
© 2018 Domingues et al. This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms. 
php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work 

you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For 
permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php).

ImmunoTargets and Therapy  2018:7 35–49

ImmunoTargets and �erapy Dovepress

submit your manuscript | www.dovepress.com

Dovepress 
35

R E V I E W

open access to scientific and medical research

Open Access Full Text Article

http://dx.doi.org/10.2147/ITT.S134842

Melanoma treatment in review

Beatriz Domingues1–3

José Manuel Lopes1,2,4,5

Paula Soares1,2,5

Helena Pópulo1,2

1Institute of Molecular Pathology 
and Immunology, University of 
Porto (IPATIMUP), Porto, Portugal; 
2Instituto de Investigação e Inovação 
em Saúde, Universidade do Porto, 
Porto, Portugal; 3Faculty of Sciences, 
University of Porto, Porto, Portugal; 
4Department of Pathology, Hospital S 
João, Porto, Portugal; 5Department of 
Pathology, Medical Faculty, University 
of Porto, Porto, Portugal

Abstract: Melanoma represents the most aggressive and the deadliest form of skin cancer. 

Current therapeutic approaches include surgical resection, chemotherapy, photodynamic therapy, 

immunotherapy, biochemotherapy, and targeted therapy. The therapeutic strategy can include 

single agents or combined therapies, depending on the patient’s health, stage, and location of the 

tumor. The efficiency of these treatments can be decreased due to the development of diverse 

resistance mechanisms. New therapeutic targets have emerged from studies of the genetic profile 

of melanocytes and from the identification of molecular factors involved in the pathogenesis 

of the malignant transformation. In this review, we aim to survey therapies approved and under 

evaluation for melanoma treatment and relevant research on the molecular mechanisms under-

lying melanomagenesis.
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Introduction
Melanoma arises from the occurrence of genetic mutations in melanocytes, the pigment 

producing cells, which can be found in the skin, eye, inner ear, and leptomeninges.1–4 

Although melanoma accounts for about 1% of all skin malignant tumors, cutaneous 

malignant melanoma represents the most aggressive and the deadliest form of skin 

cancer.5 This disease affects mostly the Caucasian population of both genders,6 and 

once it becomes metastatic, the prognosis is very poor.7,8 Therefore, early identification 

of this cancer is crucial for the success of patient treatment. The European Society for 

Medical Oncology clinical practice guidelines for cutaneous melanoma highlight the 

importance of a detailed diagnosis for the establishment of the tumor stage and, in some 

tumors, a mutation test is also required.9 Over the past years, several therapies have 

been approved by the US Food and Drug Administration (FDA) (Figure 1). Depend-

ing on the features of the tumor (location, stage, and genetic profile), the therapeutic 

options may be surgical resection, chemotherapy, radiotherapy, photodynamic therapy 

(PDT), immunotherapy, or targeted therapy. For patients with stage I–IIIB melanoma, 

surgery is the primary treatment.10–12 The surgery procedures differ according to the 

clinic-pathologic features of the tumor. Excision includes safety margins of 0.5 cm 

for in situ melanomas, 1 cm for tumors with a thickness of up to 2 mm, and 2 cm 

for tumors thicker than 2 mm.11 To improve survival, adjuvant therapies, such as tar-

geted therapy and immunotherapy, are recommended.11,13 For patients with a solitary 

melanoma metastasis, metastasectomy is part of the standard of care and, in some 
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metastatic melanoma cases, chemotherapy treatment may 

also be considered.12,13 Despite being rarely indicated for 

primary tumor treatment, radiotherapy can be useful for the 

treatment of skin, bone, and brain metastases.14

Two types of limitations are relevant in melanoma 

therapy: 1) adverse events (AEs), which can lead to skin and 

gastrointestinal toxicity, can be high and usually related to 

immune reactions and lack of specificity for tumor cells15–17 

and 2) reduced efficiency, which can occur due to resistance 

to immune, chemo/targeted and intralesional therapies.13 

Recently, new therapeutic targets have emerged from studies 

of the genetic profile of melanocytes and from the identifi-

cation of molecular factors involved in the pathogenesis of 

the malignant transformation of the melanocytic cells.1,18 In 

this review, we will present melanoma therapies, approved 

and under evaluation, which resulted from the studies of 

melanocyte biology and malignant transformation.

Chemotherapy 
Chemotherapy was the earliest treatment option for advanced 

melanoma. Chemotherapy combinations have been evaluated 

to improve the clinical responses, but the overall survival 

(OS) did not show improvement.19 Resistance to apoptosis 

is probably the major cause of chemotherapy drug resis-

tance in melanoma.20 Although it has been replaced by 

additional options, chemotherapy remains important in the 

palliative treatment of refractory, progressive, and relapsed 

melanomas.19

Dacarbazine
Dacarbazine, an alkylating agent approved in 1974 by FDA, 

is the standard chemotherapy medication for metastatic 

melanoma. Studies reported that a complete response was 

achieved in <5% and 5-year survival in 2%–6% of patients.21 

Despite these results, dacarbazine was the standard of care 

because other single agents or combination chemotherapies 

did not reveal improvements in the OS of patients.21 Still, 

several clinical trials are ongoing, using only dacarbazine 

as comparison or in combination with other chemotherapies, 

immunotherapies, and targeted therapies.22

Temozolomide (TMZ) 
TMZ, an oral prodrug of the active metabolite of dacarba-

zine, has been used in advanced melanoma.21 Compared to 

dacarbazine, TMZ showed a reduced improvement in median 

progression-free survival (PFS), but no differences were 

observed in OS or objective response rates.23

Electrochemotherapy (ECT) 
ECT is a technique that combines the use of cytotoxic drugs, 

