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Abstract

Spreadsheets are widely used for financial and other
types of important numerical computations. Spread-
sheet errors have accounted for hundreds of millions of
dollars of financial losses, but tools for finding errors in
spreadsheets are still quite primitive. At the same time,
deep learning techniques have led to great advances in
complex tasks such as speech and image recognition.
In this paper, we show that applying neural networks
to spreadsheets allows us to find an important class of
error with high precision. The specific errors we detect
are cases where an author has placed a number where
there should be a formula, such as in the row totaling
the numbers in a column. We use a spatial abstraction
of the cells around a particular cell to build a classifier
that predicts whether a cell should contain a formula
whenever it contains a number.

Our approach requires no labeled data and allows us
to rapidly explore potential new classifiers to improve
the effectiveness of the technique. Our classifier has a
low false positive rate and finds more than 150 real
errors in a collection of 70 benchmark workbooks. We
also applied Melford to almost all of the financial
spreadsheets in the EUSES corpus and within hours
confirmed real errors that were previously unknown to
us in 26 of the 696 workbooks. We believe that applying
neural networks to helping individuals reason about
the structure and content of spreadsheets has great
potential.

1. Introduction

Spreadsheets1 are used by hundreds of millions of users
for many important tasks, including financial calcula-
tions. There has been a lot of research on spreadsheet er-
rors that demonstrate the degree to which spreadsheets
are used for important calculations and measure the de-
gree to which many real, important spreadsheets con-
tain errors [31]. Spreadsheet errors are in the news reg-

1A note on terminology: following the terminology from Excel,

we use the term workbook to describe a file containing multiple

worksheets and the term spreadsheet or sheet to refer to the

individual sheets in a workbook.

ularly, including recent news in 2016 that a 400 million
dollar error caused by a spreadsheet was made in the
analysis of SolarCity’s valuation in its sale to Tesla [9].

Despite widespread knowledge that spreadsheets of-
ten contain errors and that they can have consequences,
the tools available to find such errors are relatively prim-
itive. Many tools are based on applying rules that iden-
tify common anti-patterns, such as irregularities in for-
mulas or references to empty cells. Recently, the term
“spreadsheet smells”was introduced to indicate some of
these errors [24].

The approach of identifying anti-patterns has bene-
fits, such as the fact that the person writing the anti-
pattern can use their insight to determine how impor-
tant a pattern is, or when it should be applied. On the
other hand, there are also downsides to creating a cat-
alog of spreadsheet smells based on human experience
and effort. First, it takes people’s time, identifying a
new pattern, implementing it, and testing to see what
the false positive and false negative rate is. Second, be-
cause this approach often fails to leverage the large vol-
ume of existing spreadsheets, such anti-patterns do not
necessarily portray an accurate reflection of real errors.

Some of the advances in deep learning served as an
inspiration for this work. Deep learning technology has
made dramatic strides in the last five years alone [27].
Recurrent neural networks (RNNs) have been applied to
speech recognition [23] and image recognition [35]. Deep
learning approaches leverage a proven architecture for
neural network design with the ability to train the net-
works with large amounts of data to achieve dramatic
results with respect to precision and recall for complex
cognitive tasks.

This paper is the first to apply neural networks to the
problem of understanding the content and structure of
spreadsheets. Given that neural networks are capable
of learning complex classification tasks (such determin-
ing the breed of a dog in an image), we believe that
they can greatly support an individual’s understand-
ing of the structure and content of their spreadsheets.
Machine learning has been increasingly applied to rea-
soning about software (e.g., see [13],[28]). Spreadsheets
share some things in common with software and also
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(a) Value view. (b) Formula view.

Figure 1: Two views of an example spreadsheet: normal (or value) view and formula view. Note the error in cell D7, which
in the value view appears to be the computed sum of column D but in fact is an incorrect number (the sum is 25).

have some unique qualities of their own. In particular,
they combine code (such as embedded formulas), data,
and graphical layout that other forms of software do
not. We believe that the physical layout of spreadsheets,
which captures the desire of the author to convey infor-
mation to the spreadsheet reader, intuitively, leading
to visually recognizable patterns, makes then especially

amenable to using deep learning techniques to reason
about.

