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Melanopsin-mediated pupil 
function is impaired in Parkinson’s 
disease
Daniel S. Joyce1,2,6, Beatrix Feigl1,3,5, Graham Kerr1,4, Luisa Roeder1,4 & Andrew J. Zele  1,2

Parkinson’s disease (PD) is characterised by non-motor symptoms including sleep and circadian 
disruption. Melanopsin-expressing intrinsically photosensitive Retinal Ganglion Cells (ipRGC) transmit 
light signals to brain areas controlling circadian rhythms and the pupil light reflex. To determine if 
non-motor symptoms observed in PD are linked to ipRGC dysfunction, we evaluated melanopsin and 
rod/cone contributions to the pupil response in medicated participants with PD (n = 17) and controls 
(n = 12). Autonomic tone was evaluated by measuring pupillary unrest in darkness. In the PD group, 
there is evidence for an attenuated post-illumination pupil response (PIPR) amplitude and reduced 
pupil constriction amplitude, and PIPR amplitudes did not correlate with measures of sleep quality, 
retinal nerve fibre layer thickness, disease severity, or medication dosage. Both groups exhibited 
similar pupillary unrest. We show that melanopsin- and the rod/cone-photoreceptor contributions to 
the pupil control pathway are impaired in people with early-stage PD who have no clinically observable 
ophthalmic abnormalities. Given that ipRGCs project to brain targets involved in arousal, sleep and 
circadian rhythms, ipRGC dysfunction may underpin some of the non-motor symptoms observed in PD.

In Parkinson’s disease (PD), non-motor symptoms can precede motor symptoms and include sleep disturbances 
and daytime sleepiness, fatigue, depressed mood and cognitive impairments1,2. �e aetiology underlying sleep 
and circadian disturbances in PD is not well understood, but is hypothesised to include dysregulation of the cir-
cadian system due in part to reduced dopaminergic neurotransmission (for review see Videnovic and Golombek, 
2013)3. In people with PD, a 4-fold reduction in melatonin expression has been observed without altered circa-
dian phase4. In mouse models of the disease, suprachiasmatic nucleus (SCN) signalling is reduced. �ese studies 
suggest degradation of environmental light signal processing via the retinohypothalamic tract that projects from 
the retina to the SCN.

�e origin of the retinohypothalamic tract is a novel class of photoreceptors in the eye called intrinsically 
photosensitive retinal ganglion cells (ipRGCs)5–7. IpRGCs account for less than 0.5% of all retinal ganglion cells5,7 
yet project to over a dozen brain areas including those involved in circadian photoentrainment, sleep and mood 
regulation, the pupil light re�ex6,8–15 and for image forming human vision16 including the perception of bright-
ness17,18. �e transmission of light signals to the brain by ipRGCs is initiated at two retinal sites, intrinsically via 
the endogenous melanopsin photopigment8,12,19,20 and extrinsically from rod and/or cone photoreceptors6 that 
involve dopaminergic amacrine intermediary cells19,21–23. Melanopsin has high sensitivity to short wavelength 
(blue) light with a physiological response characterised by slow temporal kinetics and sustained signalling a�er 
light cessation6; in humans, the kinetics of the pupil light re�ex a�er stimulus o�set (the post-illumination pupil 
response, PIPR) provide a signature, non-invasive measure of melanopsin function24–27 that can be di�erentiated 
from extrinsic photoreceptor inputs using non-invasive chromatic pupillometry28–31. Pupillometric assessment 
of ipRGCs in humans has shown clinical promise for a range of retinal and non-retinal diseases (for review see 
Feigl & Zele, 2014)29; pupil constriction in response to light stimuli has been used to evaluate outer retinal rod/
cone dysfunction in PD32 but intrinsic ipRGC-mediated pupil function has not been investigated. Our primary 
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aim was to perform chromatic pupillometry on optimally medicated PD participants to determine if their ipRGC 
function is di�erent to people in a healthy control group.

�e resting pupil diameter is set by the autonomic nervous system which achieves a dynamic equilibrium 
between parasympathetic input to the pupillary sphincter and sympathetic input to the dilator muscle33,34. �e 
autonomic nervous system is impaired in PD35,36 and unmedicated PD patients showed increased pupil diame-
ters a�er light adaptation, reduced pupil constriction amplitude and a delayed pupil constriction37. In a group of 
mostly (71%, n = 12) unmedicated PD patients, the pupillary unrest increased when in darkness38. To evaluate the 
level of autonomic tone in optimally medicated PD patients, the secondary aim was to measure pupillary unrest 
in the absence of light stimulation.