bleomycin and cisplatin, with high-intensity electric pulses, 

which facilitates drug delivery into the cells.24,25 ECT was 

reported to be effective for the treatment of cutaneous and 

subcutaneous nodules of melanoma.26,27 A study of the Euro-

pean Standard Operating Procedures of Electrochemotherapy 

reported an overall response of 85% and no major negative 

AEs were observed.27 Another remarkable aspect of ECT is 

that usually the treated nodules do not recur in the treated 

area, possibly because the treatment destroys the lymphatic 

stream; however, more studies are needed in this regard.24

PDT
Light-based therapy is a promising adjuvant therapy and 

may be a suitable palliative treatment option for patients 

with stage III/IV cutaneous metastatic melanomas.13,28 PDT 

is a minimally invasive procedure28–30 that requires a pho-

tosensitizer (PS), which is better absorbed in metabolically 

active tissues, and light of a defined wavelength, to activate 

the PS.13 Both these elements are non-toxic, but create reac-

tive oxygen species (ROS) when combined with oxygen, 

through a photochemical reaction.30 ROS unleash irrevers-

ible damage to tumor cells31,32 and tumor-associated blood 

Figure 1 FDA-approved drugs for melanoma treatment. Dacarbazine was the first drug approved, in 1974, followed by interferon α-2b, interleukin-2, and ontak in the 1990s. 

Between 2011 and 2015, 10 therapies were approved, including selective inhibitors, antibodies, and combined targeted therapies.

Abbreviation: FDA, US Food and Drug Administration.
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vessels, also activating antitumor, immune, and inflammatory 

responses.33–35

Acai oil in nanoemulsion has been used as a novel PS in 

melanoma cells lines and in in vivo experimental models. The 

results showed 85% of melanoma cell death by late apoptosis/

necrosis, preserving high viability in normal cells.36

Although PDT can be used for the treatment of nonma-

lignant and malignant disease, studies reported that PDT 

alone has limited efficiency in melanomas.37,38 To improve 

PDT results in melanoma, protective mechanisms, such as 

pigmentation and oxidative stress resistance, have to be 

overcome.28 Combined therapies have been studied and, 

specifically, the combination of PDT and chemotherapy 

(dacarbazine) was reported to be an efficient treatment to 

reduce resistance in pigmented and unpigmented metastatic 

melanomas.39 Combination of PDT with immunostimulatory 

therapies may be more efficient in the eradication of the 

initial tumor and micrometastases and additionally may also 

decrease melanoma recurrences.28 A new clinical trial with 

PDT is underway in melanomas (NCT02685592).

Immunotherapy
In the 19th century, it was proposed, for the first time, that 

cancer and immune system are associated, and this observa-

tion was based on the frequent appearance of tumors at the 

sites of chronic inflammation and on the presence of immune 

cells in tumor tissues.40 In antitumoral responses, T-cells 

recognize tumor-specific antigens, becoming activated and 

then proliferate and differentiate, acquiring the capacity to 

destroy cells that express tumor-specific antigens. In addition 

to the stimulatory and inhibitory signaling pathways that limit 

T-cell antitumoral responses, cancer cells can escape T-cell 

detection, as usually they do not express B7 molecules.41

It is known in many types of cancer that complex interac-

tions between the tumor and the immune system play a role 

in the metastatic spread to distant sites.42 Metastases are the 

main cause of cancer death and more accurate prognostic 

markers are warranted.42 Tumor infiltrating lymphocytes 

(TILs) have been considered in many studies as independent 

markers for the occurrence of lymph node metastasis.43 TILs 

can mediate immune responses of the host against cancer 

cells, being associated with a positive outcome and improved 

survival in patients with malignant melanomas.43,44 Based on 

these interactions, immunotherapy appears to be a promising 

treatment option for patients with advanced stage (metastatic) 

malignant melanomas, when compared to previous standard 

therapies, showing durable complete responses in selected 

patients with advanced melanomas.43,45–47 The immunogenic 

tumor microenvironment (TME), with mediators and cel-

lular effectors of inflammation, influences the success of 

immunotherapies.45 The molecular pathways involved in 

this cancer-related inflammation are now being clarified, 

in order to establish new target molecules that may lead to 

improvements in the diagnosis and treatment of cancer.44 

Despite positive results, recurrence of cancers and variable 

success among different cancers are not uncommon. Even 

in responsive cancers, the immune checkpoint inhibitor suc-

cess rate is often <50%.48 Primary and acquired resistance 

to immunotherapy is common and may be due to the lack of 

recognition by T-cells, as described above. Also, it can involve 

various components of the cancer immune cycle (including 

regulatory T-cells [Tregs], myeloid-derived suppressor cells 

[MDSCs], and M2 macrophages), and interactions between 

multiple signaling molecules and pathways that prevent 

immune cell infiltration or function within the TME.49,50

In recent years, improved knowledge of the pathophysi-

ology and a better understanding of the role of the immune 

system in tumor evolution have led to the development and 

approval of several immunotherapies (Figure 2).

Interferon (IFN) α-2b
IFNs are cytokines secreted by leukocytes. These signaling 

proteins are able to interfere with viral replication and play 

an important role in the immunomodulatory, antiangiogenic, 

antiproliferative, and antitumor activities.51–54 IFNs activate 

multiple cell types of the immune system, such as T-cells, 

B lymphocytes, natural killer cells, and dendritic cells, and 

inhibit other negative elements, such as Tregs and MDSCs. 