We use two neural networks including the Feed-
forward network and the Long Short Term Mem-
ory (LSTM) variant of a recurrent neural network (and
their parametric variants) as the basis for our classifier.
The network’s classification task is to predict whether
a given cell in a spreadsheet should contain a formula
when it currently contains a number.

Motivating example: Figure 1 illustrates such a cell
in an example spreadsheet. Figure 1 shows the normal
view of the simple spreadsheet, where row 7 appears to
contain the total of the cells in the columns above it.
Normally such sums are computed using a SUM formula,
and the user can view all the formulas in the sheet by
pressing Control-` in Excel.

In the example, we see that while the other columns
are computed using SUM, column D instead just has a
number in row 7, which, while numerically close, does
not actually represent the sum of the values in the
column. We call such errors “number-where-formula-
expected” (NWFE) errors. The job of the classifier is
to identify cells like D7 and highlight them to the user.
Figure 2 illustrates the output of our tool Melford on
this example.

Classifier: To build the classifier, we define an abstrac-
tion of the contents of the spreadsheet and use the ab-
straction over the local spatial neighborhood of a cell to
predict its contents. We train the network using a col-
lection of existing spreadsheets and then apply the clas-
sifier to new spreadsheets. We compare our approach
with a classifier using the same abstraction but using
simple statistics instead of deep learning, a classifier us-
ing Support Vector Machines (SVM) with the same ab-
straction, and we also compare against CUSTODES, a

Figure 2: Result of Melford correctly identifying error at
D7 in the example spreadsheet.

recent spreadsheet error detection algorithm that uses
clustering techniques based on hand-coded features to
identify anamolies [14]. In our evaluation, we compare
variants of our classifier and CUSTODES using a col-
lection of 268 sheets also used to evaluate CUSTODES.
Using the 268 benchmark spreadsheets has the advan-
tage that they have been hand-labeled to identify errors
where a number is present where a formula is expected.
We show that Melford has a significantly higher pre-
cision and recall than our simple statistical classifier
and the SVM-based classifier, and that it has an aver-
age precision close to CUSTODES with a significantly

lower false positive rate.

Contributions: The contributions of this paper are as
follows.

❼ This is the first paper to explore the use of multi-
layer neural networks to reason about the structure
and contents of spreadsheets, specifically for finding
errors.

❼ We show that a simple abstraction of the contents of
the spreadsheet, when fed into a neural network, pro-
duces a classifier that is effective at finding spread-
sheet errors where a formula is expected but a num-
ber is present.

❼ We present measurements of the effectiveness of the
approach, both in the training and execution time,
and also in the classification effectiveness, applied to
spreadsheets used in previous research.
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Figure 3: Spreadsheet abstraction used in the Spreadsheet
Advantage map tool.

❼ We use the Melford system to find true errors
that were previously unknown to us in 32 sheets
out of 1,513 sheets in the EUSES spreadsheet corpus
within a few hours.

Paper organization: The rest of this paper is orga-
nized as follows. Section 2 describes the abstractions we
define that are used as the input to the neural network
training. Section 3 describes the architecture of the net-
work and the parameters used configure it. Section 4
describes our evaluation methods and the benchmarks
used. Section 5 contains the results of our evaluation
while Section 6 describes related work. We conclude in
Section 8.

(a) Formula view.

(b) Melford abstraction.

Figure 4: Abstraction for spreadsheet in Figure 1.

2. Spreadsheet Abstractions

Our approach is motivated by two observations. First,
the human process of finding errors in spreadsheets is
at least in part based on visual pattern matching. For
example, consider the Map view provided by the com-
mercial spreadsheet debugging tool Spreadsheet Advan-
tage [3] shown in Figure 3. The figure shows how the
tool abstracts the cell contents into classes of values,
and shows the result to the user. It uses 6 symbols: F
denotes presence of a formula in a cell, > denotes that
the cell has the same formula as the cell on the left, v
denotes the same formula as the cell above it, + denotes
where both > and v holds, T denotes text, and N de-
notes a number value. In the example given, the F in
the field of “>” symbols stands out as a potential error.

