaller
number of learnable parameters.

5. Conclusions

Skin cancer is a global health problem, and the development of an automatic melanoma
detection system plays a major role in its early diagnosis. The proposed LCNet model,
inspired by the deep convolutional neural network for skin cancer classification, was trained
in an end-to-end manner on dermoscopic skin cancer images. Three different datasets from
the ISIC challenge were incorporated to perform the experiments, and an additional PH2

set was used for testing. It is challenging to establish an automatic framework to classify
different lesions due to high inter-similarities and intra-class variations. With the design
of a few preprocessing steps such as image resizing, oversampling, and augmentation,
an accurate model was designed for MEL lesion classification. The experimental results
showed that the proposed model achieved higher performance than the selected studies and
pre-trained classification models. Overall, LCNet achieved average ACC, PRE, and REC of
81.41%, 81.88%, and 81.30% on ISIC 2016, of 88.23%, 78.55%, and 87.86% on ISIC 2017, and
of 90.48%, 90.39%, and 90.42% on ISIC 2020. The proposed model is reliable in predicting
the correct lesion category with a high true positive rate, thus strongly satisfying AI in
solving medical problems as a diagnostic tool. It was found that using an image size of
128× 128 with three channels and the inference time per image of 0.1 s could achieve a
higher processing speed. Therefore, the proposed method could perform better on large and
balanced skin cancer datasets, such as the ISIC 2020 dataset, compared with the ISIC 2016
and 2017. The designed DCNN model can be further extended to multi-class classification
to predict other different types of skin cancers.
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