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INTRODUCTION 
 

Human reproduction is profoundly influenced by age 

[1]. After ovulation, ovarian granulosa cells transform 
into granulosa-lutein (hGL) cells that produce 

progesterone (P4), an essential steroid hormone that 

regulates luteinization and maintains the early stages of 
pregnancy. In patients undergoing in vitro fertilization 

(IVF), premature luteinization is defined as an increase 
in serum P4 levels before or on the day of human 

chorionic gonadotropin (hCG) administration. Several 

studies have demonstrated that premature luteinization is 
associated with decreased implantation and pregnancy 

rates [2, 3]. In contrast, insufficient ovarian P4 
production (i.e. luteal phase deficiency) is associated 

with dysfunction of the secretory endometrium, which 

compromises successful embryo implantation and  

 

growth [4]. Therefore, a precise regulation of P4 

secretion in hGL cells is required to maintain normal 
reproductive functions. 

 

Although pituitary luteinizing hormone (LH) plays a 
central role in the induction of P4 secretion in the ovary, 

accumulating evidence suggests that P4 biosynthesis can 
also be regulated by locally-produced factors that exert 

their effects in an autocrine and/or paracrine fashion  

[5, 6]. Melatonin, a pineal hormone, regulates major 
physiological functions including the sleep-wake cycle, 

pubertal development, and seasonal adaptation [7]. 

While most endogenous melatonin is synthesized and 
released at night by the pineal gland, this hormone is 

also produced by extra-pineal organs such as the ovary, 
where it was shown to regulate reproductive functions 

through both receptor-mediated signaling affecting 
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ABSTRACT 
 

Steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step in ovarian steroidogenesis and 

progesterone (P4) synthesis. Melatonin and its receptors are expressed in human granulosa cells, and have 

been shown to influence basal P4 production. However, previous studies addressing the regulation of StAR 

expression by melatonin and its impact on P4 secretion yielded contradictory results. Here, we demonstrate 

that melatonin upregulates StAR expression in primary cultures of human granulosa-lutein (hGL) cells obtained 

from women undergoing in vitro fertilization (IVF). Using pharmacological inhibitors, we show that the 

stimulatory effect of melatonin on StAR expression is mediated via both MT1 and MT2 melatonin receptors. 

Melatonin exposure activates the PI3K/AKT signaling pathway and its inhibition attenuates the stimulatory 

effect of melatonin on StAR expression. Moreover, siRNA-mediated knockdown of StAR abolishes melatonin-

induced P4 production. Importantly, clinical analyses demonstrate that melatonin levels in human follicular 

fluid are positively correlated with P4 levels in serum. By illustrating the potential physiological role of 

melatonin in the regulation of StAR expression and P4 production in hGL cells, our results may serve to improve 

current strategies used to treat clinical infertility. 
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cellular metabolism, and receptor-independent actions  
as a scavenger for reactive oxygen and nitrogen species 

[8–10]. Research has shown that melatonin levels in 
serum are reduced with aging [9, 11], potentially 

impacting reproductive potential in women. Melatonin 

acts on target cells by binding to and activating two 
membrane-bound G-protein-coupled receptors, MT1 

(MTNR1A) and MT2 (MTNR1B) [12], both of which are 

expressed in hGL cells [16]. Interestingly, melatonin 
expression can be detected in human follicular fluid at 

higher concentrations than those present in serum  
[13–15], suggesting its relevance in the regulation of 

follicular function. 

 
Steroidogenesis is a complex process that involves 

multiple enzymatic reactions [17]. P4 is initially 
synthesized from cholesterol in the mitochondria. Once 

free cholesterol has been transported to the mitochondria, 

it is transferred from the outer to the inner mitochondrial 
membrane by steroidogenic acute regulatory protein 

(StAR). This transfer represents the rate-limiting step  

of steroidogenesis and P4 production in granulosa cells 
[18–20]. Previous studies on different animal models 

have shown that exogenous melatonin can stimulate the 
production of P4 by granulosa cells [21–23]. Although 

various factors and signaling pathways are reported to 

regulate StAR expression [24], to date only a handful of 
animal studies have examined the effects of melatonin on 

StAR expression in the ovary [25–27]. Meanwhile, in 
hGL cells the effect of melatonin on basal P4 production 

remains controversial [28]. 