The second observation is that deep learning tech-
niques have proven very successful at learning patterns
in very complex data to the degree that in image and
speech recognition tasks, they perform close to a human,
given enough training data. Using these two observa-
tions, we formulate the problem of finding anomalies
in spreadsheets as learning a recognition/classification
task over an abstraction of a spreadsheet that retains
the visual and spatial aspects of the document. The
initial abstraction we chose is very simple. We replace
each cell with a simple representation of the type of the
contents of the cell. The mapping is:

❼ F – if the cell contains a formula;

❼ N – if the cell contains a number;

❼ S – if the cell contains a string;

❼ O – if the cell is empty;

❼ X – if the cell is at the boundary of the spreadsheet.

❼ B – if the cell contains a Boolean value.

❼ E – if the cell type has an Error value.

Beyond this abstraction, we retain the spatial structure
of the cells. For example, the spreadsheet in Figure 1
is represented in Figure 4b. Just as with Spreadsheet
Advantage, this view of the spreadsheet provides im-
mediate visual clues about potential anomalies in the
contents. Our belief is that we can train neural net-
works to recognize and identify the error at D7 with
high precision and recall.

With this representation, we then pose the recogni-
tion of error cells as a classification problem. Given some
amount of context around a cell, predict the class of ob-
ject that the cell contains. Cases where the cell does not
contain the class that is predicted are flagged as poten-
tial errors. Our initial approach to defining context is
motivated by image classification approaches used for
deep learning.

The classifier’s task is to predict the contents of the
center cell, given the surrounding cells. In this example,
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it is not hard to see that based on training the natural
prediction would be to predict F, which it in fact does.
Given that the actual contents of the cell is an N, this
cell is then flagged by Melford as a potential error.

Note that this is not the only abstraction we
have considered. If our classification required reasoning
about the operators within a formula, for instance, to
distinguish between sums and products, more complex
abstractions would be necessary.

3. Neural Network Model

We now describe the different encodings we apply to
the spreadsheet abstractions to generate input vectors
and our neural network architecture for learning to
identify anomalies from these vectors. For a collection
of spreadsheets, we generate a set of training vectors
X and the corresponding label set y. For each cell c
in a spreadsheet, the training set consists of a vector
X[c] that encodes some context around the cell and the
label y[c] denotes the desired label dependent on the
task. The training vectors are then fed into different
neural network architectures to learn the function to
label cells.

3.1 Spreadsheet Encodings

Given a spreadsheet abstraction, we need a mechanism
to convert them into a set of training vectors. For this
work, we present a few encodings for obtaining fixed
dimensional encoding vectors since they can be then fed
to several neural architectures for learning the labeling
functions.

N ×N window encoder: The N ×N window encoder
creates k fixed dimensional vectors each of size N2 − 1
from a spreadsheet abstraction, where k denotes the
number of cells in the spreadsheet. For each cell (i, j) in
a spreadsheet T , we generate the following input vector
X[T, i, j] and the label y[T, i, j]:

X[T, i, j] = {T [k, l] | i−N/2 ≤ k ≤ i+N/2, k 6= i
j −N/2 ≤ l ≤ j +N/2, l 6= j}

y[T, i, j] =

{

F, if T [i, j] = F

N, otherwise

Figure 5:
Melford 5× 5
abstract con-
text for
cell D7 in
Figure 1.

We instantiate the N ×N window
encoder for two different values N =
5 andN = 9. Specifically we consider
the cells in a N × N square around
a given cell as context to predict its
contents.

