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Abstract: Brain aging is linked to certain types of neurodegenerative diseases and 

identifying new therapeutic targets has become critical. Melatonin, a pineal hormone, 

associates with molecules and signaling pathways that sense and influence energy 

metabolism, autophagy, and circadian rhythms, including insulin-like growth factor 1  

(IGF-1), Forkhead box O (FoxOs), sirtuins and mammalian target of rapamycin (mTOR) 

signaling pathways. This review summarizes the current understanding of how melatonin, 

together with molecular, cellular and systemic energy metabolisms, regulates epigenetic 

processes in the neurons. This information will lead to a greater understanding of 

molecular epigenetic aging of the brain and anti-aging mechanisms to increase lifespan 

under healthy conditions. 
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1. Introduction 

Understanding the underlying mechanisms of age-dependent alterations in brain structure and 

functions has become critical for identifying new therapeutic targets and for developing multimodal 

health-care strategies that meet the needs of an aging population. The pathological processes in the 

aging brain are associated with molecules and signaling pathways that sense and influence energy 

metabolism, e.g., insulin, insulin-like growth factor 1 (IGF-1), Forkhead box O (FoxOs), sirtuins 

(SIRT), autophagy, circadian rhythms and mammalian target of rapamycin (mTOR) signaling 

pathways. Melatonin, a hormone primarily secreted by the pineal gland, is synthesized from 

tryptophan under the control of numerous enzymes that are inhibited or stimulated by the light/dark 

cycle [1,2]. Nocturnal melatonin is a signal to mediate the circadian message for the entire body. 

Pineal melatonin displays a circadian pattern driven by primary circadian clock signals from the 

suprachiasmatic nucleus (SCN). 

Melatonin not only associates with the energy metabolism pathways but also regulates epigenetic 

processes in neuronal cells. Energy metabolism is a vital modulator of epigenetic processes of the 

neural system. Melatonin associates with molecules and signaling pathways that sense and influence 

energy metabolism, including insulin/IGF-1 [3,4], FoxO and sirtuin pathways [5–7]. These pathways 

are now implicated in the epigenetic processes of both young and aging brains and associated with 

neurodegenerative diseases. The effects of melatonin in regulating energy metabolism, modulating 

epigenetics in normal brain aging and neuropathological aging will be discussed. An understanding of 

how neuronal cells are influenced by energy availability will explain the complex nature of the aging 

brain in both normal and diseased states. 

2. Brain Energy Metabolism 

2.1. Insulin/IGF-1 (Insulin-Like Growth Factor 1) Signaling Pathways and Brain Energy 

Neurons require energy to support action potentials, neuronal plasticity and neurotransmission; 

thus, age-related neuronal energy deficits contribute to the cognitive decline and to the pathogenesis of 

several neurodegenerative disorders [8]. Insulin/IGF-1 signaling pathways establish a complicated 

signaling network with close connections to mitochondrial bioenergetics, biogenesis and redox 

homoeostasis [9,10]. Insulin and IGF-1 bind to their receptors on the cell surface, leading to the 

phosphorylation of tyrosine residues on the insulin receptor and the IR substrate. Then, IGF-1 further 

regulates many cascade pathways. For example, IGF-1 activates phosphoinositide 3 kinase-protein 

kinase B (PI3K–Akt) signaling and then inactivates FoxO transcription factors [11]. 

Although a decrease in the activation of the insulin/IGF-1 pathway seems to extend the longevity, 

normal brain functions require a normal insulin/IGF-1 signaling cascade [12,13]. This pathway 

regulates synaptic plasticity and neuronal survival via the maintenance of neuronal mitochondria during 

aging [10]. Ames dwarf mice showed a longer lifespan and normal cognitive function in advanced age. 

These mice showed very low growth hormone (GH) level and undetectable IGF-1 in circulation but 

increased hippocampal GH and IGF-1 protein levels as compared with the wild type. Increased 

phosphorylation by Akt and cyclic AMP responsive element-binding protein (CREB) were also 

detected in the hippocampus of Ames dwarf mice. These features might contribute to the maintenance of 
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cognitive function during aging [14,15]. In addition, over-activated insulin and PI3K/Akt pathways were 

associated with many pathology characteristics of Alzheimer’s disease (AD) [16,17]. 

Accumulating evidence suggests that low levels of circulating IGF-1 and impairments of 

insulin/IGF-1 signaling in the brain contributed to age-dependent cognitive decline, such as 

Alzheimer’s disease [18,19]. As seen in the Rotterdam Study, which surveyed 1014 persons for the 

prevalence of dementia, a higher level of IGF-1 receptor stimulating activity was associated with a 

higher prevalence of dementia [8,20]. In addition, the insulin resistance observed in diabetes 

constitutes a risk factor for Alzheimer’s disease [21,22]. On the other hand, the insulin/IGF-1 system is 

involved in many protective pathways. For example, the PI3K/Akt pathway entails phosphorylating 

FoxO transcription factors, resulting in shuttling phosphorylated FoxO from the nucleus to the cytosol, 

thereby preventing the transcription of FoxO-driven pro-apoptotic genes [23,24]. Additionally,  

the anti-apoptotic effect of PI3K–Akt signaling is a consequence of the phosphorylation and inhibition 

of glycogen synthase kinase 3 β (GSK3β), which, in its active form, phosphorylates anti-apoptotic  

Bcl-2 and Bcl-xL. Insulin prevents cytochrome c release in the perfused brain in a PI3K-dependent 

pathway. Insulin increases the total and surface expression of glutamate transporter in astrocytes by a 

pathway involving the PI3K–Akt/mTOR signaling cascade [25]. 

2.2. Melatonin and Metabolic Pathways 

Melatonin (N-acetyl-5-methoxytryptamine) is a molecule that is secreted by the pineal gland and 

that can also be produced in the retina, extraorbital lacrimal gland, Harderian gland, gastrointestinal 

tract, blood platelets, and bone marrow cells [1,2,26]. Multiple actions of melatonin include:  

(i) G-protein-coupled melatonin receptors signaling cascade; (ii) inducing QR2; (iii) destroying 

reactive oxygen and reactive nitrogen species; (iv) increasing calmodulin degradation; (v) binding to 

nuclear receptors to alter the transcription of target genes; and (vi) modulating hemopoiesis and 

immune cell production and function [27–29]. 

Melatonin is involved in energy expenditure and body weight regulation. In pinealectomized rats, 

after an increase in body weight and exogenous melatonin supplement, reverse body weight gain 

occurs. Similar effects on reduced body weight and visceral fat were observed in both young and 

middle-aged rats. Additionally, this effect on decreased weight gain can be found in animals fed either 

a high-fat diet or high fructose [30,31]. The melatonin receptor seems to play a role in obesity. 

Selective agonists of melatonin receptor type 1 (MT1) and melatonin receptor type 2 (MT2), 

piromelatine (NEU-P11) and ramelteon, had similar effects on decreasing body weight and blood 

pressure, which were similar to melatonin-induced effects [32]. 

Pinealectomy caused a lack of melatonin in rats, which displayed reduced insulin sensitivity and 

reduced GLUT4 gene expression [33]. In humans, melatonin may improve metabolic syndrome via its 

anti-hyperlipidemic action. Melatonin inhibits insulin release through MT1 and MT2, which are 

expressed in pancreatic β-cells [34]. Altered plasma melatonin rhythms in weight-matched type 2 

diabetes and non-diabetic individuals support a possible role of melatonin in type 2 diabetes  

etiology [35,36]. 