 
Therefore, through pharmacological inhibition of 

melatonin receptors, siRNA-mediated knockdown of 

StAR, and clinical measurements of follicular melatonin 
and serum P4 levels, the present study reveals a dose- 

and time-dependent stimulatory effect of melatonin on 
both StAR expression and P4 production in cultured 

hGL cells. Our results highlight a potential physiological 

mechanism by which melatonin influences ovarian 
steroidogenesis and might help design new approaches 

for the treatment of clinical infertility. 

 

RESULTS 
 

Melatonin stimulates StAR expression in hGL cells 

 

To examine the effect of melatonin on StAR expression, 

hGL cells isolated from follicular aspirates of women 
undergoing oocyte retrieval during IVF treatment were 

treated with different concentrations of melatonin for  

24 h. While 5 or 50 µM melatonin had no significant 
effects, StAR mRNA levels were significantly up-

regulated by exposure to 500 µM melatonin (Figure 1A). 
Western blot results confirmed the stimulatory effects of 

melatonin on StAR at the protein level (Figure 1B). 

Time-course expression experiments revealed that 12 h 
melatonin treatment caused a slight, non-significant 

upregulation of StAR protein levels, while significant 
upregulation was observed after 24 h of treatment 

(Figure 1C). 

 
Melatonin-induced StAR expression is mediated by 

MT1 and MT2 receptors 

 
To identify the cellular receptor(s) involved in 

melatonin-induced StAR expression in hGL cells, two 
melatonin receptor antagonists, 4-P-PDOT (MT2-

selective) and luzindole (MT1/MT2-nonselective), were 

tested [29]. As shown in Figure 2A, none of these 
inhibitors affected basal StAR mRNA levels. However, 

in the presence of melatonin, StAR mRNA upregulation 
was partially inhibited by pre-treatment with 4-P-PDOT, 

and abolished by pre-treatment with luzindole. 

Furthermore, western blot analyses showed that these 
antagonists also reduced StAR protein expression 

(Figure 2B). These results indicate that both MT1 and 

MT2 mediate melatonin-induced upregulation of StAR 
expression in hGL cells. 

 
PI3K/AKT signaling mediates melatonin-induced 

StAR expression 

 
Upon binding to MT1/MT2 receptors, melatonin can 

activate the MEK/ERK1/2 and PI3K/AKT signaling 
pathways in a cell type-dependent manner [30]. 

Therefore, we examined the effect of melatonin on the 

activity of these two signaling pathways in hGL cells. As 
shown in Figure 3A, melatonin treatment increased 

phospho-AKT levels, indicating PI3K/AKT activation, 

but did not elicit ERK1/2 activation. We used 
amphiregulin as a positive control, since we have shown 

that it can activate ERK1/2 signaling in hGL cells [31]. 
Next, we tested a specific PI3K inhibitor, LY294002, to 

further determine whether PI3K is required for 

melatonin-induced upregulation of StAR expression. As 
shown in Figure 3B and 3C, pre-treatment with 

LY294002 partially attenuated melatonin-induced 

upregulation of StAR mRNA and protein levels. These 
results indicate that activation of the PI3K/AKT 

signaling pathway is involved in melatonin-induced 
StAR expression in hGL cells. 

 

StAR expression is required for melatonin-

stimulated P4 production in hGL cells 

 
Given the critical role of StAR in the regulation of P4 

production, we examined the effect of melatonin on the 

production of P4 in hGL cells. ELISA showed that hGL 
cells stimulated with melatonin released P4 into the 

culture medium (Figure 4A), and that this effect was 

attenuated by inhibition of the PI3K/AKT signaling 
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pathway (Figure 4B). To directly examine the 
requirement of StAR for melatonin-stimulated P4 

production, a siRNA-based gene silencing approach 
was used to knockdown StAR expression. Transfection 

of hGL cells with StAR siRNA for 48 h significantly 

downregulated endogenous StAR protein levels (Figure 
4C), downregulated basal P4 expression, and abolished 

melatonin-stimulated P4 secretion (Figure 4D). 

 
Melatonin levels in follicular fluid are positively 

correlated with serum P4 levels 

 

Follicular fluid provides a critically important 

microenvironment for the development of the ovarian 
follicle and the oocyte. Therefore, we examined the 

relationship between follicular fluid melatonin and 

serum P4 levels in clinical samples from 50 IVF 
patients. Interestingly, follicular melatonin levels were 

positively correlated with serum P4 levels both on hCG 
administration day (r = 0.470, p = 0.0006) and on the 

day of oocyte pick-up (OPU) (r = 0.349, p = 0.0128) 

(Figures 5A and 5B). These results strongly support the 
in vitro stimulatory effect of melatonin on P4 production 

in the human ovary. 