Materials and Methods
Participants. Twenty-nine participants were recruited, comprising of 17 people with PD (mean age = 64.9 
years, SD = 6.1, 5 female) and 12 control participants (mean age = 59.7 years, SD = 4.1, 4 female). PD participants 
were early stage with a mild to moderate disease severity as assessed by the Uni�ed Parkinson’s Disease Rating 
Scale39,40 (mean score 36.3, SD = 12.0) and Hoehn & Yahr41 scale (mean score = 1.7, SD = 0.6). �ey were liv-
ing independently and were cognitively intact (Mini-Mental State Examination42 mean score = 29.1, SD = 1.1; 
Addenbrooke’s Cognitive Examination mean score43,44 = 91.3, SD = 6.9). Participants with PD were optimally 
medicated during all measurements (mean Levodopa equivalent daily dosage = 597.2 mg, SD = 302.1 mg).

A comprehensive ophthalmic examination was completed in all participants. Inclusion criteria included a best 
corrected visual acuity ≥6/6 (Bailey-Lovie Log MAR Chart), an absence of ocular pathology on slit lamp exami-
nation and ophthalmoscopy, and intraocular pressure measured with non-applanation tonometry (iCare, Finland 
Oy, Helsinki, Finland) within the normal range (<21 mmHg) before dilation and a�er testing. All participants 
had normal colour vision as assessed by the Farnsworth D-15. Participants with implanted intra-ocular lenses, 
medications known to a�ect pupil size, and other diseases that can a�ect ipRGC function, including diabetes, 
were excluded from participation in this study.

Retinal nerve �bre layer (RNFL) thickness was measured using Optical Coherence Tomography (OCT) 
(Cirrus-HD OCT, Carl Zeiss Meditec, Inc., Dublin, CA, USA and Nidek RS-3000 RetinaScan Advance, Nidek 
Co., Ltd., Tokyo, Japan). Given the evidence for sleep disturbances in people with PD and that ipRGCs transduce 
environmental light signals for circadian photoentrainment, sleep quality was assessed in all participants using 
the Pittsburgh Sleep Quality Index questionnaire (PSQI)45.

Experimental protocols were approved by the Queensland University of Technology Human Research Ethics 
Committee. �e Methods were carried out in accordance with the relevant guidelines and regulations, and partic-
ipants provided informed consent in accordance with the tenets of the Declaration of Helsinki.

Pupillometer. Light stimuli were generated using a custom built extended Maxwellian-view optical sys-
tem31,46–48. �e light from two 5 mm diameter LEDs (short wavelength, ‘blue’ light, λmax = 465 nm; full width half 
maximum (FWHM) = 19 nm; long wavelength, ‘red’ light, λmax = 638 nm, FWHM = 15 nm) was imaged in the 
plane of the pupil via two Fresnel lenses (100 mm diameter, 127 mm and 70 mm focal lengths; Edmund Optics, 
Singapore) and a 5° light shaping di�user (Physical Optics Corp., California USA) which generated a 35.6° stim-
ulus light. �e consensual pupil response was recorded with a Pixelink camera (IEEE-1394, PL-B741 FireWire; 
640 × 480 pixels; 60 frames.s−1) through a telecentric lens (Computar 2/3″ 55 mm and 2 × Extender C-Mount) 
under infrared LED illumination (λmax = 851 nm). A chin rest, temple bars and a head restraint maintained align-
ment in Maxwellian-view. Custom so�ware coded in Matlab (version 7.12.0, Mathworks, Massachusetts USA) 
controlled stimulus presentation, pupil recording and analysis. Details of the pupillometry measurements are 
given elsewhere49,50.