Melatonin is associated with the sensing processes for metabolic status by the primary pathways 

involved with the insulin/IGF-1 pathway [37]. The cellular energetic state is believed to respond 
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through the activation of different mechanisms, with the best-known mechanism involving  

NAD+-dependent deacetylases, which are called sirtuins [38,39]. This mechanism will be introduced 

and discussed in Section 2.4. 

Insulin, growth hormone (GH) and IGF-1, integrate many physiological responses during aging. 

Reducing activation of the PI3-K/Akt signal can extend lifespan in organisms from yeast to mammals. 

In Caenorhabditis elegans, genes known to be involved in the insulin/IGF-I pathway include  

dauer-constitutive-2 (daf-2), which is a homolog of insulin/IGF-1-like receptor, as well as daf-16 

(Forkhead transcription factor) and daf-18 (PTEN, Phosphatase and tensin homolog). Mutations in 

these factors result in increased or decreased lifespan [40–43]. 

Mammalian models with reduced GH and/or IGF-1 signaling increase longevity compared with 

intact animals. Mutant mice with anterior pituitary dysfunctions, such as Snell (defect in the pituitary 

specific transcription factor-1 gene (Pit-1)) and Ames dwarf mice (recessive point mutation in the 

prophet of Pit1 (Prop-1) or paired-like homeodomain transcription factor in Prop-1), show dwarf 

characteristics, female infertility and severely low insulin, IGF-1, glucose, and thyroid hormone level. 

Interestingly, these mice have a greater than 40% increase in lifespan. The prolonged lifespan effects 

were also found in mice with the defect in IGF-1 or in the IGF-1 receptor and in lit/lit mice, which 

have a mutated GH-releasing hormone receptor. On the other hand, GH transgenic mice have early 

puberty, elevated IGF-1 and insulin levels and develop insulin resistance. The lifespan of these mice is 

significantly shorter compared with the wild-type animals [44–46]. 

Melatonin has been implicated in obesity and in the regulation of insulin activities. Studies in 

pinealectomized animals induced insulin resistance and glucose intolerance in type 2 diabetic  

rats [3,47]. Melatonin influences MT1- and MT2-receptor-mediated insulin secretion both in vivo and  

in vitro. Melatonin displays a protective effect against reactive oxygen species (ROS) generation in 

pancreatic β-cells, which are easily susceptible to oxidative stress. The plasma melatonin level and 

arylalkylamine-N-acetyltransferase activity are lower in diabetic rats than in nondiabetic rats.  

In contrast, arylalkylamine-N-acetyltransferase mRNA increased, and the insulin receptor mRNA 

decreased in the pineal gland, which indicated a close relation between insulin and melatonin [34,41,48]. 

Melatonin is associated with chronic inflammation in obesity. Obese animals have higher serum levels 

of interleukin-17 (IL-17). Insulin and IGF-1 increase IL-17-induced expression of inflammatory 

chemokines/cytokines via a GSK3β dependent pathway, which is inhibited by melatonin via 

suppression of Akt activation [49]. 

Melatonin injections resulted in increased circulating GH levels and increased serum IGF-I levels, 

concomitantly lowering somatostatin levels. These results are associated with significantly decreased 

hypothalamic norepinephrine turnover [4,50]. The GH rhythm was suppressed in pinealectomized rats; 

after melatonin replacement in these rats, GH and IGF-1 levels increased during the day [3]. 

The effects of melatonin on PI3k/Akt signaling in peripheral tissues compared with the brain are 

different and depend on the stress or injury model. For instance, melatonin showed the protective 

effects against brain injury by activating Akt and its downstream targets in a middle cerebral artery 

occlusion model [51] and a kainic acid-induced hippocampal excitotoxicity model [52]. In aged 

neuronal cell culture, melatonin increased Akt activation, subsequently leading to GSK3β inhibition 

and an increase in FoxO1 phosphorylation [53]. The effects of melatonin and PI3K–Akt activities in 

the brain still need to be further explored. 
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2.3. Epigenetics and Aging 

Epigenetic processes regulate gene expression caused by modifications at the chromatin level 

without modifying the DNA sequence. These novel studies represent a bridge between environments, 

aging and individual genetic backgrounds. Epigenetic are currently considered part of age-related 

neuropathological phenotypes [54–56]. 

DNA methylation is the process that silences DNA sequences. During aging, 5-methyl-cytosine 

distribution is found changing across the genome and leading to decreased global DNA  

methylation. However, some promoters become hypermethylated [56]. DNA methylation and DNA 

hydroxymethylation, which is the oxidized form of DNA methylation, are also the centers of interest  

in epigenetic studies of Alzheimer’s disease. Global levels of DNA methylation and DNA 

hydroxymethylation positively correlate with markers of Alzheimer's disease, including amyloid beta 

(Aβ), tau, and ubiquitin expression [57]. 

Histone acetyltransferase (HAT) and histone deacetylases (HDACs) are the posttranslational 

modifiers of histones. Histone acetylation is catalyzed by HATs, whereas deacetylation is catalyzed by 

HDACs. Several different families of HATs and HDACs have been identified. Eighteen HDAC 

enzymes have been identified in humans and have been categorized into 4 classes, including class I, II, 

III, and IV. Class I, II, and IV members are zinc-dependent enzymes, whereas the class III family 

includes nicotinamide adenine dinucleotide (NAD+)-dependent enzymes. The sirtuins family belongs 

to this class. 

Aging disrupts the epigenetic processes involved with synaptic plasticity and memory in the 

hippocampus [58]. Epigenetic features during aging, such as lower HDACs activity in the 

hippocampus [59], are concomitant with higher chromatin repression, such as di-methyl and tri-methyl 

histone H3K9 in aging brain [60]. In addition, the senescence mouse model studies have demonstrated 

epigenetic variation in an age-dependent manner. In senescence-prone mice, learning and memory 

deficits are associated with losses of monomethyl histone H4K20 and tri-methyl H3K36, which are 

known to facilitate transcription in the hippocampus. When senescence-accelerated mouse prone 8 

(SAMP8) mice are compared with age-matched senescence-accelerated-resistant mouse (SAMR1) 

mice, many methylated histone modifications changed were found in SAMP8 such as methylated 

H4K20, H3K27, H3K36 and di-methylated H3K79 [61]. Global histone H3 acetylation levels were 

reduced in SAMP8 mice compared with control SAMR1 mice [62]. 

The links between histone acetylation dynamics and hippocampus-dependent memory are 

emphasized by the effects of histone deacetylase inhibitor administration. Direct infusion of triclosan 

A into the CA1 layer of hippocampus can interrupt the memory system in young mice but not in aged 

mice [63]. EVX001688, which is a long-lasting histone acetylation enhancer, increased histone 

acetylation levels during training in a contextual fear conditioning task in young rats but showed no 

effect on performance in aging [64]. 

CREB-binding protein (CBP) and p300 have HAT activity. The CBP/p300 complex has the highest 

level in the brain and relatively high levels in the lung, spleen, and heart. CBP and p300 are relatively 

stable in the hippocampus with advancing age [65]. However, this complex may play an important role 

in developing processes because p300 and CBP are highly expressed in the brains and livers of fetal 

and newborn mice [66]. CBP and p300 are involved in memory consolidation processes. While spatial 
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memory is being consolidated in the rat dorsal hippocampus, an increase in HAT activity, together 

with global increases in CBP, p300, and PCAF expression, can enhance the memory task [67]. 

Insulin and IGF-1 are associated with epigenetic variations in the brain. Valproic acid, which is a 

histone deacetylase inhibitor, induces weight gain and increases the risk of insulin resistance. This 

drug regulated the expression of adipokine genes in hypothalamic neurons via modulating the activity 

of the CCAAT enhancer-binding protein alpha (CEBPα) [68]. 