 

DISCUSSION 
 

Previous studies have shown that melatonin is able to 

stimulate the production of P4 in the ovary [22, 23, 25, 
32, 33]. Unlike animal studies, in which granulosa cells 

at various differentiation stages can be obtained and used 
to examine hormonal actions, nearly all human studies 

 

 
 

Figure 1. Melatonin stimulates StAR expression in primary human granulosa-lutein cells. Human granulosa-lutein (hGL) cells were 

treated with different concentrations of melatonin (Mel) for 24 h, and StAR mRNA (A) and protein (B) levels were examined by RT-qPCR and 

western blot, respectively. (C) Cells were treated with 500 µM melatonin for 12 and 24 h, and StAR protein levels were examined by western 

blot. Results are expressed as the mean ± SEM of 4 independent experiments. Values without a common letter are significantly different  

(p < 0.05). 
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are restricted to the use of highly differentiated granulosa 
cells obtained from women undergoing IVF treatment. 

Due in part to this constrain, and despite available 
evidence, the effect of melatonin on P4 production by 

hGL cells remains controversial. A few studies showed 

that exposure to melatonin does not alter basal P4 
production in hGL cells [16, 34, 35]. However, both 

stimulatory [21, 36] and inhibitory [37, 38] effects of 

melatonin on basal P4 production have also been 
reported. Research showed that during IVF treatment 

stimulation with high doses of gonadotrophins prior to 
oocyte retrieval results in low response to gonadotrophins  

 

 
 

Figure 2. MT1 andMT2 melatonin receptors mediate 

melatonin-induced StAR expression in primary hGL cells. 

Cells were pre-treated with vehicle control (DMSO), 10 µM 4-P-

PDOT, or 10 µM luzindole for 30 min and then exposed to 500 

µM melatonin for 24 h. StAR mRNA (A) and protein (B) levels 

were examined by RT-qPCR and western blot, respectively. 

Results are expressed as the mean ± SEM of 4 independent 

experiments. Values without a common letter are significantly 

different (p < 0.05). 

on the first day of hGL cell culture, due to ligand-
binding-induced downregulation of gonadotrophin 

receptors. However, more prolonged hGL culturing can 
increase responsiveness to gonadotrophins by restoring 

the expression of their receptors [39]. Similarly, we 

found that protein expression of MT1 and MT2 was 
barely detectable on the first day of culture, but was 

restored after 5 days of culture (Supplementary Figure 1). 

This observation is supported by previous studies [30]. 
Therefore, in our system, hGL cells were cultured for 5 

days before being used in experiments. Although detailed 
experimental conditions were not provided by some 

previous studies, we believe that culture conditions 

strongly affect the biological functions of melatonin in 
hGL cells in vitro, and may explain why P4 production 

was not affected by melatonin treatment in previous 
investigations. 
 

In contrast with our results, two previous studies showed 

that melatonin treatment inhibited basal P4 production in 
hGL cells [37, 38]. Unlike our study, which used hGL 

cells derived from follicular aspirates of women 
undergoing oocyte retrieval during IVF treatment, in one 

such study hGL cells were obtained from women 

undergoing ovariectomy for cancer of the uterus [37]. 
This significant methodological difference might explain 

the contradictory results. In the other referred study, low 
concentrations of melatonin did not affect basal P4 

production, while treatment with 1 mM melatonin for 2 

days significantly decreased P4 synthesis [38]. Since 
mitogenic and anti-apoptotic effects of melatonin on 

granulosa cells have been reported [28], dose- and time-

dependent cellular responses might account for such 
reduction. Moreover, in our study P4 levels in culture 

media were measured and normalized against 
corresponding protein concentrations. It is unclear 

whether that same approach was taken in the referred 

study [38], and this factor may further account for the 
observed discrepancy. 
 

In humans, melatonin signals through two cellular 
receptors, MT1 and MT2, which mediate the activation 

of different intracellular signaling pathways [30]. As 

both MT1 and MT2 are expressed in hGL cells, we used 
two different antagonists, 4-P-PDOT (MT2-selective) 

and luzindole (MT1/MT2-non-selective), to delineate the 
involvement of MT1 and MT2 in melatonin-induced 

StAR expression. Our results showed that melatonin-

induced StAR expression was partially attenuated by 4-
P-PDOT, but completely abolished by luzindole. These 

results indicate that both MT1 and MT2 are involved in 
melatonin-induced StAR upregulation. Consistent with 

our results, two recent studies using similar approaches 

demonstrated that melatonin-induced upregulation of 
StAR expression and P4 production are partially 

attenuated by 4-P-PDOT treatment but abolished by 
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treatment of luzindole in the corpus luteum of pregnant 
sows and in bovine theca cells [25, 26]. Similarly, both 

MT1 and MT2 are involved in melatonin-induced P4 
production in bovine granulosa cells [32, 33, 40]. Taken 

together, these results indicate that melatonin-induced 

StAR expression and P4 production are mediated by 
both MT1 and MT2. 