An example 5 × 5 and 9 × 9 win-
dow encoding for a spreadsheet cell
is shown in Figure 6(a) and Fig-
ure 6(b), respectively. For the cell

(a) 5X5 window (b) 9X9 window (c) 9+9 row+column

Original Spreadsheet Table

Figure 6: Three fixed dimensional encodings for spread-
sheet cells.

D7 in Figure 1, the 5x5 context sur-
rounding it is shown in Figure 5.

Row+column encoder: The N +
N row+column encoder creates an
input vector of size 2 · (N −1), where
the values correspond to the cell abstractions in the row
and column of a spreadsheet cell. Specifically, for a cell
(i, j) in a spreadsheet table T , we have

X[T, i, j] = {T [k, j] | i−N/2 ≤ k ≤ i+N/2, k 6= i}
∪ {T [i, l] | j −N/2 ≤ l ≤ j +N/2, l 6= j}

y[T, i, j] =

{

F, if T [i, j] = F

N, otherwise

We instantiate the row+column encoder for N = 9, as
shown in Figure 6(c).

3.2 Neural Network Model

Our neural network architecture for the label prediction
task is shown in Figure 7. The spreadsheet is first
encoded using the encoders described previously to a set
of fixed-length vectors. The vectors are then processed
by a neural network – a feed-forward network or an
LSTM with 128 hidden units in each layer. For feed-
forward networks, we use the encoding vector as the
input layer, whereas for the LSTM network, we provide
the encoding vector as a sequence of abstract symbols
(from the abstraction vocabulary). The hidden layer
representation is then propagated to a feed-forward
layer with n units, where n denotes the vocabulary size.

Finally, we have a softmax layer on top of the final
layer to obtain a probability distribution over the set
of characters in the vocabulary. Note that for the clas-
sification task of predicting whether a cell should be a
number or a formula, we only need to learn a binary
classifier, where only 1 unit in the final layer would suf-
fice. But, we use a general architecture to also allow for
prediction of other abstraction types in the vocabulary
for future work in detecting other error types.
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Figure 7: The network architecture for learning the labels for spreadsheet encodings.

The feed-forward networks consist of layers of com-
putational units, where each layer consists of a set of
artificial neurons, which use a non-linear function to
be activated (1) or not (0). The layers are connected
with weighted edges, which allows feed-forward net-
works to learn non-linear functions. We evaluate the
feed-forward network with different numbers of hidden
layers. The LSTM network model is a variant of the
recurrent neural network (RNN) model, which allows
for encoding variable-length vectors as sequences and
learning longer contexts in sequences. LSTMs have pre-
viously been shown to outperform other alternative re-
current models for the task of handwriting recognition
and speech recognition. The network is trained end-to-
end over millions of spreadsheet vectors obtained from
a large number of training spreadsheets.

4. Experimental Methods

In this section, we discuss the methods and our training
setup used to evaluate the performance of Melford.

4.1 Training Data

For training our neural network models, we used work-
books from the VEnron corpus available from http:

//sccpu2.cse.ust.hk/venron/ and described in a re-
cent paper [19]. The corpus contains 7,296 workbooks
that were made public in the litigation surrounding the
Enron Corporation that occurred in the early 2000’s.

The sheets are from a diverse set of sources includ-
ing financial spreadsheets, and the related research clus-
tered them into 360 distinct clusters, each of which rep-
resents the evolution of each sheet over time. We trained
our network models using 13,377 sheets obtained from
these workbooks.

We also trained our model using 17,719 sheets from
a private collection of diverse workbooks available to
us (we call these “ExcelSamples”). This collection con-
tains 9,512 Excel workbooks. Because the workbooks do
not represent multiple instances of the same workbook
through its history, we believe that our collection is in
fact more diverse than the VEnron collection. While we
are not able to share these workbooks, we plan to share
the models learnt on this dataset.

Figure 8: Custodes benchmark sheets sorted by the frac-
tion of numeric cells considered to be errors.

