
OPINION ARTICLE
published: 06 October 2014

doi: 10.3389/fphys.2014.00377

Melatonin reduces lipid peroxidation and membrane
viscosity
Russel J. Reiter1*, Dun-Xian Tan1 and Annia Galano2

1 Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, USA
2 Departamento de Quimica, Universidad Autonoma Metropolitana – Iztapalapa, Mexico City, Mexico
*Correspondence: reiter@uthscsa.edu

Edited by:

Angel Catala, Universidad Nacional de La Plata, Argentina

Reviewed by:

Andrzej T. Slominski, University of Tennessee Health Science Center, USA
Dominique Bonnefont-Rousselot, Université Paris Descartes, France

Keywords: polyunsaturated fatty acids, antioxidant cascade, cyclic 3-hydroxymelatonin, AFMK, AMK

INTRODUCTION
Lipid peroxidation (LPO) occurs as a
result of the oxidative deterioration of
polyunsaturated fatty acids (PUFA), i.e.,
those that contain two or more carbon–
carbon double bonds. The most appar-
ent feature of the oxidative breakdown
of lipids is rancidity, a problem that was
recognized centuries ago during the stor-
age of fats and oils. Rancidity persists as
a widespread problem in today’s society
because of the common use of polyunsat-
urated fats and oils.

The outer limiting membrane of cells
and membranes of subcellular organelles,
e.g., mitochondria, liposomes, peroxi-
somes, etc., are generally rich in PUFA
and their protection from oxidation is
essential for the optimal function and sur-
vival of the cell. In addition to lipids, cell
membranes also contain proteins in vary-
ing amounts depending on the unique
physiology of the membrane. Thus, the
inner mitochondrial membrane, because
of its high density of respiratory com-
plex proteins, contains only 20% lipids;
this is also the case with chloroplast
thylakoid membranes. In contrast, the
myelin sheath surrounding axons are up
to 80% lipid. Due to the differences in
the percentage of lipids in membranes,
they are subjected to different degrees of
peroxidation.

Membranes are fluid structures and
optimal membrane fluidity is required
for their proper function. When mem-
brane fatty acids are oxidized, cell
membranes become viscous (more
rigid). Many factors contribute to the

oxidation of membrane lipids and, during
aging, cell membranes become pro-
gressively more rancid and rigid; this
contributes to the degenerative signs of
aging.

The oxidation of lipids is a highly
complex process that is initiated when
a hydrogen atom is abstracted from a
methylene (–CH2–) group by a free radi-
cal (Figure 1). PUFA are particularly sus-
ceptible to peroxidative initiation because
of their numerous carbon–carbon double
bonds. Of the free radicals and other reac-
tive oxygen (ROS) and reactive nitrogen
species (RNS) generated within cells, the
hydroxyl radical (•OH) is easily capable
of initiating LPO. In contrast, the super-
oxide anion radical (O2•–) is not suf-
ficiently reactive to abstract a hydrogen
atom from a lipid molecule. As a con-
sequence of the initiation of lipid break-
down, a lipid peroxyl radical (ROO•) is
eventually generated. ROO• are highly
reactive and are capable of abstracting a
hydrogen atom from a neighboring lipid
(causing another initiation event). This
is referred to as the propagation phase
of LPO. Due to this auto-oxidative chain
reaction, a single initiation event could
theoretically lead to the oxidation of all
lipids in a cellular organelle, or in a cell.
Other reactive species which initiate LPO
include peroxynitrite anion (ONOO−)
and singlet oxygen (1O2). Because of the
highly destructive structural and func-
tional nature of LPO, there is great interest
in identifying molecules which reduce the
initiation and/or progression of the denat-
uration of PUFA.

MELATONIN AND ITS DERIVATIVES AS
ANTIOXIDANTS
What has come to be known as mela-
tonin’s antioxidant cascade accounts,
presumably in large part, for its ability
to reduce oxidative damage, including
that to PUFA (Tan et al., 2007). When
melatonin functions in the detoxifica-
tion of radicals, the metabolites that
are formed are also radical scavengers.
The initial derivative that is produced
is cyclic 3-hydroxymelatonin (c3OHM)
(Figure 1). This derivative functions
as a radical scavenger to generate N1-
acetyl-N2-formyl-5-methoxykynuramine
(AFMK) which, like its predecessor,
neutralizes toxic ROS/RNS. In doing
so AFMK is metabolized to N1-acetyl-
5-methoxykynuramine (AMK). AMK
likewise is capable of defeating radicals
and beyond this there may yet be other
derivatives that function as antioxidants.