Age-dependent metabolic syndrome is a risk factor for impaired cognition and for Alzheimer’s 

disease. Altered DNA methylation and insulin resistance in the brain are associated with pathogenesis 

from soluble Aβ in Alzheimer’s disease [69]. IGF-1 provides neuroprotective effects via action against 

HDAC1 and HDAC3. HDAC1 expression is upregulated in the brains of the Huntington disease model 

and the Ca2+/calmodulin-dependent protein kinase (CaMK)/p25 double-transgenic model of tauopathic 

degeneration. The effect of HDAC1 can be inhibited by IGF-1 expression, Akt expression, or GSK3β 

inhibition [70]. The epigenetic mechanisms due to cellular energy pathway should be further studied in 

order to elucidate age-related neuropathogenesis. 

2.4. Sirtuins 

The yeast silent information regulator gene and its mammalian homologs, sirtuins, are the centers of 

interests in aging research. Seven sirtuins (SIRT1–SIRT7) are found in mammals. Sirtuin1 (SIRT1) 

regulates epigenetic, DNA repair, aging, and programmed cell death and defends against 

neurodegenerative diseases. The longevity effects of SIRT1 are expected to rely on its enzymatic 

deacetylation activity on histone and non-histone substrates (more details in a later section). 

Sirtuin is the HDAC that requires NAD as the regulator and co-factor for enzymatic activity. NAD 

is one of the electron transport chain factors and plays an important role in regulating cellular energy. 

Nicotinamide phosphoribosyltransferase (NAMPT) and nicotinamide/nicotinic acid mononucleotide 

adenylyltransferase (NMNAT) are the key enzymes for NAD biosynthesis. NAMPT is the  

rate-limiting enzyme in NAD biosynthesis, whereas NMNAT completes NAD biosynthesis by 

transferring adenine from ATP to NMN [71]. SIRT1 and the NAD pathway play a role in linking 

cellular energy with aging. Intracellular NAD+ levels and the NAD:NADH ratio in the heart, lung, 

liver and kidney of female Wistar rats decline in middle-aged rats (12 months old) compared with 

young (3 months old) rats. Decreases in SIRT1 activity and increased acetylated p53 levels were 

observed in a variety of organ tissues in parallel with a decrease in NAD+ levels [72]. A connection 

was found between NAD biosynthesis and sirtuins associated with the aging process. Depleting 

cellular NAD+ stores attenuates SIRT1 deacetylase activity, leading to many effects, such as  

SIRT1 regulation of p53 and some apoptotic factors. This change resulted in increased cell death via 

apoptotic mechanisms [72,73]. SIRT1-mediated deacetylation can bind several transcription factors 

and cofactors, including FoxO transcription factors, p300/CBP-associated factor and peroxisome 

proliferator-activated receptor gamma (PPAR-γ) [71]. 

SIRT1 is expressed in the brain, with high expression levels in the cortex, hippocampus, cerebellum 

and hypothalamus but low expression in white matter [74]. SIRT1 is abundantly expressed in several 

areas, particularly in arcuate, paraventricular, ventro- and dorsomedial hypothalamic nuclei [75,76]. 

These hypothalamic areas regulate food intake and energy expenditure that link SIRT1 to metabolic 
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status. SIRT1 protein in hypothalamus was high after feeding and low during fasted condition [75,77]. 

In addition, SIRT1 is associated with hormones and neuropeptides that regulate food intake such as 

leptin [78] and neuropeptide Y/Agouti-related peptide [79]. Further study of SIRT1 in the 

hypothalamic system will lead to a greater understanding of how caloric restriction (CR) extends 

lifespan and neuroprotection during aging. 

2.5. Forkhead Box O (FoxO) 

This sirtuin1 targets that are closely linked with insulin/IGF-1 and with energy homeostasis are 

Forkhead box O (FoxO) transcription factors. The FoxO family has four members, namely, FoxO1, 

FoxO3, FoxO4, and FoxO6 [11]. FoxOs are regulated by the insulin signaling pathway and have been 

implicated in regulating metabolism, cellular proliferation, tumorigenesis, the stress response [80], 

apoptosis [23], neurogenesis [81] and benefit effects of caloric restriction [46,82]. FoxO1 activation  

in peripheral tissue interferes with gluconeogenesis and with carbohydrate/lipid pathways [83].  

Insulin-PI3K-FoxO3 signaling is required for circadian rhythm (for details, see Section 4) in the liver 

via regulation of Clock in PI3K- and FoxO3-dependent manners [84]. In the brain, SIRT1 and FoxO1 

controls food intake through transcriptional regulation of the orexigenic neuropeptide Y, agouti-related 

protein [75,77]. 

FoxOs link insulin/IGF-1, SIRT1 and hippocampal functions [85]. FoxO6 is highly enriched in the 

adult hippocampus and is required for memory consolidation. FoxO6-deficient mice display normal 

learning but impaired memory consolidation in contextual fear conditioning and in novel object 

recognition [86]. FoxO is fundamental in the pathogenesis of neurodegeneration, such as in FoxO 

effects on the oxidative stress response upon manganese-induced Parkinson’s disease [87]. FoxO3 

contributes to apoptosis, to β-amyloid-induced neuron death [88], and to the accumulation of  

α-synuclein, which controls the fate of dopaminergic neurons in the substantia nigra [89]. 

2.6. Melatonin and Epigenetics 

Epigenetic actions of melatonin that relates to brain aging and neurodegenerative diseases remain 

poorly characterized. Since both cellular senescence and cancer cell development involve epigenetic 

alterations, understanding the epigenetic mechanisms of anti-cancer properties of melatonin may 

provide the explanation for brain aging-related conditions. 

Melatonin causes epigenetic effects against cancer cells by modulating both DNA methylation and 

histone acetylation pathways. Melatonin has been expected to epigenetically affect DNA methylation 

in breast cancer; however, the mechanism is unclear [90,91]. Melatonin-treated MCF-7 cells show an 

inverse correlation with DNA methylation levels and with alterations in oncogenic genes EGR3 and 

POU4F2/Brn-3b, whereas the tumor suppressor gene GPC3 was upregulated by melatonin [92].  

The hypermethylation of the CpG island in the promoter region of the MT1 receptor inversely 

correlated with its expression in oral squamous cell carcinoma [93]. 

Recent reports have indicated that melatonin has an effect on histone modification. Melatonin can 

restore liver histone deacetylase, DNA methyltransferase activity, and DNA methylation [94]. Prenatal 

dexamethasone exposure unregulated HDAC1 expression in the kidneys of offspring. Maternal 

melatonin co-therapy with dexamethasone attenuated prenatal-induced hypertension by restoring 



Int. J. Mol. Sci. 2014, 15 16855 

 

 

nephron numbers and by modulating HDAC-1, HDAC-2, and HDAC-8 [95]. When neural stem cells 

are treated with melatonin, significantly increased histone H3 acetylation and enhanced HDAC 

isoforms were observed as compensatory mechanisms after melatonin-induced histone hyperacetylation. 