4.2 Evaluation Benchmarks

For the purpose of evaluating our models, we use
the Custodes benchmark suite available from the
Custodes project at http://sccpu2.cse.ust.hk/

custodes/. The suite contains a collection of 70 Ex-
cel workbooks selected from the EUSES spreadsheet
corpus [22] containing 2682 different sheets. The Cus-

todes project hand-labeled the cells in the sheets to
provide ground-truth with respect to several different
kinds of errors including errors where a formula is ex-
pected but a number is present.

Because Melford is trained to specifically de-
tect number-where-formula-expected (NWFE) errors,
we compare the performance of different algorithms
on this subset of errors in the Custodes benchmark
workbooks. Fortunately there are many such errors in
these workbooks — our count for total NWFE errors
across the 268 sheets is 1,707. Because this number is
so high, we investigated the distribution of hand-labeled
NWFE errors in the Custodes workbooks and found
that there are several cases where a large fraction of the
numbers in the worksheet are considered errors by the
Custodes labeling.

2While the groundtruth directory from Custodes con-

tains 290 sheets, 22 of those sheets have no cells containing num-

bers, and are thus omitted from our analysis which only makes

predictions on cells containing numbers.

5 2017/1/31



In Figure 8, we show the fraction of cells contain-
ing numbers marked as true errors by the Custodes

project. The figure shows that in a small number of
sheets, almost every cell containing a number is con-
sidered an error. For example, in the workbook in-

ter2.xls in the sheet “Summary of Vital Statistics”
out of 2,212 cells, 422 are considered errors by the Cus-

todes labeling.
Another set of 7 sheets from a single workbook each

have either 77 or 78 errors with 100% of all the cells
containing numbers labeled as errors. Our belief is that
cases where a large fraction of all cells in a sheet contain
errors is unlikely in practice, because human auditors
can easily catch such errors. As a result, we focus our
evaluation on a subset of the Custodes spreadsheets,
in which the total fraction of cells containing errors is
less than 10% (the low-error subset). This filter removes
approximately 10% of the Custodes spreadsheets from
the benchmark suite. The number of total cells with true
errors is reduced to 474 out of 42,269 cells containing
numbers. In Section 5, we present results for both the
low-error subset of Custodes and the full Custodes

benchmark suite.
In addition the Custodes dataset, we also evalu-

ated our learnt model on another test dataset obtained
from the EUSES collection of 720 financial spreadsheets.
This dataset is much larger than Custodes, but these
spreadsheets do not have the ground truth labeling. We
wanted to observe the experience of an auditor using
Melford on a new dataset to find the NWFE errors.

4.3 Baseline Comparison

In addition to comparing Melford to Custodes, we
also compare it against two simpler baselines.

Statistical Classifier: The first baseline is a simple
statistical classifier (which we call “Stencil”) based on
remembering every 5 × 5 context and predicting based
on the frequency of outcomes in the training set. For ex-
ample, if the 5×5 stencil shown in Figure 5 occurred 10
times in the training set and the center cell contained
an F 9 times and an N once, we record this exact dis-
tribution (NumF = 9) and (NumN = 1).

As with our network models, we use this model as a
classifier to detect instances where F is predicted but N
is present. We set a threshold for prediction based on the
ratio of observations where F was observed compared
to how many times either F or N was observed. If
NumF /(NumF + NumN ) > 0.5), we flag the cell as
an error.

For training, we used the ExcelSamples training
set described above. In that collection of spreadsheets
we observed and recorded 3,553,482 different contexts.
Since our baseline approach can only predict specific
contexts that it has seen, a comparison of Melford

with the baseline gives us an understanding of how ef-
fective the learning model is at generalizing from the
raw data.

SVM Classifier: The second baseline we use is a clas-
sifier based on Support Vector Machines (SVM). The
spreadsheets are encoded to a fixed dimension 5 × 5
context vector for both the training sets and the vec-
tors are then used to train the SVM model. We use the
default SVM model from scikit that uses the rbf ker-
nel and also trained it with the contexts observed in the
ExcelSamples dataset. For a fair comparison with our
network models, we do not provide any additional fea-
tures to the encoding vector other than the abstraction
of the cells in the 5× 5 context.