 

Multiple signaling pathways, including PI3K/AKT and 
ERK1/2, as well as several transcription factors, are 

involved in the regulation of steroidogenesis and StAR 
expression in ovarian follicles [24] Several studies 

showed also that PI3K/AKT and ERK1/2 signaling can 

be activated by melatonin in different cell types [30]. 
Our previous study has shown that activation of 

ERK1/2, but not PI3K/AKT, signaling is required for 
amphiregulin-induced StAR expression in hGL cells 

[31]. Interestingly, in the current study we showed that 

melatonin activated the PI3K/AKT signaling pathway 
without affecting the activation of ERK1/2 in hGL 

cells, and PI3K/AKT activation was required for the 

induction of StAR expression. It is generally considered 
that theca cells are the major site of ovarian androgen 

production, while granulosa cells are the main source 
of P4 and estradiol [41, 42]. However, a recent study 

also detected StAR expression and P4 production in 

bovine theca cells, which could be blocked by 
inhibition of PI3K/AKT signaling by LY294002 or 

wortmannin [26]. Along with our results, these findings 

demonstrate the involvement of the PI3K/AKT 
signaling pathway in melatonin-induced StAR expres-

sion and P4 production in the ovarian follicle. 
Moreover, it was reported that activation of PI3K/AKT 

signaling is also required for FSH- and TGF-β1-

stimulated StAR expression in rat granulosa cells [43]. 
However, since inhibition of PI3K/AKT signaling  

did not completely block melatonin-induced StAR 
expression, the involvement of other signaling path-

ways seems plausible. Therefore, more studies will be 

needed to delineate the molecular mechanisms that 
mediate the stimulatory effect of melatonin on StAR 

expression in hGL cells. 

 

 
 

Figure 3. Melatonin-induced StAR expression is partly mediated by PI3K/AKT activation. (A) hGL cells were treated with 500 µM 

melatonin for 10 or 30 min, and both total and phosphorylated ERK1/2 and AKT expression was determined by western blot. Cells treated 

with 100 ng/mL amphiregulin (AREG) were used as positive control for ERK1/2 phosphorylation. (B, C) hGL cells were pre-treated with vehicle 

control (DMSO) or 10 µM LY294002 for 30 min and then exposed to 500 µM melatonin for 24 h. StAR mRNA (B) and protein (C) levels were 

examined by RT-qPCR and western blot, respectively. Results are expressed as the mean ± SEM of 3 independent experiments. Values 

without a common letter are significantly different (p < 0.05). 
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Figure 4. StAR is required for melatonin-induced P4 production in primary hGL cells. (A) Cells were treated with 500 µM 

melatonin for 24 h, and P4 levels in culture media examined using ELISA. (B) Cells were pre-treated with vehicle control (DMSO) or 10 µM 

LY294002 for 30 min and then exposed to 500 µM melatonin for 24 h. P4 levels in culture media were examined using ELISA. (C, D) Cells 

were transfected with 50 nM control siRNA (si-Ctrl) or StAR siRNA (si-StAR) for 48 h. (C) StAR siRNA knockdown efficiency was examined by 

western blot. (D) P4 levels in the culture media of si-Ctrl and si-StAR transfected hGL cells treated with 500 µM melatonin for 24 h were 

examined using ELISA. Results are expressed as the mean ± SEM of 4 independent experiments. Values without a common letter are 

significantly different (p < 0.05). 