Stimuli. �e light stimulation protocol consisted of a 10 s pre-stimulus baseline recording, pulsed (8 s rectan-
gular) or phasic (12 s, 0.5 Hz sinusoidal) stimulus presentation, and a 40 s post-stimulus recording period (see 
Fig. 1A,B and C,D for the stimulus waveform). �e corneal irradiance of the short and long wavelength stimuli 
were equated to 15.1 log photons.cm−2.s−1. Given the older age of the participants, retinal irradiances were esti-
mated using an age-related model of changes in the optical density of the media of the eye (cornea, lens, aque-
ous and vitreous humours) for stimuli greater than 3° in diameter:51 Average short wavelength attenuation was 
0.54 log units in the PD group and 0.50 log units in the control group. Average long wavelength attenuation was 
0.16 log units for both groups, invariant to group membership and age. To account for the bistability of melanop-
sin52 and participant fatigue47,53 stimuli were alternated, beginning with the long wavelength stimulus followed by 
the short wavelength stimulus. Two recordings for each wavelength of the pulsed and sinusoidal stimulation were 
obtained and averaged prior to analyses. Pupillary unrest was recorded in the dark for 5 minutes at the end of the 
pulsed and sinusoidal testing to measure autonomic tone and fatigue (see Pupil Metrics and Analyses section). 
Each participant therefore underwent a total of 9 trials during a recording period lasting approximately 1.5 hours.

Pupil Metrics and Analyses. Short wavelength light stimulation with high melanopsin excitation activated 
intrinsic ipRGC inputs to the pupil control pathway24–26. Long wavelength stimuli with low melanopsin excita-
tion biased activation to the extrinsic outer retina photoreceptors and was thus a control stimulus with minimal 
intrinsic ipRGC activation24,31.

To investigate the interaction between inner and outer retina photoreceptor inputs to the pupil control path-
way during pulsed stimulation, constriction amplitude was measured28,31. To determine the interaction between 
inner and outer retinal contributions to the phasic pupil response of the dark-adapted pupil, two parameters were 
calculated – the peak to trough amplitude31, and the Phase Amplitude Percentage (PAP: (long wavelength peak to 
trough – short wavelength peak to trough)/long wavelength peak to trough)29.
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To assess intrinsic melanopsin signalling, the PIPR amplitude can be measured at any time ≥1.7 s a�er stim-
ulus offset27. The melanopsin-mediated PIPR under short wavelength conditions demonstrates a sustained 
constriction (that is, a reduction from baseline diameter that persists). In contrast, the PIPR amplitude to long 
wavelength stimulation is less sustained and rapidly returns to baseline due to the lower sensitivity of melanopsin 
at long wavelengths6,28. We calculated the optimal timing of the PIPR metric given our equipment, sample, and 
stimulus conditions: �e control group data for the pulsed and sinusoidal PIPR data were averaged within the 
short and long wavelength conditions; subtracting the short from long wavelength data determined the timing 
of the largest di�erence between these retinal inputs to the PIPR, which was the 1 s window30 of the 11th second 
a�er light o�set. �us, the PIPR value used for all analyses (both PD and control groups) was 11 s a�er light o�set.

In order to quantify changes in pupillary unrest (hippus, spontaneous oscillations of the pupil primarily 
driven by central changes in autonomic tone)54 that may di�er with disease status, we measured pupil diameter 
in the dark for 5 minutes at the end of the experimental session. �e power of pupillary unrest was characterised 
with the root-mean-square (RMS) of the unrest data. To remove low frequency noise and slow dri�s in the pupil 
data, but to retain higher frequency oscillations (~3 to ~7 Hz) associated with PD tremor55–57, a 1 Hz high-pass 
�lter was applied. Dominant frequencies (Hz and dB) of pupillary unrest were then measured using Fast Fourier 
Transform58,59, and disorder in the pupillary unrest was characterized with sample entropy60. Low sample entropy 
values indicate high signal regularity and high sample entropy values indicate low signal regularity. In addition, 
the average pupillary unrest index (PUI) was calculated for each individual using the method of Lüdtke et al. 
(1998)61, over a shortened duration of �ve minutes to minimise fatigue. �e PUI calculates the average pupil 
diameters at a sample frequency of 1.526 Hz, acting as a low pass �lter, and sums their absolute di�erences. It is 
thus an additive measure of consecutive pupil diameters that quanti�es pupil oscillation variability, and has been 
used to estimate sleepiness during recording periods of ~11 min61.

Each pupil tracing was individually visualised and data due to blinks were linearly interpolated in Matlab. In order to 
minimise the correlations between the pupil light re�ex metrics when expressed in millimetres62, the data were normal-
ised to the average pupil diameter of the �rst 10 seconds and expressed as percentage baseline units. �e non-normally 
distributed data for the PD and control groups were compared using independent samples Mann-Whitney U tests. 
Correlations within the PD group data were explored using Spearman’s rank order test. All statistical analyses were 
performed in SPSS Statistics (v23.0, IBM, Armonk, NY, USA) using two-tailed tests with an alpha level of p < 0.05.