This epigenetic effect of melatonin acts via the MT1 receptor [96,97]. 

p300 is abundantly expressed in cancer cells, and p300 over expression enhances cyclooxygenase-2 

(COX-2) activation induced by diverse proinflammatory mediators. Melatonin significantly suppressed 

the proliferation of human MDA-MB-361 breast cancer cells and induced apoptosis in a dose-dependent 

manner. This melatonin-suppressed proliferation was accompanied with inhibited COX-2, p300, and 

nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling. Melatonin inhibits 

p300 HAT activity and p300-mediated NF-κB acetylation, thereby blocking NF-κB binding and p300 

recruitment to the COX-2 promoter [98]. Melatonin also suppresses p300 histone acetyltransferase 

activity and p300-mediated NF-κB acetylation in the human vascular smooth muscle cell line 

CRL1999 [99]. The epigenetic effect of melatonin may correlate with nuclear factor erythroid  

2-related factor 2 (Nrf2). Melatonin exhibits an anti-inflammatory effect by suppressing pNF-κB but 

promoting Nrf2 expression [100–102]. The CBP/p300 complex directly acetylates Nrf2 in response to 

arsenite-induced stress. This acetylation leads to increased promoter-specific DNA binding of Nrf2 and 

establishes acetylation as a novel regulatory mechanism that modulates the Nrf2-dependent antioxidant 

response. Nrf2-dependent antioxidant enzyme expression is also dependent on Nrf2 acetylation by 

CBP/p300 machinery [103,104]. 

2.7. Melatonin and Sirtuin System 

SIRT1 has been shown to link with aging and cancer. During aging, SIRT1 expression and its 

activity declined while it is highly expressed in several types of cancer cells. Melatonin protected 

aging neurons via preserving the relative protein levels of sirtuin1 in SAMP8 mice [5–7] and in 

hippocampus of total sleep-deprived rats [105] but decreased overexpressed sirtuin1 in cancer such as 

prostate cancer [106,107] and human osteosarcoma [108]. The supportive effect of melatonin on 

sirtuin1 may act via the NAD system. Melatonin acts as an effective antioxidant to preserve NAD 

levels under oxidative stress [109]. Melatonin also indirectly regulates SIRT1 expression involved with 

SIRT1 targets, e.g., p53 [5,6]. Melatonin prevents the activation of ataxia telangiectasia muted, which 

is an enzyme involved in p53-related apoptotic pathway activation. Moreover, melatonin treatment of 

neuronal cell cultures also decreases E2F-1, which is a proapoptotic transcription factor [53]. 

Melatonin may modulate energy homeostasis through the SIRT1-FoxO pathway. The other 

interesting SIRT1 target is FoxOs. Melatonin may promote FoxOs activities through upregulating 

SIRT1 and SIRT1 deacetylate FoxOs, leading to transport of this transcription factor to the nucleus. 

Additionally, melatonin inhibits CREB-binding protein (CBP) and p300 in breast cancer cells in which 

p300 is expressed at a high level. The cancer cell proliferation was accompanied by significant 

inhibition of p300 histone acetyltransferase activity and p300-mediated NF-κB acetylation by 

melatonin, thereby blocking NF-κB binding and p300 recruitment to the COX-2 promoter [98].  

The acetylation of FoxOs via CBP and p300 decreases DNA binding and also decrease activities of 

FoxOs. CBP is a protein that binds to cyclic adenosine monophosphate-regulated enhancer-binding 

protein, and homologue protein, p300. This complex has the histone acetyltransferase activity [67]. 
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These target genes may act as the feedback regulator in the SIRT1-FoxOs pathway. Since, FoxOs are 

regulated by the insulin signaling and play important roles in cellular stress response, further studies 

will clarify the neuroprotective effects of melatonin during the imbalance of energy homeostasis. 

3. Autophagy 

3.1. Autophagy and the Aging Process 

Autophagy is characterized by the sequestration processes of cytoplasmic material within an 

autophagosome for degradation by lysosomes. Autophagy acts as a pro-survival mechanism for 

maintaining normal cellular functions and serves as an adaptive response during various stress 

conditions, such as amino acid starvation, an unfolded protein response or viral infection. Since the 

brain requires a lot of energy for action potential generation and other processes, the age-related 

decline in metabolism contributes to cognitive decline and is a risk factor for neurodegenerative 

disorders. These diseases may occur when neurons fail to adapt to decreases in basal energy 

availability [110,111] that correlate with controlling cell homeostasis by the autophagy process. 

Autophagy is negatively regulated by the mammalian target of rapamycin (mTOR) signaling pathway 

and by a downstream cascade of autophagy-related proteins (Atg), such as Atg1, Beclin 1 (Atg6), LC3 

(Atg8) and Atg5 [112]. 

The mTOR pathway is another major signaling pathway that affects aging. Activation of this 

pathway is nutrient-dependent and responds by an energy shift during cellular growth and division. 

mTOR is a member of the PI3K-related kinase family, which regulates cell growth and proliferation by 

modulating protein synthesis and transcription. The mTOR complex 1 (mTORC1) consists of mTOR, 

regulatory associated protein of mTOR (Raptor), LST8/G-protein β-subunit-like protein (mLST8/GbL) 

and PRAS40. mTORC1 is stimulated by growth promoting conditions but is inhibited by a low 

nutrient status, growth factor deprivation, stress and the specific inhibitor rapamycin. The TSC1-TSC2 

(tuberous sclerosis complex1/2) inhibitory complex is upstream of the mTORC1 pathway. This 

complex functions as a GTPase activating protein (GAP) for the GTPase Rheb, which is an mTOR 

activator. The TSC1-TSC2 complex inactivates Rheb to inhibit mTOR signaling. A variety of growth 

and stress signals regulate mTORC1 signaling through the TSC1-TSC2 complex [113,114]. TORC1 is 

activated by amino acids, and insulin/IGF-1 is activated through AKT. Activated AKT phosphorylates 

and inhibits the TSC1-TSC2 complex. The TSC1-TSC complex can also be regulated by AMP-activated 

kinase (AMPK) and by Ras homolog enriched in brain (RHEB), which binds to and activates TORC1 

in a GTP-dependent manner [115,116]. 

mTORC1 signaling has been shown to influence aging in many organisms. Reduced TOR activity 

enhances longevity in lower organisms, such as yeast, worms and flies, through higher mammalian 

animals, such as rodents. mTOR has been strongly linked to the ribosomal protein S6 kinase (S6K), 

which is a downstream target of TOR. S6K inhibition reduces protein synthesis and extends lifespan in 

many animal models [117]. 

Macroautophagy is also a factor that is repressed during aging [118]. When Atg6, Atg7, and Atg12, 

which are regulators of macroautophagy, are knocked down, the lifespan is reduced in a C. elegans 
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model [119,120]. Furthermore, the knockout of bec-1, which is an ortholog of the autophagy gene 

beclin-1, suppressed the lifespan in C. elegans [119]. 

The age-related decline in autophagy function may be associated with many age-associated 

diseases, including neurodegeneration, in normal diet-fed animals and the onset of the disease slowed 

by caloric restriction treatment [121,122]. Autophagic activity decreases during the course of aging 

and genes that control brain aging process are strongly associated with lifespan regulation in flies  

and worms [123]. Autophagy deficiency leads to abnormal accumulation of protein aggregates thus 

promoting pathological mechanisms associated with neurodegenerative disorders, such as Huntington 

and Alzheimer’s disease [124,125]. Moreover, the age-induced memory impairment suggests that 

cognitive function in aging is strongly associated with the autophagic pathway [126]. Many studies 

support that primary defects in macroautophagy contribute to the pathogenesis of AD. Most studies 

focus on the relevance of autophagic dysfunction in AD pathogenesis [127] by the intraneuronal 

aggregates of protein tau, forming neurofibrillary tangles and extra-neuronal β-amyloid senile  

plaques [128]. In mouse models of AD, reduced IGF-1 signaling protects from disease-associated 

neuronal loss and behavioral impairment [129]. In addition, lower levels of the autophagy gene beclin1 

have been observed in human aging brains [125] 

Several studies have elucidated that CR-linked lifespan extension is dependent on autophagic 

degradation in C. elegans via autophagosome formation. Autophagy genes play a role in reducing 

mitochondrial respiration or in reducing TOR activity and increasing longevity in mutant nematodes [130]. 