Beyond the known IFN effects, the complex network of 

different cells involved and the biologic variability of each 

patient influence the response to the therapy.51

IFNs offer opportunities of synergism with conventional 

treatments, and high-dose IFN α-2b was approved by the FDA 

in 1995 as adjuvant therapy for the treatment of resected stage 

IIB/III melanoma.54,55 In melanoma, IFN-α demonstrates an 

immunomodulatory antitumor effect, inducing a stimulatory 

effect on major histocompatibility complex class I expres-

sion of melanoma and immune cells, being able to inhibit 

the proliferation of melanoma cells, with a dose-dependent 

proapoptotic effect.56 A recent meta-analysis reported that 

adjuvant IFN-α significantly reduces the risk of recurrence 

and improves survival of melanoma patients.57 However, 

only a minority of patients respond to IFNs and ulceration 

of the primary tumor is the most important predictive fac-

tor for IFN sensitivity.58 Although newer and more efficient 

immunotherapies have emerged in recent years, IFNs persist 
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in clinical trials in combination with other immunotherapies 

and targeted therapies.22

Peginterferon α-2b (Peg-IFN)
Peg-IFN was approved by the FDA (2011) as adjuvant therapy 

for stage III melanomas.59 Peginterferon is the combination 

of IFN α-2b with the molecule polyethylene glycol (Peg). It 

was reported that this molecule allows the compound to stay 

longer in the blood, thus improving its therapeutic effect.60

The most common AEs observed were grade 1 liver tox-

icities, neutropenia, skin rash, and anemia. The only grade 

3/4 toxicities were lymphopenia and hyponatremia.61

Interleukin-2 (IL-2) 
IL-2 is a cytokine capable of expanding effector T-cells (Teffs) 

and Tregs. Studies showed that high-dose IL-2 has antitu-

moral activity and the FDA approved (1998) this treatment 

for metastatic melanomas.62 A recent meta-analysis reported 

that the complete response rate for IL-2 treatment was 4.0%, 

partial response 12.5%, and overall response 19.7%. High 

and intermediate dose showed no complete response differ-

ences, and thus the therapeutic dose should be reconsidered.63

Before undergoing IL-2 treatment, patients need to be 

evaluated, and some biomarkers have been studied, such 

as serum vascular endothelial growth factor (VEGF) and 

fibronectin levels.64 AEs can include hypotension, tachycar-

dia, peripheral edema, reversible multisystem organ failure, 

and cardiac arrhythmias.65 Like IFNs, IL-2 is still included 

in clinical trials, in combination with chemotherapy, radio-

therapy, other immunotherapies, and targeted therapies.22

Treg inhibition 
Tregs suppress activated Teffs and can inhibit antitumoral 

immune responses.66,67 In melanomas, Tregs appear in periph-

eral circulation and in the TME and seem to be associated 

with poor clinical outcome.68 The therapeutic strategy con-

sists in the suppression of Tregs, thus increasing the antitu-

moral immunity. Ontak, approved by the FDA in 1999,69 is the 
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Immunotherapy induces antitumor immune responses by altering metabolites, growth factors, and cytokines, such as interferon α-2b and interleukin-2, in the TME. 

Ipilimumab, an anti-CTLA-4 antibody, induces pro-inflammatory T-cell cytokine production, and increases clonal T-cell expansion and infiltration. The anti-PD-1 antibodies, 
nivolumab and pembrolizumab, block the interaction between PD-1 and PD-L1/PD-L2, similar to the effect of durvalumab, CK-301, avelumab, atezolizumab, which are anti-

PDL-1 antibodies. Other immunotherapies can activate the immune system at the TME, such as resiquimod and CAR-T cells, or suppress Tregs, as ontak. Oncolytic virus 

therapy with talimogene laherparepvec also interferes with the immune system, inducing melanoma cell lysis and consecutively release of tumor-specific antigens.
Abbreviations: FDA, US Food and Drug Administration; TME, tumor microenvironment; PD-1, programmed cell death protein 1; PD-L1, PD-1 ligand; CTLA, cytotoxic 
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fusion of IL-2 protein with diphtheria toxin that selectively 

eliminates Tregs expressing IL-2 receptor from the periph-

eral blood.70 A Phase II trial in stage IV melanoma patients 

showed 16.7% of partial responses, 5.0% stable disease, and 

15.0% mixed responses.71 Conversely, another study reported 

that metastatic melanoma patients administered with ontak 

showed no objective clinical response, no regression of the 

disease, and no elimination of regulatory T lymphocytes.72

Cytotoxic T lymphocyte-associated 
antigen 4 (CTLA-4) blockade
Ipilimumab, approved by the FDA for the treatment of 

advanced melanomas in 2011, is an anti-CTLA-4 antibody. 

CTLA-4 is a inhibitory checkpoint receptor that blocks T-cell 

activation and induces immune tolerance.73,74 Anti-CTLA-4 

antibodies act as antagonists, blocking the inhibitory effect, 

enhancing pro-inflammatory T-cell cytokine production,75 

and increasing clonal T-cell expansion and infiltration in 

responding tumors.76

Combined therapies have been studied and ipilimumab 

with IL-2 showed similar AEs compared to the respective 

monotherapies, but did not show improvement in the efficacy 

over ipilimumab monotherapy.77 Combination of ipilimumab 

and Peg-IFN showed an overall response rate of 40% and 

median PFS of 5.9 months.78 Also, in a Phase III trial, patients 

with advanced melanomas were administered randomly 

with ipilimumab monotherapy, ipilimumab combined with 

gp100 peptide vaccine, or vaccine monotherapy. Ipilimumab 

monotherapy showed the best response rate, with a median 

OS of 10.1 months, followed by ipilimumab plus gp100, 

with a median OS of 10.0 months. These results indicate 

that ipilimumab is a valuable approach due to the better OS 

rates compared to vaccine monotherapy, which presented a 

median OS of 6.4 months.79

To undergo ipilimumab treatment, melanoma patients 

must comply with immune-related response criteria. The 

AEs of this treatment include autoimmune alterations, such 

as dermatitis, colitis, drug-related hepatitis, endocrinopathies, 

and rarely neuritis, which are more frequent with high doses.80 

Corticosteroids, and occasionally more intense immunosup-

pressive medication, may control these AEs.12 Several clini-

cal trials are ongoing with ipilimumab in combination with 

chemotherapy, radiotherapy, other immunotherapies, and 

targeted therapies.22 Tremelimumab, another anti-CTLA-4 

antibody, is also used in clinical trials in monotherapy 

(NCT00378482) and in combination with other immuno-

therapies (NCT01103635/NCT02535078/NCT02643303).