Via this cascade of reactions, each
molecule of melatonin is predicted to scav-
enge up to 10 ROS/RNS. This unique
property of melatonin makes it highly
effective in combatting oxidative stress and
LPO. Melatonin is produced in many cells
and its synthesis may be upregulated under
conditions that elevate oxidative stress in
mammals, as happens in plants (Arnao
and Hernandez-Ruiz, 2013).

Besides its direct actions as a scavenger,
melatonin also stimulates the activities of
a variety of antioxidative enzymes includ-
ing manganese and copper-zinc super-
oxide dismutase, glutathione peroxidase
and reductase and glutamylcysteine ligase
(Rodriguez et al., 2004). The combined
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FIGURE 1 | Schematic representations of lipid peroxidation and

melatonin’s antioxidant cascade. The metabolites of melatonin, i.e.,
c3OHM, AFMK, and AMK, are generated when the preceding molecule in
the cascade functions in the detoxification of reactive oxygen or reactive
nitrogen species. Melatonin and each of its metabolites reduce the initiation

of lipid peroxidation by scavenging the initiating agents, e.g., •OH, ONOO−,
etc. Additionally the parent molecule and all of its metabolites also interrupt
the propagation of lipid peroxidation by scavenging the peroxyl radical.
Especially in vivo, melatonin effectively protects lipids from peroxidation
thereby preventing rancidity and preserving optimal membrane fluidity.

actions as well as its function at the inner
mitochondrial membrane where it limits
electron leakage (called radical avoidance)
makes melatonin exceptionally effective in
reducing oxidative stress.

MELATONIN: REDUCING LIPID
PEROXIDATION
The ability of melatonin to protect against
LPO has been repeatedly documented in
many animal and plant tissues under

numerous oxidizing conditions, e.g., ion-
izing radiation, heavy metal toxicity, drug
metabolism, intense exercise, etc. (Garcia
et al., 2014). The precise mechanisms by
which melatonin and/or its metabolites
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function to limit LPO is not yet estab-
lished. The mechanistic information that
is available has come primarily from stud-
ies on lipid vesicles (micells) containing
with one or several phospholipids. Data
indicate that melatonin is embedded pref-
erentially in a superficial location in mem-
brane lipid layers near the polar heads
of these molecules (Ceraulo et al., 1999).
Its juxtaposition to the lipid molecules
allows melatonin to protect them from
the onslaught of free radicals. The lipid
protective actions of melatonin have been
proven, both in vitro and in vivo, and
in models of numerous diseases. Among
subcellular organelles, membranes and
mitochondria have the highest intrinsic
levels of melatonin and these concentra-
tions are not diminished when blood levels
of the indoleamine are depleted (Venegas
et al., 2012). Its small molecular size and
its amphiphilic properties facilitate mela-
tonin’s penetration into subcellular com-
partments.

While melatonin reduces the initiation
of LPO, according to Marshall et al. (1996),
it is not considered to be highly effective
as a chain breaking antioxidant. This find-
ing is disputed, however, by the data of
Mekhloufi et al. (2007) and of Marchetti
et al. (2011) who observed melatonin is in
fact highly efficient as a LOO• scavenger.
Recently, c3OHM and AMK were pro-
posed as highly effective LOO• scavengers.
Hence, melatonin as well as its metabolites
function as chain breaking antioxidants
(Figure 1).

In plants, the chloroplast envelope as
well as their thylakoids possess a high per-
centage of PUFA; thus, like mitochondria,
they are also readily susceptible to LPO.
Moreover, like the inner mitochondrial
membrane, the electron transport chain in
the thylakoid of chloroplasts leak electrons
on to O2 to generate radical products.
Melatonin has been identified in plants
where it functions in protecting against
oxidative damage (Arnao and Hernández-
Ruiz, 2014). The ability of melatonin to
protect plant cells from LPO is of spe-
cial interest since recent data suggests the
chloroplasts, like mitochondria, likely pro-
duce melatonin (J. Kong et al., unpub-
lished).

Another major contributor to LPO is
ONOO–. Like the •OH, it is a pow-
erful initiator of lipid breakdown. Since

melatonin also neutralizes the ONOO–,
this is another means whereby melatonin
may alleviate the decomposition of mem-
brane lipids (Cuzzocrea et al., 1997).

Melatonin also directly scavenges the
alkoxyl radical, a product resulting from
the transition metal-catalyzed degradation
of lipid peroxides (Zavodnik et al., 2006)
(Figure 1). This is important for the con-
trol of LPO since the alkoxyl radical can
abstract a hydrogen atom from a PUFA
(Figure 1); the resulting LOO• can obvi-
ously continue the propagation of lipid
degradation.