Unfortunately, the protein modification processes essential to controlling the autophagic process 

remain unclear. The role of other signaling pathways and target protein modifications, such as 

acetylation, must also be further studied. 

3.2. Autophagy and Sirtuin Pathways 

Neurodegeneration such as Alzheimer’s disease is closely linked to the metabolic status and 

numerous reports have demonstrated that SIRT1 and autophagy are correlated with the balance 

between NAD+/NADH for maintaining metabolic homeostasis and cellular survival. SIRT1 may yield 

the protective effects against AD through modulating autophagy processes. SIRT1 expression could be 

inhibited by 3-methyladenine (3-MA), which is an autophagy inhibitor. SIRT1 also regulates cellular 

metabolism through nutrient-sensing pathways, such as AMPK and TOR pathways [131]. 

AMPK inhibits mTOR and evokes autophagocytosis by resveratrol. Resveratrol binds to 

phosphodiesterases and triggers cAMP signaling to activate SIRT1. Resveratrol induces autophagy in  

a SIRT1-dependent manner [132]. An increase in the energetic AMP/ATP ratio activates AMPK, 

increases NAD+ levels and stimulates SIRT [133]. SIRT1 overexpression stimulates the level of 

autophagy [134]. High calorie diet-fed mice exhibit shorter lifespan, and resveratrol normalizes this 

effect, suggesting that the AMPK/SIRT1 pathway is involved [135]. 

The acetylation process plays a significant role in autophagy regulation. The clearance of mutant 

huntingtin through autophagic degradation can be regulated by acetylation at its Lys444 residue [136]. 

During growth factor deprivation, GSK3 activates acetyltransferase TIP60 through phosphorylating 

TIP60-Ser86. Activated TIP60 directly acetylates, thereby stimulating the protein kinase ULK1, which 

is required for autophagy induction [137,138]. Thus, the acetylation of autophagy-related proteins 
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plays an important role in regulating autophagic flux. p300 can acetylate Atg5, Atg7, Atg8 and Atg12 

proteins; acetylation by p300 also inhibits autophagy, whereas silencing p300 increases autophagic 

flux [139]. Atg8 deacetylation is regulated by SIRT1 [140]. Moreover, aggregating misfolded proteins 

may have an influence on autophagic function. This concept may explain secondary pathological 

mechanisms in many neurodegenerative diseases. SIRT1 overexpression is also reported to prevent 

microglia-dependent Aβ toxicity in Alzheimer’s diseases through inhibiting NF-κB signaling by 

deacetylating the lysine 310 residue of the RelA/p65 subunit of NF-κB, thereby preventing its 

transcriptional activity [141]. In Parkinsonian models, resveratrol has a protective effect against 

rotenone-induced apoptosis and enhances α-synuclein degradation. These advantageous properties 

were shown to occur via autophagy induction [132]. Prolonged treatment with Longevinex, which is a 

resveratrol derivative, increased autophagy, and this increase correlated with an increase in SIRT1 

levels and with FoxO nuclear translocation [142]. This observation suggests that SIRT1-mediated 

deacetylation of Atg proteins not only stimulates the autophagic uptake of cellular proteins during 

starvation but also promotes the degradation of damaged organelles to preserve homeostasis. 

SIRT1 could promote the expression of components of the autophagy machinery via deacetylation 

of many transcription factors, which, in turn, activate autophagy genes. The FoxO family members are 

crucial to this process [143,144]. Under low nutrient conditions, FoxO transcription factors translocate 

to the nucleus, where these factors activate the expression of genes that are involved in energy 

metabolism and oxidative stress resistance, as well as of genes implicated in DNA damage repair, cell 

cycle arrest, apoptosis and autophagy [145–147]. 

FoxO1 activation results in the upregulation of Rab7, which is a small GTPase that mediates 

autophagosome-lysosome fusion. Rab7 overexpression stimulates autophagy, whereas Pab7 silencing 

inhibits FoxO1-induced autophagy. GTPase is required for mediating FoxO1-induced autophagic flux. 

In addition, deacetylating FoxO3 by SIRT1 leads to the upregulation of pro-autophagic Bnip3. FoxO3 

can increase the expression of multiple autophagy-related genes, such as ULK2, beclin1, VPS34, Bnip3 

and Bnip3L, Atg12, Atg4B, LC3, and GABARAPL1 [145,148,149]. 

Genotoxic stress can induce autophagy in a p53-dependent process, and p53 can regulate 

autophagy-inducing genes [150]. A loss of function mutation in the p53 ortholog cep-1 exhibits a 

longer lifespan in C. elegans by inducing autophagy [151]. However, p53 deficiency does not enhance 

the lifespan extension conferred by sir2.1 overexpression. During oxidative stress, SIRT1 blocks the 

nuclear translocation of p53; therefore, SIRT1 can inhibit the nuclear function of p53, which acts as a 

transcriptional regulator [152]. 

3.3. Autophagy and Caloric Restriction (CR) 

Restricting the calories in diet has been used as a method for increasing both the longevity and 

quality of life. Caloric restriction (CR) has been found to extend longevity and impacts on age related 

diseases in yeast, worms, insects and rodents; thus, this regimen has become the center of aging 

research interest [153,154]. In addition, reduced calorie intake improves memory and cognitive brain 

functions in aged animals [155–157] and decreases risk factors for neurodegenerative diseases [158,159], 

while high calorie diets increase the risk of neurodegenerative disease [135,160,161]. The longevity 

and health effects of CR appear to act through many pathways. The possible target pathways, including 
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TOR, AMPK, and sirtuins, can detect changes in specific metabolites, such as amino acids, ATP, and 

NAD+. Further evidence indicated that defective insulin receptor (daf2 mutant) worms lived longer 

than control worms [42,46]. Moreover, knockdown of autophagy gene products, including Atg7 and 

Atg12, was shown to shorten the lifespan of both wild type and daf2 mutant C. elegans [162]. 

The Ser/Thr protein kinase TOR plays a key role in signaling nutrient limitation in the autophagy 

pathway [163]. In cells lacking sirtuins, CR can extend lifespan via TOR inhibition [164]. The absence 

of SIRT1 resulted in mTOR, S6K1, 4EBP1 and S6 phosphorylation. These data indicate a role for 

SIRT1 in mTORC1 regulation because the mTOR pathway is responsive to nutrient and cellular stress 

and is downregulated in response to stress signals. Therefore, CR appears to induce both SIRT1 and 

autophagy. During nutrient starvation, high mTOR activity leads to the phosphorylation of Ulk1 at  

Ser 757, interfering with the interaction between Ulk1 and AMPK to form a complex with Atg1 for 

autophagosome assembly [165]. Both SIRT1 activation by resveratrol and CR prolonged the lifespan 

of C. elegans only when these organisms are autophagy competent, and their effects are abolished by 

silencing beclin1. Both beclin1 knockdown and SIRT1 knockout prevent autophagy induction and 

reverse resveratrol effects. Therefore, CR and resveratrol require functional SIRT1 to stimulate 

autophagy and to enhance longevity [166]. Interestingly, silencing SIRT1 eliminated autophagy 

stimulation by resveratrol and by nutrient deprivation in human cancer cell lines. These data show the 

same result as seen in CR treatment in C. elegans. Mouse embryonic fibroblasts derived from fetuses 

with homozygous SIRT1 deletions could not activate autophagy during starvation [134]. 

3.4. Autophagy and Neuroinflammation 

The NF-κB signaling pathway that plays a vital roles to defense against cell damage and autophagy 

is regulated by the NF-κB system. Autophagy can stimulate NF-κB-dependent inflammatory  

responses [167], whereas an increase in autophagy can prevent inflammatory responses [168,169]. 