Programmed cell death protein 1 (PD-1)/
PD-1 ligand (PD-L1) blockade
The PD-1 receptor binds to PD-L1 and PD-L2, acts as a T-cell 

co-inhibitory molecule, and suppresses T-cell activation. 

Further than being expressed on the antigen-presenting cells, 

ligands are also expressed in many human tumors and in cells 

within the TME, in response to inflammatory stimuli. Yet, the 

utility of PD-L1 immunostaining as a predictive biomarker 

for anti-PD-1 treatment remains unclear.81

Nivolumab is a high-affinity anti-PD-1 monoclonal 

antibody that inhibits the binding between the PD-1 recep-

tor and its ligands PD-L1 and PD-L2.82 Nivolumab was 

approved (2014) by the FDA for the treatment of patients 

with metastatic melanoma.83 The blockade of the interaction 

between PD-1 and its ligands mediates immune responses and 

induces (preclinical) antitumor activity that reduces tumor 

progression.84 Nivolumab, with a PFS of 6.9 months, seems 

to be more efficient than monotherapies with ipilimumab, 

which display a median PFS of 2.9 months, or chemotherapy, 

with a median PFS of 2.2 months.84 The combination of 

nivolumab and ipilimumab achieved a median PFS of 11.5 

months, superior than monotherapies, especially in patients 

with PD-L1 negative tumors.84,85

Pembrolizumab, an anti-PD-1 antibody, was approved 

by the FDA in 2015 for the treatment of advanced mela-

nomas and may turn a new standard for the treatment of 

ipilimumab refractory melanomas.86–88 The antitumor activ-

ity of pembrolizumab led to a prolonged PFS and OS of 

patients with advanced melanomas, with less high-grade 

toxicity than ipilimumab.86 The combination of pembro-

lizumab and Peg-IFN is also well tolerated and clinically 

active, especially in patients with advanced melanoma that 

cannot be removed by surgery.61 The AEs related with this 

therapy are fatigue, infusion reactions, diarrhea, arthralgia, 

rash, nausea, pruritus, and headaches.12 More studies are 

needed to identify suitable prognostic biomarkers for this 

treatment.84 

Several clinical trials are ongoing, using nivolumab and 

pembrolizumab in monotherapy or in combination with 

chemotherapy, radiotherapy, other immunotherapies, and 

targeted therapies.22 Other anti-PD-1 molecules are being 

used in trials, such as JS100 monotherapy (NCT03013101) 

and in combination with targeted therapies (NCT03086174), 

REGN2810 (NCT03002376), and PDR001 monotherapy 

(NCT02404441) and in combination with other immu-

notherapies (NCT02608268) and targeted therapies 

(NCT02607813/NCT02967692).
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Other anti-PD-L1 molecules are used in Phase I/

II trials, such as durvalumab in combination with other 

immunotherapies (NCT02535078) and targeted therapies 

(NCT02027961), CK-301 (NCT03212404), avelumab in 

combination with other immunotherapies (NCT03167177), 

and atezolizumab in combination with other immunothera-

pies (NCT03138889) and targeted therapies (NCT03178851/

NCT01656642).

Oncolytic virus therapy 
FDA approved (2015) the first oncolytic virus for the treat-

ment of melanomas, talimogene laherparepvec (T-VEC), a 

genetically modified herpes simplex virus type 1.85,89,90 This 

engineered nonpathogenic viral strain is injected directly 

into a metastatic melanoma nodule and while it enters into 

both normal and malignant cells, it only replicates in the 

melanoma cells, leading to tumor cell lysis and the release 

of tumor-specific antigens.89 These antigens are recognized 

by antigen-presenting cells, activating melanoma-specific 

T-cell responses.

Patients with refractory stage IV or unresectable stage 

III melanomas were treated with T-VEC and, in a Phase 

II clinical trial, an objective clinical response of 28% was 

observed.89 This strategy is safe and the AEs reported are not 

severe, including fatigue, chills, pyrexia, nausea, influenza-

like illness, and injection site pain.85 Clinical trials are still 

ongoing, using T-VEC alone or in combination with chemo-

therapy, radiotherapy, other immunotherapies, and targeted 

therapies.22

Coxsackievirus (CVA21) or CAVATAK is an oncolytic 

virus in late-stage clinical development that presented 

lytic activity against melanomas in in vitro cultures and in 

vivo.90–92 Ongoing clinical trials are testing CAVATAK with 

pembrolizumab in advanced melanomas and CAVATAK 

with ipilimumab in unresectable stage III–IV melanomas.91

Other oncolytic viruses are being used in trials, such 

as HF10 in combination with other immunotherapies 

(NCT03259425/NCT02272955/NCT03153085), and GL-

ONC1 monotherapy, prior to surgery (NCT002714374).

gp100 Peptide vaccine
gp100 is a glycoprotein expressed only by melanoma cells 

and, with the exception of healthy epidermal melanocytes 

and retina, is not expressed in healthy tissues.93,94 gp100 

is recognized by cytotoxic T lymphocytes (CTLs), and 

administration of gp100 epitopes can enhance CTLs reactiv-

ity, being an appealing therapy option. Preclinical models 

showed that gp100 peptide monotherapy had unsatisfactory 

clinical benefits; therefore, it might be used as adjuvant 

therapy.93 Combination of gp100 peptide vaccine with 

IL-2 showed significant improvement in the overall clini-

cal response and longer PFS, with a complete response of 

5%.63 The median OS was longer in the combined treatment 

compared to IL-2 monotherapy.95 Other clinical trials are 

ongoing, using gp100 in monotherapy (NCT01744171/

NCT02889861) or in combination with other immuno-

therapies (NCT00960752/NCT00470015/NCT01176461/

NCT01176474/NCT02535078).