5. Evaluation

In this section, we evaluate the effectiveness of
Melford in finding number-where-formula-expected
(NWFE) errors in spreadsheets. Our goal is to answer
the following questions:

❼ RQ1: Does the Melford approach find real errors,
and what is the false positive and false negative rate
of the method?

❼ RQ2: How does the deep learning approach compare
to previous techniques, including Custodes, SVM
(support vector machine), and a simple statistical
baseline?

❼ RQ3: What is the performance of the deep learning
method, both in the time it takes to train the model
and the execution or application time, when using
the model to predict errors?

❼ RQ4: How sensitive is the approach to model pa-
rameters such as the contents of the training corpus
and the threshold used to decide whether to predict
an error?

5.1 Training Times

For training the network models, we obtain around 9.1
million vectors from the ExcelSamples dataset. We di-
vide the vectors into 80% for training and the remain-
ing 20% for validation. We train the networks for 50
epochs, where each epoch completes a forward and back-
ward pass in the network for all the training vectors.
We use a batch size of 128, i.e. each forward/backward
pass consists of 128 training examples. The models took
from 18 hours to 76 hours to train, depending on the
configuration. In some training runs, specifically for
the larger 9 × 9 models, the machine ran out of mem-
ory before finishing 50 epochs. For such cases, we use
the last saved epoch model for evaluation. The mod-
els were trained on a machine with a 2.8GHz Intel
Xeon CPU with 64 GBs of RAM and a 12GB Nvidia
Tesla K40m GPU. We used the keras deep learning li-
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Figure 9: Classification effectiveness of the different models for the low-error subset of Custodes benchmarks

brary [15] to implement our network models, which un-
derneath use the Theano deep learning framework [33].

5.2 Classification Effectiveness

The number of true and false positives reported by the
various classifiers we consider and their corresponding
F1 score is shown in Figure 9. All neural network clas-
sifiers and the baseline classifiers (SVM and Stencil)
were trained on the ExcelSamples data. Each layer in
the neural network model (feed-forward or LSTM) con-
sists of 128 hidden units. Specifically,

❼ Stencil denotes our baseline classifier consisting of
5x5 encoding vectors;

❼ SVM denotes the SVM classifier trained with 5x5
encoding vectors;

❼ CUSTODES shows the result of running the Custodes

tool;

❼ 5x5-FF1 denotes a model with 1 feed-forward layer
trained on 5x5 encoding vectors;

❼ 5x5-FF4 denotes a model with 4 feed-forward layers
trained on 5x5 encoding vectors;

❼ 9+9-FF4 denotes a model with 4 feed-forward layers
trained on 9+9 encoding vectors;

❼ 9x9-FF4 denotes a model with 4 feed-forward layers
trained on 9x9 encoding vectors;

❼ 9x9-LSTM denotes a model with 1 LSTM layer
trained on 9x9 encoding vectors;

❼ 5x5-LSTM denotes a model with 1 LSTM layer
trained on 5x5 encoding vectors.

True and false positives: In the low-error sub-
set of the Custodes benchmark workbooks, there
were 42,269 cells that contained numbers and 474 of
those were labeled by hand as true NWFE errors. Fig-
ure 9 shows the absolute number of true and false pos-
itives reported by the various classifiers for the low-

error subset of Custodes spreadsheets. We observe
that Custodes finds the most true positives (421/474)
but also reports a large number of false positives (720).
We believe this result happens because Custodes is
quite aggressive at growing clusters of related cells, to
the point that in some cases it over-generalizes, result-
ing in more false positives.