However, the role of NF-κB signaling in autophagic degradation is unknown. 

NF-κB signaling can repress TNFα-induced autophagy. This suppression was linked to NF-κB 

activation of mTOR kinase, which is an inhibitor of autophagocytosis [170]. The NF-κB signaling 

pathway inhibits autophagy in macrophages by downregulating Atg5 and beclin1 expression, leading 

to the promotion of apoptosis and inflammation processes [171]. The formation of this condition is 

stimulated by NF-κB signaling activation [172,173]. 

The NF-κB pathway involves the I-kappaB kinase (IKK) complex, which contains IKKα and IKKβ 

kinases. The mTOR/Raptor complexes in response to TNFα and insulin, are involved with IKKα  

and IKKβ. The activation of the mTOR/Raptor complex by IKKα was induced by Akt kinase,  

whereas IKKβ repressed the tuberous sclerosis complex (TSC), which is an mTOR/Raptor suppressor, 

thereby activating the mTOR kinase [174]. TNFα-activated IKKβ suppressed TSC1 and triggered the 

mTOR pathway [175,176]. The NF-κB-activating kinases IKKβ and NF-κB-inducing kinase can be 

selectively degraded by autophagy. Additionally, NF-κB signaling can promote cell survival during the 

heat shock recovery period via autophagy. To support this notion, the inhibition of NF-κB activation 

could block the autophagic response and increased cell death after exposure to heat shock stress [177]. 

HSP90 inhibition with geldanamycin interferes with this interaction and induces the degradation of 

these proteins by autophagy. Overexpressing SIRT1 protected mice from many types of pathogenic 
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inflammation, such as liver cancer [178]. SIRT1 and SIRT6 repressed a critical driver of inflammation 

NF-κB, either by deacetylating p65 by SIRT1 or by SIRT6 interacting with histones at NF-κB target 

genes [179,180]. HIF-1a, which is the SIRT target protein, is involved in a proinflammatory response, 

and p65, which is related to this transcription factor, can be deacetylated and repressed by SIRT1 and 

by SIRT2 [181,182]. Histones at NF-κB-regulated genes can also be deacetylated by SIRT6, leading to 

the repression of gene expression [183]. 

3.5. Melatonin and Autophagy 

Melatonin can act as either pro- or anti-autophagy. It depends on the stage of autophagy. In normal 

physiological condition, autophagy acts as pro-survival to maintain homeostasis of the cells. In this 

situation, melatonin will help or activate autophagy for cell survival. On the other hand, when cells are 

exposed to ROS or toxic agents, autophagy (excessive levels) will shift to autophagic cell death. In this 

state, melatonin exhibits protective effects to inhibit excessive levels of autophagy. Several lines of 

evidence have suggested that melatonin protects against neuronal cell death from methamphetamine 

(METH) toxicity [184,185]. In addition, melatonin can protect cells from METH toxicity-induced 

autophagy overactivation leading to lower autophagic cell death [186]. Some lines of evidence have 

demonstrated that the interaction between beclin1 and anti-apoptotic Bcl-2 negatively regulates 

autophagy by blocking an essential protein in the autophagy signaling pathway [187,188]. Under 

normal conditions, Beclin1 binds to Bcl-2 to form the Bcl-2/Beclin 1 complex; however, this complex 

dissociates, causing increase autophagy levels, such as when Bcl-2 was activated by an upstream 

pathway, such as Bcl-2 phosphorylation by c-Jun N-terminal kinase 1 activation [189,190]. A novel 

role of melatonin in protecting against cell death from METH-induced autophagy is to dissociate the 

Bcl-2/Beclin 1 complex and its upstream cascades that lead to cell death [191]. However, melatonin 

also correlated with chaperone-mediated autophagy (CMA) signaling to increase protein degradation 

by inhibiting abnormal forms of their proteins. Melatonin and autophagy work synergistically to 

promote cell survival by decreasing oxidative stress and by delaying immunosenescence. Some 

experiments have been designed to study the role of melatonin during immunosuppression. 

Cyclosporine treatment exhibited increased autophagy during oxidative stress but not during aging, 

whereas autophagy was suppressed, and LC3-II expression was inhibited by melatonin  

treatment [192,193]. Melatonin can either induce or inhibit autophagy, depending on cellular 

requirements and oxidative stress levels. Likewise, the dual functions of autophagy (inducing cell 

survival or cell death) also require further studies to clarify the regulatory roles of melatonin in the 

complicated autophagy processes. 

4. The Circadian System 

The circadian clock is an endogenous system that acts as an internal time-keeping device, 

generating approximately 24 h variation in physiology and behavior. This daily variation is defined as 

circadian rhythms (circa = about; dies = day) [194]. The hypothalamic suprachiasmatic nucleus (SCN) 

is the master clock in mammals. Photic information from light is conveyed from the retina via the 

retinohypothalamic tract and is sent to the SCN. Then, the SCN produces synchronizing signals to 

control the phases of peripheral clock oscillation [195]. The mechanical clock gene system is formed 
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by a complicated transcription-translation feedback loop. The transcription factor CLOCK (circadian 

locomotor output cycles kaput) dimerizes with BMAL1 (brain and muscle ARNT-like 1) [196], 

forming the heterodimer CLOCK:BMAL1, which activates transcription by binding to the E-box  

(5'-CACGTG-3') and E-box-like promoter sequences [195]. The other CLOCK homologs, such as 

neuronal PAS (PER, ARNT, SIM) domain protein 2 (NPAS2), dimerize BMAL1, activating 

transcription and maintaining normal circadian rhythmicity [197,198]. The Period (Per1, Per2, and 

Per3) and Cryptochrome (Cry1 and Cry2) genes are the targets of CLOCK:BMAL1 and control this 

transcription complex. The oligomerization and nuclear translocation of the PER:CRY complex results 

in the inhibition of CLOCK:BMAL1-mediated transcription [195,199]. Most of the clock genes exhibit 

24 h fluctuation changes in the SCN and in peripheral tissues, except for Clock. Clock does not 

oscillate in the SCN [200]. Reverse erythroblastosis virus α (Rev-Erbα) is a negative regulator of 

BMAL1 expression [201], whereas retinoic acid receptor-related orphan receptors α (RORα) and 

RORγ positively regulate BMAL1 expression [202] via ROR response elements (RORE) [203]. 

Further regulatory mechanisms include post-translational modification processes, such as acetylation, 

methylation, phosphorylation and sumoylation. These processes provide additional levels of regulation 

to sustain and stabilize the accuracy of the circadian oscillation based on the 24-h solar cycle [204]. 

4.1. Melatonin and the Regulation of Clock Genes 

Melatonin is primarily secreted at night and is defined as the “hormone of darkness” [2,205,206]. 

The duration of the nocturnal peak of melatonin secretion also reflects the length of the night [207]. 

Therefore, the robust rhythms of melatonin are suspected to be a crucial factors for normal circadian 

function and good health [208]. 

The expression of melatonin receptors explains the direct action of melatonin in many organs.  

The presence of melatonin receptors in the SCN and circadian melatonin production represent the 

association between melatonin production and the circadian rhythm machinery. The light-dark cycle of 

clock gene expression has been investigated in both melatonin-proficient mice (C3H) and  

melatonin-deficient mice (C57BL). PER1 (Period 1), CRY2 (Cryptochrome 2), and BMAL1 displayed 

lower levels in the adrenal cortex of C57BL mice than in C3H mice [209]. In the mouse striatum, 

pinealectomized mice did not display circadian rhythms of Per1 mRNA and PER1 protein  

levels [210]. Primary neuronal cultures derived from the murine striatum demonstrated that melatonin 

decreased Per1 and Clock expression but increased NPAS2 expression and showed no effect on the 

Bmal1 level. However, these effects were not observed in MT1 knockout animals [211]. A melatonin 

experiment in hypertensive TGR (mRen2)27 rats yielded a phase-dependent effect on Per2 and Bmal1 

expression in the heart, particularly during the dark phase, suggesting that melatonin is involved in the 

clock gene regulatory system; however, the exact mechanisms have not been elucidated [212]. 