Procedure. Participants with PD were assessed for disease severity (UPDRS, H&Y) and cognitive impair-
ment (MMSE) prior to visual testing. All participants were provided the PSQI and instructed in its use (sent via 
mail and returned on the day of testing), to assess their quality of sleep in the four weeks prior to visual testing. 

Figure 1. Normalised mean pupil light re�ex waveforms (mean ± 95% con�dence intervals). Data from the 
PD group (light tracings, n = 17) and the control group (dark tracings, n = 12) are shown within each panel, 
for pulsed (Panels A,B) and sinusoidal (Panels C,D) stimulation in response to both short wavelength (blue 
tracings, Panels A,C) and long wavelength (red tracings, Panels B,D) light. �e pupil metrics are illustrated 
in Panels A and C (minimum constriction amplitude, PIPR amplitude and peak to trough amplitude) and 
schematics of the test stimuli are depicted on the abscissa. To control for individual di�erences in baseline  
pupil diameter, the data are normalised to the �rst 10 s of recording.
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Upon presentation participants had a comprehensive ophthalmic exam, before dilation of their stimulated eye 
(Tropicamide 0.5% w/v, Bausch & Lomb). Once the pupil had fully dilated the participant was briefed of the 
protocols and aligned in the pupillometer. All pupillometry was conducted in the dark and before each trial 
participants adapted to the dim room illumination (<1 lux) for 7 minutes. Between trials the participants were 
permitted to remove their head from the pupillometer but remained seated. Following pupillometry, participants 
had their fundus and lens examined (slit lamp), RNFL thickness measured via OCT, and IOP re-assessed. �e 
entire experimental and ophthalmic testing was completed within two hours.

Data availability. �e datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.

Results
�e RNFL thickness was similar between the PD group (median = 93.00 µm, interquartile range (IQR) = 19.50) 
and control group (median = 89.50 µm, IQR = 21.00) (p = 0.902). Sleep quality was reduced in the PD group 
(median = 7.00, IQR = 4.00) compared to controls (median = 4.00, IQR = 3.00), but this di�erence was not sig-
ni�cant (p = 0.264) and groups did not di�er along derived 2-factor dimensions of sleep quality (p = 0.517) and 
sleep e�ciency (p = 0.578)63.

�e pupil light re�ex for the control and PD groups in response to the pulsed (Fig. 1A,B) and sinusoidal stim-
uli (Fig. 1C,D) demonstrate reduced PIPR amplitudes (higher % baseline, see also Fig. 2) for short wavelength 
stimulation.

Box plots (Fig. 2) show all participant data for the minimum amplitude (pulsed stimuli) and PIPR amplitude 
(pulsed and sinusoidal stimuli). �e minimum pupil constriction amplitude for short wavelength pulsed stim-
ulation was similar between the PD (median = 43.35%, IQR = 10.57%) and control groups (median = 39.93%, 
IQR = 2.79%) (p = 0.079), whereas the minimum constriction amplitude for long wavelength pulsed stimulation 
was reduced in the PD group (median = 51.48%, IQR = 9.73%) compared to the control group (median = 46.10%, 
IQR = 6.05%) (p = 0.034). The melanopsin-mediated PIPR was measured from the pulsed and sinusoidal 
pupillometry protocols. For short wavelength stimuli that have a high melanopsin excitation, the pulsed PIPR 
amplitude was 14.73% higher in PD participants (median = 80.32%, IQR = 23.16%) compared to controls 
(median = 65.59%, IQR = 20.52%) (p = 0.018), indicating reduced melanopsin contributions to this process (i.e., 
closer to baseline diameter in the PD group than controls). Similarly, short wavelength sinusoidal PIPR amplitude 
was 12.96% higher in the PD group (median = 81.72%, IQR = 15.21%) compared to controls (median = 68.76%, 
IQR = 21.32%; p = 0.011). As expected, the long wavelength (with minimal melanopsin excitation) PIPR ampli-
tude was not di�erent between groups for either pulsed (p = 0.325) or sinusoidal (p = 0.556) stimulation.