 

 
 

Figure 5. Melatonin levels in follicular fluid are positively correlated with P4 levels in serum. Follicular fluid (FF) melatonin levels 

and serum P4 levels were examined using ELISA (n = 50), and Pearson’s correlation analysis was performed to assess their relationship. FF 

melatonin levels were positively correlated with serum P4 levels both on (A) hCG administration day, and (B) oocyte pick-up (OPU) day. 
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Melatonin levels in human follicular fluid increase as the 
follicle grows [44]. High concentration of melatonin in 

follicular fluid has been suggested to protect hGL cells 
from oxidative stress, allowing them to sustain P4 

production [35]. In addition, the antioxidant activity of 

melatonin was shown to favor oocyte maturation and 
ovulation [28, 45]. These findings reveal important roles 

of follicular melatonin in the regulation of female 

reproductive functions. In the present study, we showed 
that melatonin levels in follicular fluid were positively 

correlated with P4 levels in sera collected both on hCG 
administration and OPU days. Along with the data 

obtained from in vitro experiments, these clinical results 

confirmed the stimulatory effect of melatonin on StAR 
expression and P4 production in the human ovary. 

 
In summary, the present study demonstrates that short 

exposure (24h) to melatonin stimulates StAR expression 

in hGL cells, resulting in P4 production. These effects 
are mediated by MT1 and MT2 receptors, and are 

partially dependent on activation of the PI3K/AKT 

signaling pathway. Moreover, melatonin levels in 
follicular fluid are positively correlated with P4 levels in 

serum. These results suggest a time-and dose-dependent 
physiological role for melatonin in the regulation of 

StAR expression and P4 production in hGL cells, and 

might help develop new strategies for the treatment of 
clinical infertility. 

 

MATERIALS AND METHODS 
 
Antibodies and reagents 

 
Polyclonal anti-StAR antibody was obtained from Santa 

Cruz Biotechnology (Shanghai, China). Monoclonal 

anti-α-tubulin antibody was obtained from CMCTAG 
(Shanghai, China). Monoclonal anti-phospho-ERK1/2 

(Thr202/Tyr204) and polyclonal anti-ERK1/2, anti-

phospho-AKT (Ser473), and anti-AKT antibodies were 
obtained from Cell Signaling Technology (Shanghai, 

China). Polyclonal anti-MT1 was obtained from 
Bioworld Technology (Nanjing, China). Polyclonal anti-

MT2 was obtained from Abcam (Shanghai, China). 

Horseradish peroxidase-conjugated goat anti-rabbit and 
goat anti-mouse IgGs were obtained from Bio-Rad 

Laboratories (Shanghai, China). Melatonin, 4-P-PDOT, 
luzindole, and LY294002 were obtained from Sigma-

Aldrich Corp (Shanghai, China). 

 
Human serum and follicular fluid samples 

 

The study received institutional approval and was 
carried out in accordance with the guidelines from the 

Zhengzhou University Research Ethics Board. Human 
serum and follicular fluid samples were obtained from 

50 infertile women during IVF treatment. All patients 

were between the ages of 20 and 35 and had normal 
menstrual cycles. Causes of infertility were tubal 

obstruction or male infertility. Patients with polycystic 
ovarian syndrome, endometriosis, diminished ovarian 

reserve, chromosome abnormality, or hydrosalpinx were 

excluded from the study. All patients were treated with a 
standard long protocol. At the mid-luteal phase, the 

gonadotropin-releasing hormone (GnRH) agonist 

triptorelin (0.1 mg) (Ipsen Pharma Biotech, France), was 
administered subcutaneously daily. Approximately 14 

days after GnRH agonist injection was started, 
recombinant FSH (Gonal-F; Merck, Germany) was 

administered daily at a dosage of 150–300 IU. When at 

least three follicles had reached 18 mm, hCG (10,000 
IU, Livzon, Zhuhai, China) was injected. Oocyte 

retrieval was scheduled approximately 34–36 h after 
hCG injection by transvaginal ultrasound-guided 

follicular aspiration. Blood samples were obtained by 

venipuncture. After collection, serum was stored at −80 
°C until further analysis. The follicular fluid was 

collected when the oocytes were retrieved. Only the first 
follicular fluid aspirate without blood or flushing 
solution was used for analysis. After 10 min of 

centrifugation at 1200 rpm, the supernatant was stored at 
−80 °C until further analysis. 

 

Primary culture of human granulosa-lutein (hGL) 

cells 

 
Primary hGL cells were purified by density 

centrifugation from follicular aspirates collected from 

women undergoing oocyte retrieval as previously 
described [46, 47]. Cells were cultured in a humidified 

atmosphere containing 5% CO2 and 95% air at 37°C in 

Dulbecco’s Modified Eagle Medium/nutrient mixture F-
12 Ham medium (DMEM/F-12; Gibco, Shanghai, 

China) supplemented with 10% charcoal/dextran-treated 
FBS (HyClone, Shanghai, China), 100 U/mL of 

penicillin, and 100 μg/mL of streptomycin sulfate 
(Boster, Wuhan, China). For melatonin stimulation 
experiments, cells were cultured in 12-well plates at a 

density of 5 × 104 cells/cm2 with 1 mL of culture 

medium for 5 days. All treatments were performed in 
medium containing 0.5% charcoal/dextran-treated FBS. 