4.2. Epigenetic Regulation of Clock Genes 

Histone phosphorylation, acetylation, and DNA methylation, which modify circadian clock gene 

expression, have been shown to follow circadian rhythms [213–216]. DNA methylation in the SCN 

participates in regulating circadian rhythms. A shorter 22 h life cycle in mice altered global 

transcription in the SCN and the genome-wide methylation profile, leading to global alterations in 
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promoter DNA methylation. These alterations included areas that contained clock genes and genes 

involved in synaptogenesis, axon guidance and hormone signaling. Behavioral, transcriptional and 

DNA methylation changes were reversible after re-entrainment to a 24 h per day cycle. Directly 

infusing a methyltransferase inhibitor to the SCN can suppress period changes. These data indicated 

that animals exposed to a 22 h light–dark cycle had long-lasting changes in the SCN transcriptome 

caused by altered DNA methylation processes [217–219]. Histone methyltransferase, MLL1, which 

methylates histone H3 at lysine 4 (H3-K4), is also associated with CLOCK and is recruited to 

promoters of CCGs in a circadian manner. H3-K4 methylation at these promoters also displayed 

rhythmicity and was linked to transcriptional activation [219]. Some reports have demonstrated that 

rapid phosphorylation of Histone 3 on Serine 10 (H3S10) in the SCN is triggered in response to light. 

This phosphorylation results in the induction of Per1 and immediate-early gene expression, such as  

c-fos, indicating that light-mediated signaling regulates circadian gene expression by remodeling 

chromatin [213]. These findings underscore the involvement of epigenetic mechanisms and  

circadian regulation. 

CLOCK:BMAL1 mediated activation of CCGs has been shown to be coupled to circadian changes 

by histone acetylation at their promoters [214]. CLOCK also possesses intrinsic histone acetylase 

activity. Because CLOCK binds to E-box regions of DNA, HAT activity of CLOCK can selectively 

remodel chromatin at the promoters of CCGs [220]. HAT activity of CLOCK acetylates non-histone 

substrates, such as BMAL1, leading to facilitated CRY-dependent repression [221]. In addition, the 

transcription factor CLOCK has intrinsic histone acetyltransferase activity. CLOCK binds to H3K9 

and K14 at the promoters of CCG [220]. HAT activity of CLOCK also acetylates non-histone 

substrates, such as its own binding partner, BMAL1 [221]. CLOCK specifically acetylates BMAL1 at 

a conserved residue, which enhances CRY-mediated transcriptional repression. 

4.3. Connection among the Circadian Clock, Epigenetic Variation and Metabolism 

Circadian clock genes and metabolic status have a connection. Circadian disruption caused by 

abnormal circadian melatonin secretion has been proposed to be the cause of obesity development. 

Hypothalamic obesity is obesity resulting from polyphagia and from increased body weight gain  

that emerges after extensive suprasellar operations to excise hypothalamic tumors. Patients with 

hypothalamic obesity display increases in morning and night salivary melatonin compared with 

controls [222]. Epigenetic marks in circadian rhythm genes are able to modulate metabolic functions. 

In human studies, rotating shift work has been found to be associated with many components of 

metabolic syndrome [223]. Long-term shift work results in hypomethylation of CLOCK and 

hypermethylation of CRY2. Hypoxia inducible factor 1 α (HIF1α) is a part of the master CLOCK 

gene/protein interaction network that might modulate insulin resistance [224,225]. 

Another connection between the circadian clock, metabolism, and aging is the interaction between 

the circadian clock and SIRT1 [226]. SIRT1 is the only HDAC whose enzymatic activity is  

NAD+-dependent; thus, SIRT1 has been directly linked to the control of metabolism and aging [227]. 

Recently, SIRT1 has been introduced as a critical regulator of the circadian clock machinery [228,229]. 

The BMAL1:CLOCK complex and the BMAL1:CLOCK:PER2 complex interact with SIRT1. SIRT1 

binds to the CLOCK:BMAL1 complex at clock gene promoters and deacetylates BMAL1 at the 
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Lys537 area [228–231]. In turn, SIRT1 is regulated by the circadian system. The Nampt gene is  

under the direct transcriptional control of the BMAL1:CLOCK complex. The expression of nampt  

and NAD+ levels demonstrate circadian oscillation, which suggests circadian control of SIRT1  

activity [73,229,231,232]. SIRT1 may participate in this effect because SIRT1 and CLOCK variants 

have an effect on resistance to body weight loss that could be related to the human chronotype. 

Participants who carry minor alleles at SIRT1 and CLOCK loci displayed a high resistance to weight 

loss and a lower weekly weight loss rate than people who have the homozygotes for both major  

alleles [233]. By increasing the possibility of SIRT1, NAMPT and the circadian clock system in 

regulating metabolic status may lead to the development of a novel treatment for obesity. 

4.4. Melatonin, Circadian Clock and Aging 

Circadian clock dysfunction contributes to aging and to age-related pathologies. BMAL1-deficient 

mice develop a premature aging phenotype, characterized by multiple age-related abnormalities and  

an almost threefold reduction in lifespan [234]. The Clock−/− mice exhibit an increased rate of 

inflammation, cataracts and a 15% reduction in longevity [235]. Although the lifespan of Clock and 

Per2 mutated mice after exposure to non-lethal doses of ionizing irradiation have not been 

documented, these mice have a shorter lifespan and exhibit some senescence phenotypes [236,237].  

In addition to the importance of the circadian clock in accelerating aging, the circadian clock also 

controls other systems known to be associated with aging, such as the control of metabolism, oxidative 

stress response, and DNA repair [188,238]. 

Age-related changes in the SCN may lead to circadian dysfunctions, such as decreased circadian 

neural activity [239], decreased amplitudes of the circadian body temperature rhythms [240], altered 

serotonin rhythms in the SCN [241], altered neuropeptide contents and GABAergic networks in the 

SCN [242], and altered SCN sensitivity [241,243,244]. Melatonin production, amplitude and its 

pulsatile release from the pineal gland decrease upon aging [245]. Disturbed circadian melatonin 

rhythm has profound effects on the health and well-being of the elderly subjects [246,247]. Per2 and 

Bmal1 disruption in mice has been compared to some workers with alterations in behavioral rhythms, 

to the development of malignant tumors, to metabolic syndrome [248,249] and to premature aging [250]. 

Melatonin receptors are present in the mammalian SCN, and circulating melatonin can reach the 

central SCN clock. This feedback is important in the long-term functioning of the circadian system, 

e.g., aging [207]. The presence of MT1 receptors in the SCN indicates that exogenous melatonin  

can affect circadian regulation. The differential effects of melatonin in restoring daily rhythms of  

serotonin [241], antioxidant enzymes and lipid peroxidation [243] have previously been reported. 