Toll-like receptor (TLR) agonists
TLRs are type I membrane glycoproteins that belong to the 

IL-1R superfamily and are able to induce the production of 

local cytokines, such as IFN-α and IL-12, that improve local 

immune responses.96 Moreover, TLRs may also enhance 

antitumor immunity.97 TLR agonists may be a potent adju-

vant for vaccines and can activate the immune system in the 

TME.98 Resiquimod is a TLR 7/8 agonist that can activate 

both myeloid (mDC, TLR 8) and plasmacytoid (pDC, TLR 7) 

dendritic cells in patients with advanced stage melanomas.98 

Patients treated with resiquimod as an adjuvant therapy to 

the gp100 vaccination displayed upregulation of type I IFN 

and IFN-γ at the peptide vaccination site, by activation of 

pDC/mDC, and improvement of the antitumor response 

with regression of in-transit melanoma metastases.98 Clinical 

trials are ongoing, using TLR agonists in combination with 

chemotherapy (NCT02650635) and other immunotherapies 

(NCT00960752/NCT02320305).

Adoptive T-cell therapy
In adoptive cell transfer (ACT) therapy, patients are infused 

with a large number of melanoma-specific T-cells, but the 

generation of these cells is difficult and time consuming.99 

The antitumoral activity of ACT is not fully understood, 

but may include suppression of Tregs, removal of cytokine 

sinks, and eradication of host tumor immunosuppressive 

factors.99 T-cells must be able to proliferate, to complete 

effector functions and to form long-lived memory T-cells 

that are crucial for a suitable immune response.100 In fact, in 

in vitro studies, the more-differentiated Teffs had enhanced 

antitumoral properties, but in vivo these T-cells are less effec-

tive.101 Modulation of T-cells metabolism may be a valuable 

method to induce the formation of memory T-cells instead 

of more-differentiated Teffs. Since memory T-cells exhibit a 

limited glucose uptake, inhibiting the glycolytic metabolism 

induces the formation of memory precursor cells and there-

fore improves antitumoral functions.102
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In metastatic melanomas, this immunotherapy seems to 

be associated with complete and durable responses as well 

as partial responses and prolonged disease stabilization.103 

ACT led to durable complete regression (24% of the studied 

patients) of metastatic melanomas, with a reported median 

survival of >3 years.104 Combined therapies are efficient, 

and studies reported that metastasectomy in patients with 

progressive melanomas, undergoing ACT therapy, showed a 

PFS of 11 months and 5-year OS of 57%.103 The AEs of this 

therapy include autoimmune alterations, such as the destruc-

tion of normal melanocytes in the eyes and skin, and immu-

nosuppression is sometimes required to control these AEs.105 

Several clinical trials are ongoing with ACT in combination 

with chemotherapy, radiotherapy, other immunotherapies, 

and targeted therapies.22

ACT with T-cells chimeric antigen receptors (CARs) is a 

new therapeutic approach for solid tumors, including mela-

nomas.106 CARs comprise an extracellular domain, which is 

an antibody single-chain variable fragment that recognizes 

a specific antigen (lipid, protein, or carbohydrate antigens), 

a transmembrane domain, and an intracellular signaling 

domain, which is frequently the CD3 zeta chain of the T-cell 

receptor that stimulates T-cells in order to destroy the tumor 

cells.107,108 For this therapy, patients are infused with previously 

isolated T-cells that are activated and genetically modified with 

retroviral or plasmid vectors to generate CAR-T cells.107,109 

A recent study reported that Cas9-based gene editing tech-

nique can enhance CAR-T cells efficacy.110 The selection of 

the target antigen must have as criterion the maximal effect 

in tumor cells and the minimal effect in normal cells.107,111 

Although the studies in melanomas are limited, ganglioside 

GD2 is an example of a molecule that is highly expressed in 

melanoma cells and can be targeted by CARs.111,112 A Phase I 

trial of T-cells expressing an anti-GD2 CAR was performed in 

children and young adults with melanomas (NCT02107963), 

but no conclusive results were reported. A dose-escalation 

Phase I CAR-T cells trial against the antigen VEGFR2 in 

solid tumors, including melanomas, showed one partial 

response (4%) in 24 patients.111 Nevertheless, CAR-T cells 

are also exposed to inhibitory immune checkpoint signals of 

the TME. Thus, combined therapies of CAR-T cells with a 

PD-1 antibody or a CTLA-4 antibody might overcome the 

TME features.107,111,113 Other clinical trials are ongoing, using 

CAR-T cells expressing cMET (NCT03060356) and CAR-T 

cells with anti-CD70 (NCT02830724).