Figure 2. Pupil metrics in response to pulsed and sinusoidal stimulation. �e minimum amplitude (Panel A), 
PIPR amplitude (Panel B), Peak to trough amplitude (Panel C) and phase amplitude percentage (Panel D) are 
depicted. Data in Panel A are derived from pulsed stimulation and data in Panels C and D are derived from 
sinusoidal stimulation. Each data point represents an individual’s mean data, boxplots depict the quartiles and 
whiskers the range. Asterisks indicate a signi�cant di�erence between groups (p < 0.05).
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To determine if the short wavelength pulsed PIPR amplitude was associated in the PD group with sleep qual-
ity (PSQI), clinical symptom severity (UPDRS), RNFL thickness or medication dosage (LEDD), we performed 
Spearman’s rank-order correlations; no statistically signi�cant correlations were observed (Table 1).

In response to sinusoidal stimulation, the peak to trough amplitude and the phase amplitude percentage (PAP) 
of the phasic pupil response (Fig. 2C,D respectively) shows more variability in participants with PD than con-
trols, independent of stimulus wavelength. With short wavelength lights that have high melanopsin excitation 
(Fig. 2C) the peak to trough amplitude trended to increase in the PD group (median = 7.95%, IQR = 3.57%), 
which is indicative of reduced melanopsin contributions compared to controls (median = 5.59%, IQR = 2.20%), 
but this di�erence was not signi�cant (p = 0.205). Similarly, under long wavelength stimulation with low melan-
opsin excitation (Fig. 2C), the peak to trough amplitude did not di�er between the PD group (median = 12.03%, 
IQR = 6.41%) and controls (median = 11.48%, IQR = 3.18%) (p = 0.471). �e median PAP did not signi�cantly 
di�erent between groups (p = 0.537; Fig. 2D).

Pupillary unrest assessed autonomic tone and fatigue, and mean waveforms are shown for the PD and control 
groups in Fig. 3A,B respectively. Metrics derived from the pupillary unrest recordings are given in Table 2; the PD 
and control groups did not statistically di�er on any metric.

Discussion
�e melanopsin mediated PIPR to short wavelength stimulation and the pupil constriction amplitude in response 
to long wavelength stimulation was dysfunctional in optimally medicated individuals with PD. Pupillary unrest 
however, was not signi�cantly di�erent between the PD and control groups, neither was there a signi�cant sleep 
de�cit as assessed with the PSQI.

PIPR RNFL UPDRS LEDD PSQI

PIPR 1 0.11 (0.68) 0.14 (0.60) 0.24 (0.35) 0.26 (0.32)

RNFL 0.11 (0.68) 1 −0.25 (0.34) −0.17 (0.51) 0.07 (0.78)

UPDRS 0.14 (0.60) −0.25 (0.34) 1 −0.11 (0.67) 0.12 (0.65)

LEDD 0.24 (0.35) −0.17 (0.51) −0.11 (0.67) 1 0.48 (0.05)

PSQI 0.26 (0.32) 0.07 (0.78) 0.12 (0.65) 0.48 (0.05) 1

Table 1. Spearman’s rank-order correlations between pulsed short wavelength PIPR amplitude and PD 
markers. Note: Data are expressed as correlation coe�cient (p value). PIPR = Post-illumination pupil 
response, RNFL = Retinal nerve �bre layer thickness, UPDRS = Uni�ed Parkinson’s Disease Rating Scale, 
LEDD = Levodopa equivalent daily dosage, PSQI = Pittsburgh sleep quality index. n = 17.

Figure 3. Normalised pupillary unrest in darkness (mean ± 95% con�dence intervals). Data from PD group 
(light tracings, n = 17) and control group (dark tracings, n = 12) are shown in panels A and B respectively. 
To control for individual di�erences in baseline pupil diameter, the data are normalised to the �rst 10 s of 
recording.

RMS
Dominant 
frequency (Hz)

Dominant 
frequency (dB)

Sample 
entropy

Pupillary 
unrest index

PD 4.63 (2.20) 1.10 (0.14) −8.87 (3.92) 0.25 (0.79) 4.69 (2.95)

Control 4.82 (1.48) 1.09 (0.10) −8.71 (1.79) 0.27 (1.17) 4.88 (6.49)

p value >0.999 0.683 0.507 >0.999 0.683

Table 2. Medians and interquartile ranges of the pupillary unrest metrics. Note: Values are displayed as Median 
(IQR).
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�e reduction in the PIPR amplitude in the PD group indicates that melanopsin-mediated ipRGC inputs 
to pupil control pathway are impaired, and that this e�ect size is both large and clinically relevant (di�erence 
between medians = 17.49%). Reduced ipRGC function has been associated with impaired sleep64,65 and while 
there was reduced sleep quality in patients with PD compared to the control group, this di�erence was not statis-
tically signi�cant. We acknowledge however that alternative methods of sleep assessment such as polysomnogra-
phy may be more sensitive than the PSQI in detecting sleep de�cits. Even so, the observed ipRGCs dysfunction 
indicates the pathophysiology of circadian and sleep disorders in PD patients includes a retinal source that leads 
to aberrant signalling to circadian centres.