 
Reverse transcription quantitative real-time PCR 

(RT-qPCR) 

 
Total RNA was extracted with the RNeasy Plus Mini Kit 

(QIAGEN, Shanghai, China) according to the 
manufacturer’s instructions. RNA (2 μg) was reverse-

transcribed into first-strand cDNA with the High-

Capacity cDNA Reverse Transcription Kit (Applied 
Biosystems, Shanghai, China). Each 20 μL RT-qPCR 

reaction contained 1X SYBR Green PCR Master Mix 

(Applied Biosystems), 60 ng of cDNA, and 250 nM of 
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each specific primer. The primers used were 5′-AAA 
CTT ACG TGG CTA CTC AGC ATC-3′ (sense) and 5′-
GAC CTG GTT GAT GAT GCT CTT G-3′ (antisense) 
for steroidogenic acute regulatory protein (StAR) and 5′-
GAG TCA ACG GAT TTG GTC GT-3′ (sense) and  

5′-GAC AAG CTT CCC GTT CTC AG-3′ (antisense) 
for GAPDH. RT-qPCR was performed on an Applied 

Biosystems QuantStudio 12K Flex system equipped 

with 96-well optical reaction plates. The specificity of 
each assay was validated by melting curve analysis and 

by agarose gel electrophoresis of the PCR products. RT-
qPCR experiments were run in triplicate, and a mean 

value was used to determine the mRNA levels. Water 

and mRNA without RT enzyme were used as negative 
controls. Relative quantification of mRNA levels was 

performed using the comparative Ct method with 
GAPDH as the reference gene, using the formula 2–∆∆Ct. 

 

Western blotting 

 

Cells were lysed in cell lysis buffer (Cell Signaling 

Technology). Equal amounts of protein were separated 
by SDS polyacrylamide gel electrophoresis and 

transferred onto PVDF membranes. After 1 h blocking 
with 5% non-fat dry milk in Tris-buffered saline (TBS), 

the membranes were incubated overnight at 4 °C with 

primary antibodies diluted in 5% non-fat milk/TBS. 
Following primary antibody incubation, the membranes 

were incubated with appropriate HRP-conjugated 
secondary antibodies. Immunoreactive bands were 

detected using an enhanced chemiluminescent substrate 

(Bio-Rad Laboratories (Shanghai, China), and imaged 
with a ChemiDoc MP Imager (Bio-Rad Laboratories). 

 

Small interfering RNA (siRNA) transfection 

 

To knock down endogenous StAR, cells were 
transfected with 50 nM ON-TARGETplus SMARTpool 

StAR siRNA (Dharmacon, Shanghai, China) using 

Lipofectamine RNAiMAX (Invitrogen, Shanghai, 
China). The siCONTROL NON-TARGETING pool 

siRNA (Dharmacon) was used as the transfection 

control. Knockdown efficiency was examined using 
western blot. 

 
Measurement of melatonin and progesterone 

 

Melatonin levels in follicular fluids were measured using 
an enzyme-linked immunosorbent assay (ELISA Kit, 

Abcam, Shanghai, China) in accordance with the 
manufacturer’s protocol. Serum progesterone (P4) levels 

were measured using an ELISA Kit (Cayman Chemical, 

Shanghai, China) as per the manufacturer’s instructions. 
P4 levels in culture media were normalized to protein 

concentrations from corresponding cell lysates. For each 

treatment, normalized culture media P4 levels were 

expressed as relative values in comparison to control 
treatment. 
 

Statistical analysis 
 

Results are presented as the mean ± SEM of at least 

three independent experiments. All statistical analyses 
were conducted on PRISM software. For experiments 

involving only two groups, data were analyzed by t test. 

Multiple comparisons were made using one-way 
ANOVA followed by Tukey’s multiple comparison test. 

Statistical significance was defined as p < 0.05. 
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SUPPLEMENTARY MATERIALS 
 
 

 
 

 
 

Supplementary Figure 1. Expression of melatonin receptors in primary human granulosa-lutein (hGL) cells. MT1 and MT2 

expression was examined by western blot using total hGL cell lysates (n = 2) collected after 1 or 5 days of culture. 