Biochemotherapy (BCT) 
BCT is the combination of chemotherapy and immuno-

therapy. Certain conventional chemotherapies may act in 

part through immune-stimulatory mechanisms.114 The most 

common BCT approach uses as chemotherapy a combination 

of dacarbazine, cisplatin (an antitumoral agent that induces 

DNA damage and apoptotic signals115), and vinblastine (a 

microtubule targeting agent116), with IL-2 and IFN α-2b as 

immunotherapy. Compared to chemotherapy monotherapy, 

BCT showed a higher response rate and an improvement in 

the median PFS. However, BCT did not show improvement 

in OS and it was associated with severe toxicity and risk of 

brain metastases development.117

Targeted therapy
About 70% of patients with cutaneous melanoma harbor 

mutations in genes of key signaling pathways. These onco-

genic mutations may be associated with melanoma cell pro-

liferation and a malignant phenotype.118 The targeted therapy 

approach uses small molecule inhibitors or antibodies that 

affect these mutated proteins, which are important for the 

progression of the disease (Figure 3).

BRAF inhibitors 
In the past few years, new molecular approaches have been 

developed to target melanoma harboring mutations. BRAF 

is a key serine–threonine kinase from the mitogen-activated 

protein kinase (MAPK) signaling pathway and 50% of 

cutaneous melanomas without association with chronic sun 

damage harbor a BRAF mutation.119 Mutations in the BRAF 

gene are associated with activation of the MAPK signaling 

pathway and with increased growth and proliferation of 

cancer cells.120 The most common BRAF mutation occurs at 

amino acid 600, in which the normal valine is substituted, in 

most cases, by glutamic acid (BRAFV600E), or, less commonly, 

it is substituted by lysine (BRAFV600K).12

Vemurafenib, a selective oral BRAF-mutant inhibitor, was 

approved (2011) by the FDA for the treatment of unresectable 

or metastatic melanomas harboring activating BRAFV600E muta-

tions.121,122 Compared to chemotherapy, in BRAFV600E/K mutation-

positive melanomas, vemurafenib improved clinical response 

rates, PFS, and OS of metastatic melanoma patients. Studies 

have reported that 90% of patients who received vemurafenib 

showed tumor regression.121 Several clinical trials are ongoing 

with vemurafenib in monotherapy and in combination with 

chemotherapy, immunotherapies, and other targeted therapies.22

Dabrafenib is also a selective BRAF-mutant inhibitor 

approved (2013) by the FDA for the treatment of unresectable 

or metastatic melanomas harboring BRAFV600E  mutations.120,122 

Several clinical trials are ongoing with dabrafenib in mono-

therapy and in combination with radiotherapy, immunothera-

pies, and other targeted therapies.22
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Encorafenib, another BRAF-mutant inhibitor, has also 

been used in trials in monotherapy (NCT01436656), in 

combination with other targeted therapies (NCT02159066/

NCT01909453) and with targeted therapies plus immuno-

therapies (NCT02902042/NCT03235245/NCT02631447).

Targeting the tyrosine kinases has led to remarkable 

response rates with better OS rates in melanoma clinical 

trials.122 However, the clinical benefit of these therapies is 

limited, due to the rapid development of multiple mechanisms 

of resistance, such as elevated expression of the kinases CRAF, 

COT1, or mutant BRAF, activated mutations in N-RAS, MEK1, 

or AKT1, aberrant splicing of BRAF, activation of phosphati-

dylinositol-3-OH kinase (PI3K) via the loss of phosphatase 

and tensin homolog (PTEN), and persistent activation of 

receptor tyrosine kinases.123 Combined therapies seem to be an 

adequate strategy for melanoma patients, in order to overcome 

these resistance mechanisms.122 In in vitro studies, dichloro-

acetate (DCA), which reverts the metabolic profile of cancer 

cells from glycolysis to oxidative phosphorylation, induced 

mammalian target of rapamycin (mTOR) inhibition and an 

increase of apoptosis in melanoma cells.124  Furthermore, 

 melanoma cells resistant to vemurafenib maintained sensi-

tivity to DCA, suggesting a possible combination therapy to 

overcome BRAF inhibitors resistance.125

Being a targeted therapy, it is possible to select the 

patients who will benefit from this treatment, based on 

the mutational profile of the tumor. Only patients with 

tumors harboring BRAF mutations should undergo treat-

ment with a BRAF inhibitor, and patients with known 

RAS-mutant should not receive this treatment.122,126,127 The 

AEs of this treatment appear in 90% of the patients. The 

duration of the treatment is dependent on the toleration 

to toxicity. In patients with grade 1 and tolerable grade 2 

toxicities, treatment can be continued at the usual dosage, 

but the treatment should be suspended for higher grades. 

Frequent noncutaneous AEs include arthralgia, fatigue, 

nausea, diarrhea, and headache. Cutaneous AEs include 

pyrexia, rash, photosensitivity, pruritus, acneiform erup-

tions, erythematous hyperkeratotic follicular papules, 

granulomatous eruption, hyperkeratosis, warts, milia, 

keratoacanthoma, cutaneous squamous cell carcinoma, 

and basal cell carcinoma.122,128

Figure 3 Targeted therapies approved by FDA (in white – vemurafenib, dabrafenib, trametinib, and cobimetinib) or in trials (in gray – imatinib, sunitinib, dasatinib, nilotinib, 

bevacizumab, PI-103, BKM120, GSK2636771, INCB050465, IPI-549, MK2206, everolimus, temsirolimus, ribociclib, abemaciclib, palbociclib, SHR6390, and ASN003) for 

cutaneous melanoma treatment. Mutations on key signaling oncogenes, used as targets for melanoma therapy, are associated with melanoma cell proliferation, cell-cycle 

progression, and malignant phenotype. Melanoma patients may benefit from combined therapies, using two different targeted therapies or targeted therapy with adjuvant 
immune therapy or chemotherapy.