�e PIPR amplitude was reduced in response to both pulsed and sinusoidal stimulation in the PD group, and 
these de�cits were observed in the PD participants with no retinal thinning as compared to controls. Previous 
studies have identi�ed reduced RNFL thickness in people with PD including at the early- to mid-stage66,67. �at 
the PD group did not statistically di�er in RNFL thickness compared to controls is consistent with the early stage 
diagnosis based upon their clinical UPDRS and H&Y scores68. Because ipRGCs have low redundancy compared 
to canonical retinal ganglion cells5,7, functional ipRGC de�cits may be measureable before a reduction in ganglion 
cell numbers is detected using conventional ophthalmic imaging.

Given the aetiology of PD, de�cits in ipRGC function could be linked to a reduction in dopamine expression. 
IpRGCs form retinal circuits with dopaminergic amacrine cells and may themselves be sensitive to DA through 
feedback loops22,69–71. �e PIPR amplitude is reduced in patients with type II diabetes without diabetic retinop-
athy53, which in rodent models features decreased retinal dopamine72,73. Post-mortem examination reveals that 
DA cell morphology is abnormal in the PD retina, with reductions in both DA and DA’s synthesising enzyme 
tyrosine hydroxylase74,75, although retinal DA is reduced in unmedicated but not medicated patients with PD in 
one study76. Alternate hypotheses include de�ciencies in the cholinergic inputs to the pupil control system77, com-
patible with cholinergic gait disturbances in PD78,79; or reduced ipRGC signaling due to α-synuclein deposition 
within the inner plexiform and ganglion cell layers80,81.

�e pupil constriction response to long wavelength light is una�ected by yellowing of the lens with ageing and 
represents extrinsic photoreceptor contributions to the ipRGCs. With a small (5.38%) but statistically signi�cant 
di�erence, this pathway is impaired in the PD group. Consistent with this observation, but in unmedicated PD 
with a light-adapted paradigm (1200 Lux for 10 minutes), slower pupil constriction latency and timing as well 
as a larger (12.58%) reduction in constriction amplitude has been observed37. A suboptimal dark adaptation 
state82, linked to abnormal dopamine expression in the PD retina, may underpin such dysfunction. Pupillometric 
de�cits in outer retinal-mediated responses may parallel visual performance de�cits in the central and periph-
eral retina of PD patients, including colour vision, contrast sensitivity, and electroretinography (for review see 
Bodis-Wollner)83.

Pupillary unrest metrics did not di�er between the PD and control groups, exhibiting both low entropy, indi-
cating signal regularity, and similar dominant frequencies. In contrast, Jain et al.38 reported increased pupillary 
unrest during a longer 11-minute protocol in a predominantly unmedicated PD group (71%) of similar disease 
severity to our sample (H&Y = 1.7 (0.6), UPDRS = 20.5 (9.6)). Medication may therefore in�uence the resting 
pupil size, obscuring de�cits in pupillary unrest mediated by the autonomic system, whereas the light-dependent 
PIPR amplitude is dysfunctional in optimally medicated populations.

�is initial assessment of melanopsin-mediated ipRGC function in people with PD demonstrates that the 
PIPR, a marker of melanopsin pathway function, is disrupted in optimally medicated individuals with PD. Given 
that the PIPR amplitude is uncorrelated with both clinical ratings of the disease and medication dosage (Table 1), 
further studies should assess the potential to detect prodromal PD. Longitudinal studies testing the hypothesis 
that ipRGC dysfunction increases with disease duration should explore the links between the retina and circadian 
disorders using more sensitive measures of circadian function. On the basis that ipRGCs are the primary conduit 
for entrainment to the solar day15 and innervate brain centres involved in sleep/wake regulation11, ipRGC dys-
function may play an important role in the pathophysiology of sleep and circadian rhythms in PD.
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