Moreover, aging results in differential alterations in daily rhythms of expression of various clock genes 

(Per1, Per2, Cry1, Cry2 and Bmal1) in the SCN, and the therapeutic effects of melatonin in restoring 

such age-induced alterations have also been documented. The mRNA expressions of various clock 

genes in SCN in 3, 12 and 24 months showed that the circadian variation were due to age. In young 

rats (3 months), Per1mRNA expression peaked at zeitgeber time-6 (ZT-6), while Per2, Cry1 and 

rCry2 at ZT-12 and Bmal1 peaked at ZT-18. The phases of circadian mRNA expression exhibited the 

change of daily rhythms of these genes. Melatonin administration for 11 days restored of the rhythm of 

Per2, Cry1, Cry2 and Bmal1 in 12-month, whereas, the fluctuation of Cry1, Cry2 and Bmal1 were 
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restored at 24 months old. The abolishment of fluctuation of these circadian genes may be due to the 

decrease of the SCN melatonin receptor number [251]. The difference of melatonin effect on each 

circadian gene in the progress of aging needs to be further studied. 

4.5. Circadian Regulation and Autophagy 

The diurnal variation in autophagy activities and the number of autophagic vacuoles found, vary 

during the day in many tissues [252–255]. The measurement of autophagic markers revealed that 

autophagy in the liver flux reached a maximal peak during the afternoon and declined to minimum 

during the dark period [256]. In the retina, autophagy was stimulated by light under constant 

conditions and obtained maximal responses during the late dark and early light phases [257]. Several 

genes in the autophagy pathways were expressed in an oscillate manner when exposed to varied 

nutrient conditions [258,259]. 

C/EBPβ, which is a leucine zipper transcription factor, plays an important role in linking the 

circadian rhythm and autophagy gene expression. C/EBPβ is expressed in a rhythmic manner and is 

regulated by the liver clock. C/EBPβ stimulates autophagy gene expression and induces autophagic 

protein degradation in cultured hepatocytes. This transcription factor binds directly to the promoter 

regions of autophagy genes and then activates transcription [260,261]. Several lines of evidence 

demonstrate the roles of mTOR signaling in circadian clocks. In the SCN, mTOR activity displays 

robust circadian rhythms, and its rhythms are affected by light cues [262]. A genetic modification 

increasing mTOR activity displayed abnormal circadian rhythm with a longer period in Drosophila [263]. 

mTOR inhibitor treatment also decreases light-induced PER protein expression and helps modulate the 

phase shifts in behavior in animals [264]. Disrupting the circadian rhythm leads to many pathological 

conditions. Increasing the mTOR signaling pathway is associated with accelerated aging. In contrast, 

the circadian clock is one of the important systems for controlling autophagic activity [259]. Mice 

lacking Bmal1 had elevated mTORC1 activity both in vivo and in cell culture [265]. Interestingly, the 

pharmacological inhibition of mTORC1 by rapamycin increased the lifespan of Bmal1−/−mice by 50%. 

BMAL1 regulates the mTOR signaling pathway by acting as a negative regulator of mTORC1 

signaling. These findings demonstrate the role of the circadian clock in regulating the mTOR signaling 

pathway in mammals. 

4.6. Role of Melatonin and SIRT1 as Circadian Modulators in Memory Processing 

Memory formation processes contribute to the circadian rhythms in vertebrate and invertebrate 

models [266]. One of the key problems during aging is memory impairment, which is one of the 

symptoms of Alzheimer's disease. Melatonin may improve memory processes during aging through 

SIRT1 and circadian modulation because melatonin increased hippocampal SIRT1 level and improved 

cognitive functions in total sleep deprivation models [105]. Moreover, memory formation is also 

controlled by circadian regulation. Evidence from one study indicates that functional clocks are present 

in many parts in the brain, including the hippocampus, suggesting the presence of an autonomous 

clock; Per2 expression was found to be rhythmic in isolated hippocampi [267]. A time-of-day effect is 

observed in memory formation, thereby linking the circadian clock to this biological process [266]. 

Long-term potentiation (LTP) in the hippocampus has been demonstrated to undergo circadian 
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changes [268]. Moreover, mitogen-activated protein kinase (MAPK) phosphorylation displays 

rhythmicity in the hippocampus, and inhibiting this oscillation leads to impairment in the persistence 

of long-term memory [269]. 

An important function of the circadian clock is to synchronize different metabolic processes in an 

organism and to synchronize an organism to its environment to guarantee the optimal performance of 

different organ systems. The physiological processes controlled by the circadian clock include energy 

metabolism, sleep-wake cycles, hormone secretion, body temperature, locomotor activity, and visceral 

organ functions; all these mechanisms exhibit daily variations [270–273]. In humans, abnormal 

circadian clock rhythms can be found in individuals performing shift work and are expected to be the 

cause of neurodegeneration, metabolic syndromes, cardiovascular diseases and cancer [274]. 

The circadian acetylation function of SIRT1 has been described in aging and in  

neurodegeneration [275]. SIRT1 was shown to deacetylate and coactivate retinoic acid receptor  

β (RARβ), which leads to activation of the transcription of Adam10, which is a gene that encodes  

α-secretase [276]. Cleavage of the amyloid precursor protein by α-secretase prevents the production of 

the toxic amyloid β peptides that cause Alzheimer’s disease. Thus, SIRT1 appears to have a 

neuroprotective role [276]. SIRT1 also deacetylates tau and prevents tauopathy that is evident in 

several neurodegenerative diseases [277]. Moreover, treatment with the SIRT1 activator resveratrol or 

ectopic SIRT1 expression was shown to prevent neuronal cell death [278]. 

Recent studies have reported that SIRT1 also plays a major role in synaptic plasticity and memory 

formation. Brain-specific SIRT1 mutant mice or SIRT1 whole-body knockout mice displayed deficits 

in learning and memory [279,280]. Brain-specific SIRT1 mutant mice exhibited lower levels of CREB 

protein expression in the hippocampus. CREB expression was found to be downregulated by a 

microRNA, miR-134. SIRT1 negatively regulates miR-134 expression, thus, in turn, regulating CREB 

expression. miR-134 overexpression in the hippocampus mimics the loss of SIRT1, whereas knocking 

down miR-134 in the hippocampus ameliorates memory defects in the SIRT1 mutant mice [65,279]. 

5. Conclusions 

In this review, we have discussed age-related changes in the normal nervous system that occur 

because of the mechanisms of energy metabolism. Melatonin plays a major role in regulating the 

following processes: 1. the circadian rhythm, including several clock genes (Per1, Per2, Nampt, 

CLOCK, and BMAL1); 2. epigenetics, including sirtuins and FoxOs; and 3. autophagy. Melatonin 

regulates several molecules and signaling pathways that sense and influence energy metabolism, 

including insulin/IGF1, and PI3K/Akt. These pathways regulate normal nervous system aging.  

Age-related neuronal energy deficits contribute to the pathogenesis of several neurodegenerative 

disorders, such as Alzheimer’s disease and Parkinson’s disease. The anti-aging properties of melatonin 

regulate energy metabolism, leading to longevity (Figure 1). A better understanding molecular aging 

and anti-aging mechanisms is required to increase lifespan under healthy conditions, particularly to 

improve cognitive functions. 
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Figure 1. Mechanism of melatonin in controlling normal nervous system aging, 

neuropathological aging and longevity. The multiple mechanisms of action of melatonin 

include the following: 1. regulating the circadian rhythm, including several clock genes 

(Per1, Per2, Nampt, CLOCK, and BMAL1); 2. epigenetics, including sirtuins and FoxOs 

(forkhead box O); and 3. autophagy, including mTOR (mammalian target of rapamycin) 

and Atg (autophagy-related proteins). Melatonin regulates several molecules and signaling 

pathways that sense and influence energy metabolism, including insulin/IGF1, Akt (protein 

kinase B), and PI3K (phosphoinositide 3 kinase). These pathways regulate normal nervous 

system aging. Age-related neuronal energy deficits contribute to the pathogenesis of 

several neurodegenerative disorders, such as Alzheimer’s disease and Parkinson’s disease. 

The anti-aging properties of melatonin regulate energy metabolism, leading to longevity. 
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