Abbreviations: FDA, US Food and Drug Administration; mTOR, mammalian target of rapamycin; VEGFR, vascular endothelial growth factor receptor; ERK, extracellular 

signal-regulated kinase; MITF, microphthalmia-associated transcription factor; CDK, cyclin-dependent kinase; P13K, phosphatidylinositol-3-OH kinase.
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MEK inhibitors
Targeting signaling effectors downstream of driver oncogenes 

is a valid strategy to overcome resistance to BRAF inhibi-

tors.129 MEK is a downstream target of BRAF and, in contrast 

to the BRAF inhibitors, MEK inhibitors showed activity in 

NRAS-mutant melanomas.130

Trametinib, a pharmacological MEK1/2 inhibitor with 

antitumoral activity, was approved (2013) as a monotherapy 

by the FDA for the treatment of unresectable or metastatic 

malignant melanomas with BRAF mutations.122,131 The 

blocking of MEK1/2 results in the inhibition of growth 

factors-mediated cell signaling and decrease of tumor cells 

proliferation. In metastatic melanoma patients with activat-

ing BRAF mutations not previously treated with selective 

BRAF inhibitors, trametinib was reported to improve clinical 

response rate, PFS, and OS, compared to chemotherapy.129 

The most common general AEs of MEK inhibitors are diar-

rhea, peripheral edema, fatigue, nausea, and vomiting.122 A 

clinical trial to test the effect of trametinib in patients with 

BRAF non-V600 mutation is ongoing (NCT02296112). 

Combined therapy of trametinib and dabrafenib (BRAF-

mutant inhibitor) showed durable objective responses in 

a randomized, multicenter, open-label study,132 and the 

combination was approved (2014) by the FDA for the treat-

ment of unresectable and metastatic melanomas harboring 

BRAF mutations.133 Several clinical trials are ongoing with 

the combination of trametinib and dabrafenib and the two 

drugs in combination with radiotherapy, immunotherapies, 

and other targeted therapies.22 

In 2015, the combination of cobimetinib, an oral selective 

MEK inhibitor, and vemurafenib (BRAF-mutant inhibitor) 

was approved for the treatment of melanomas, harboring 

BRAF mutations, which cannot be surgically removed or 

display metastization.133,134 This approach was reported to 

achieve significant improvement in the PFS of melanoma 

patients.135 Several clinical trials are ongoing with the com-

bination of cobimetinib and vemurafenib and the two drugs 

in combination with chemotherapy, immunotherapies, and 

other targeted therapies.22 The most frequent AEs for the 

combination of BRAF and MEK inhibitors are pyrexia, chills, 

fatigue, nausea, vomiting, and diarrhea.122

CKIT inhibitors
In melanoma, CKIT mutations have been described in 39% of 

mucosal melanoma, 36% of acral lentiginous melanoma, 28% 

of cutaneous melanomas arising in areas of chronic sun-dam-

aged skin, and none in melanomas of skin without chronic 

sun damage.136,137 CKIT mutations or gene amplifications 

can lead to the constitutive ligand-independent activation of 

this receptor and upregulation of the MAPK and PI3K/AKT 

pathway.122,138 CKIT mutations have been reported across 

several exons and were associated with the development of 

drug resistance.139

Imatinib is an oral CKIT inhibitor that reveals significant 

activity in patients with metastatic melanoma harboring CKIT 

aberrations, with a response rate of 30%, but with a median 

PFS of 3–4 months.140–142 Two clinical trials with imatinib are 

ongoing, in combination with chemotherapy (NCT00667953) 

and with immunotherapies (NCT02812693).

Other multikinase inhibitors, such as sunitinib, dasatinib, 

and nilotinib, may have activity in patients with melanoma 

harboring KIT mutations. Clinical trials with these drugs are 

ongoing, in combination with chemotherapy (NCT01005472) 

and with immunotherapies (NCT01876212). The known AEs 

are myelosuppression, fatigue, and fluid retention.122

VEGF inhibitors 
Melanomas express high levels of VEGF, VEGF-R1, VEGF-

R2, and VEGF-R3 which are associated with poor prognosis, 

immune suppression, and growth of tumor neovascula-

ture.143,144 The angiogenesis promoted by the VEGF is crucial 

for cancer progression.145 Therefore, VEGF blockade may be 

a useful approach for melanoma therapy.

Bevacizumab is an anti-VEGF monoclonal antibody that 

can target and neutralize VEGF and inhibit tumor growth.146 

In a single-arm Phase II clinical trial, patients with previ-

ously untreated metastatic melanomas were treated with a 

combined therapy of TMZ and bevacizumab.147 The objec-

tive response rate was 16%, the overall disease control rate 

was 52%, the median PFS was 4.2 months, the OS was 

9.6 months, and an improvement in OS in patients with 

BRAFV600E-mutated melanoma was observed. In another 

single-arm Phase II clinical trial, bevacizumab was adminis-

tered in combination with IFN α-2b. The median progression-

free rate was 4.8 months and OS rate was 17 months. These 

studies indicate the potential of VEGF as a target, but failed 

to validate this therapy for melanomas. Other clinical trials 

are ongoing, using bevacizumab in combination with che-

motherapy (NCT03175432/NCT03175432) and with immu-

notherapies (NCT02681549/NCT03167177/NCT00790010/

NCT01950390/NCT02158520).