MELATONIN’S DERIVATIVES:
REDUCING LIPID PEROXIDATION
Galano et al. (2014) examined the reac-
tion of c3OHM with the •OH and LOO•
in both a lipid and aqueous environment
by means of Functional Density Theory
considering three potential mechanisms of
action: radical adduct formation, hydro-
gen transfer and single electron transfer.
Regardless of the polarity of the envi-
ronment, c3OHM reacted with the •OH
at a diffusion controlled rate which was
slightly better than that of either mela-
tonin, AFMK or AMK. Against the LOO•,
c3OHM was orders of magnitude bet-
ter than AFMK and AMK and roughly
100-fold better than vitamin E. Although
melatonin and its metabolites, AFMK and
AMK, are LOO• scavengers, the find-
ings of Galano et al. (2014) indicate that
melatonin’s ability to resist LPO may also
involve its metabolite, c3OHM.

A more direct approach to test c3OHM
as a scavenger was taken by Tan et al.
(2014). Their results support the conclu-
sion that c3OHM is a highly effective rad-
ical scavenger and has particularly high
efficacy in protecting molecules that con-
tain haemprotein, e.g., hemoglobin and
cytochrome c, from degradation; c3OHM
functions by donating a single electron
thereby recovering oxidized horseradish
peroxidase to its ground state. c3OHM
was also found to be a better scavenger
of the •OH than vitamin C in recovering
oxidized horseradish peroxidase.

Although AFMK provides protection
against oxidative stress, there are few stud-
ies related to its ability to limit LPO
(Galano et al., 2013). AFMK reduces
free radical damage to lipids in rat liver
homogenates (Tan et al., 2001) while in an

in vivo study, Manda et al. (2007) reported
that the oxidative modification of brain
lipids was reduced when mice were treated
with melatonin prior to their exposure to
ionizing radiation.

Cyclic voltammetry studies found that
AFMK is capable of donating two electrons
as evidence of its reductive potential. With
the aid of electron spin resonance spec-
troscopy, it was shown that AFMK readily
scavenges the •OH which could account
for its ability to control LPO. The high
efficiency by which AFMK neutralizes the
•OH has been confirmed while the data
related to the ability of this melatonin
metabolite to directly detoxify the LOO• is
more limited (Galano, 2011).

While AMK reduces LPO, whether this
is due to its direct scavenging ability
or a result of its stimulation of antiox-
idant enzymes has not been determined
(Ressmeyer et al., 2003). AMK reportedly
scavenges singlet oxygen (1O2) and nitric
oxide (•NO) (Schaffer and Hardeland,
2009). 1O2 can directly react with carbon–
carbon lipid double bonds to yield perox-
ides (Xia et al., 2012). Besides scavenging
•NO, melatonin also inhibits its produc-
tion (Leon et al., 2006), both of which
would control LPO, since •NO couples
with O2•– to produce ONOO−, a proven
initiator of LPO.

MELATONIN AND MEMBRANE
FLUIDITY
Since the degree of lipid breakdown in
cell membranes generally correlates with
the fluidity of these organelles, it is pre-
dicted that melatonin would also reduce
membrane rigidity. This has been amply
demonstrated. Such findings have signif-
icant functional relevance, since limiting
the movement of molecules in cell mem-
branes, which increased viscosity does
do negatively impacts cellular physiology.
Aging is characteristically associated with
elevated cell membrane rigidity.

Depressed levels of melatonin naturally
occur with aging or as a consequence of
pinealectomy leads to elevated and levels
of LPO and more viscous cellular mem-
branes (Reiter et al., 1999; Hardeland,
2013). Likewise, treatment of senescence-
accelerated prone mice (SAMP8) with
melatonin preserves mitochondrial mem-
branes in a more fluid state (Garcia et al.,
2014). Membrane fluidity relates to the
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degree of LPO; thus, when the fluidity
of membranes is reduced, the amount of
oxidized lipids in membranes is increased.

CONCLUDING REMARKS
Melatonin is a highly evolutionarily con-
served molecule that both directly and
indirectly markedly reduces the break-
down of lipids in both animals and plants,
especially in vivo. What is difficult to deter-
mine is whether this protective action is
exclusively attributable to its radical scav-
enging ability or whether it is a conse-
quence of this action by its metabolites
c3OHM, AFMK or AMK. It has been dif-
ficult to unravel the mechanisms behind
melatonin’s LPO inhibitory effects since
all the metabolites mentioned are formed
during melatonin’s antioxidant cascade.
Finally, melatonin is a well-known stim-
ulator of antioxidative enzymes which
would indirectly reduce LPO. Currently,
what is known is that both endogenously-
generated and exogenously-administered
melatonin has an important role in
restricting lipid rancidity and preserving
optimal membrane fluidity. Also of impor-
tance is that neither melatonin nor its
metabolites have revealed any pro-oxidant
activity in normal cells, a feature that
occurs with some classic antioxidants.
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