PI3K-AKT-mTOR pathway inhibitors
mTOR plays a key role in tumor development and progres-

sion, and therapies have been developed to downregulate its 

pathway.4,148 mTOR forms two protein complexes, mTOR 

Powered by TCPDF (www.tcpdf.org)

www.dovepress.com
www.dovepress.com
www.dovepress.com


ImmunoTargets and Therapy  2018:7submit your manuscript | www.dovepress.com

Dovepress 

Dovepress

44

Domingues et al

complex 1, which is activated by the PI3K/AKT pathway, 

and mTOR complex 2.148 Activation of the mTOR pathway 

was described in cutaneous melanoma, associated with the 

presence of BRAF mutations and with poor prognosis.149

The combination of PI-103, a PI3K inhibitor, with 

the mTOR inhibitor rapamycin may effectively block the 

growth of melanoma cells and induce autophagy compared 

to both single agents separately.4,150 Studies showed that 

PI3K-AKT pathway inhibitors led to a higher increase of 

the apoptosis rates compared to BRAF or MEK inhibitors.151 

Other PI3K inhibitors are being used in clinical trials, such 

as BKM120 in combination with other targeted therapies 

(NCT02159066), GSK2636771 in combination with immu-

notherapies (NCT03131908), INCB050465 in combination 

with other targeted therapies and with immunotherapies 

(NCT02646748), and IPI-549 monotherapy compared to 

the combination with immunotherapies (NCT002637531). 

An AKT inhibitor, MK2206, is also being used in a trial, in 

combination with chemotherapy (NCT01480154).

The antitumor effects of mTOR inhibition may be 

enhanced when combined with MAPK pathway inhibitors. 

An increase in mTOR pathway activation was observed in 

cells transfected with BRAF vectors and BRAF-mutated 

melanoma cell lines were reported to be more sensitive to 

mTOR inhibition.152 Moreover, inhibition of AKT or mTOR 

and combined inhibition of PI3K and mTOR were reported 

to be alternative strategies to overcome BRAF inhibitors 

resistance.153,154 A clinical trial is ongoing to test the effect 

of two mTOR inhibitors, everolimus or temsirolimus, in 

combination with a BRAF inhibitor (NCT01596140), and 

another trial is testing ASN003, a BRAF inhibitor with 

additional selective activity against PI3K and mTOR kinases 

(NCT02961283). Combination of low-dose mTOR inhibitors 

with immunotherapy needs clinical validation, as mTOR 

inhibition can result in either immunosuppression or immune 

activation, depending on the dose, timing, and sequencing 

of administration.155

Cyclin-dependent kinase (CDK) 
inhibitors
In familial melanomas, 2% are associated with germline 

mutations in CDK4.156 CDK4 is an oncogene that controls 

cellular proliferation and it is inhibited by p16.12,157–159 Beyond 

CDK4, CDK6 and cyclins (D1, D2, or D3) also control the 

point in G1.160 CDK4/cyclin D kinase hyperactivation, associ-

ated with the mutation of CDK4, amplification of cyclin D, 

or complete deletion of p16INK4a, leads to an increased risk 

of developing melanomas.161

A new generation of selective CDK4/6 inhibitors, includ-

ing ribociclib, abemaciclib, and palbociclib, has enabled 

tumors to be targeted with improved effectiveness and fewer 

AEs.159 Abemaciclib has also been reported to induce growth 

regression in vemurafenib-resistant melanoma models, in 

which high levels of cyclin D1 expression and MAPK-path-

way reactivation were observed.162 The appropriate selection 

of patients harboring CDK4 mutations seems crucial for the 

success of the therapy.159 CDK4/6 inhibitors are in use in 

clinical trials for melanoma, such as ribociclib in combination 

with targeted therapies (NCT01781572/NCT02159066), abe-

maciclib monotherapy (NCT02308020), in combination with 

chemotherapy (NCT02857270) and with immunotherapies 

(NCT02791334), palbociclib monotherapy (NCT01037790) 

and in combination with targeted therapies (NCT02202200), 

and SHR6390 monotherapy (NCT02671513).

ErbB4 inhibitor
ErbB4 belongs to the ErbB family of tyrosine kinase receptors. 

ErbB4 mutations were identified in melanomas and are associ-

ated with increased kinase activity and transformation ability. 

Thus, the development of selective inhibitors of ErbB4 may 

help in the treatment of melanomas. It was reported that mela-

noma cells expressing mutant ErbB4 which were submitted 

to shRNA-mediated knockdown of ErbB4 or treatment with 

the ErbB inhibitor lapatinib displayed reduced cell growth.163

Conclusion
The understanding of melanoma pathogenesis was crucial for 

the development of new therapeutic modalities. Characteriza-

tion of oncogenic signaling pathways and interactions allowed 

the identification of novel targets for clinically effective 

treatments, such as pathways inhibitors and immune check-

point antibodies. Although it represents an advancement for 

melanomas treatment, these types of approaches face several 

challenges. The comprehensive features of patients that will 

benefit from each strategy aim to establish biomarkers (eg, 

specific mutations) for the best (eg, targeted) therapy in 

advanced melanomas. The clinical tolerated doses are also an 

important issue, as it must comply with an acceptable tumor 

inhibition with minimal AEs. Moreover, patient and tumor 

heterogeneity are associated with different mechanisms of 

resistance, which influence negatively clinical outcomes in 

melanomas. To overcome these resistance mechanisms, a 

synergy between strategies (chemotherapy, immunotherapy, 

and targeted therapy) appears to be a suitable approach, tar-

geting distinct pathways. Recently, the number of approved 

immunotherapies has been increasing. Favorable therapy 
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results, in melanoma and in other types of cancer, can be 

explained by the immune response triggered that produces a 

T-cell repertoire, which adapts to heterogeneous tumors, and 

generates memory T-cells that guarantee efficient responses 

against recurrent tumor.

Depending on the molecular features of the patients and 

tumors, as well as the responses to therapy, personalized 

treatment should be considered for melanoma patients, in 

order to achieve better clinical benefits. Further research 

is necessary to explore oncogenic pathways and the TME 

potential in the treatment of melanomas.
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