All network models with N × N encodings signifi-
cantly outperform the Stencil and SVM baseline mod-
els. The Stencil baseline predicts only 50 true posi-
tives and 57 false positives. The SVM baseline predicts 94
true positives, but 781 false positives. The performance
of different models with N × N encodings is compara-
ble. The best model amongst them is 5x5-FF1 which
finds 159 true positives with 240 false positives. In gen-
eral, adding additional feed-forward layers do not seem
to improve the model performance as the best 5x5-FF4
model finds 146 true positives with 215 false positives.
The larger window size also does not add to the model
performance as the best 9x9-FF4 model finds 129 true
positives with 137 false positives. Using an LSTM layer
instead of a feed-forward layer seems to slightly degrade
the performance. Finally, the 9+9-FF4 model performs
the worst as it finds a large number of false positives.
This result shows the importance of having all the cells
in the neighborhood window, as opposed to only the
row and column cells.

The F1 score for each model is shown in Figure 9(b).
The precision and recall values are computed by accu-
mulating all the test spreadsheet cells together in one
large list of cells. As described earlier, 5x5-FF1 models
seems to perform the best amongst all network models
with an F1 score of 0.365. Other N×N models have F1
scores in the range of 0.32– 0.35, which are all signifi-
cantly higher than the baseline scores of 0.17 (Stencil
and 0.14 (SVM). The Custodes system achieves an F1
score of 0.521 on this dataset.
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In conclusion, the 5x5 context trained with the Ex-
celSamples dataset performed the best amongst the
Melford configurations, detecting significantly fewer
true errors than Custodes but also reporting signifi-
cantly fewer false positives. Melford predicts that less
than 1% (0.68%) of cells contain errors and is correct
about 40% of the time for the Custodes benchmarks.

5.3 Effect of Training Data

We evaluate the effect of different training data on the
performance of network models by training the 5x5-

LSTM model on both the ExcelSamples dataset and the
Enron dataset. The performance of the two learned
models is shown in Figure 10. The model learned using
the ExcelSample dataset performs much better than the
model learned with the Enron dataset. Our hypothesis
for this performance is that the ExcelSamples dataset
consists of more diverse set of spreadsheets as opposed
to the Enron dataset, which is likely also more repre-
sentative of the Custodes evaluation dataset.

5.4 Effect of Threshold

The learned network models generate a probability dis-
tribution over the alphabets in the encoding vocabulary.
In our case, since we are only considering the label of
cells as N or F, the learned model predicts each one
with some probability p. We use a threshold value t
such that when p > t, we report the cell as erroneous.
In this experiment, we vary the value of threshold to
observe its effect on performance of the 5x5-FF1 model
as shown in Figure 11. We can observe that as we in-
crease the threshold value, the number of true positives
and false positives both decrease. For threshold value
of 0.9, we can observe that the 5x5-FF1 model makes
more than 50% correct error cell predictions. For this
model, the best F1 score is obtained for the threshold
value of 0.5(0.365).
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Figure 11: The effect of varying threshold value on the
performance of the 5x5-FF1 model. True and false positive
counts induced by different thresholds values are shown on
the x axis.

5.5 Model Execution Time

The evaluation time for running Melford on the
Custodes benchmarks for different network models is
shown in Figure 12. As can be observed the execution
times for feed-forward networks is about 1,000 seconds
for 268 benchmark sheets, whereas the LSTM networks
take much longer time (about 4 to 7 times). This is
because the LSTM architecture takes one element of a
sequence at a time and unrolls the computations. The
feed-forward models take on average about 0.025 sec-
onds per cell, whereas the LSTM models take on aver-
age about 0.12 seconds per cell.

5.6 Full Custodes Results

We now present the results of our learnt models on
the fullCustodes dataset containing even spreadsheets
where more than 10% of the cells are labeled as NWFE
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Figure 12: The total execution time for different learned
models on 268 Custodes spreadsheets.
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Figure 13: True positives vs false positives for different
models on the full Custodes dataset of 268 spreadsheets.

errors. The results for true and false positives count for
different models are shown in Figure 13. For the com-
plete dataset, Custodes reports 1503 true positives
and 759 false positives. Note that in the spreadsheets
containing a higher fraction of errors, the Custodes

approach does exceedingly well, detecting almost all
the true errors and adding few additional false positives
compared with the low-error subset.

The Melford model that finds the most true posi-
tives on this dataset is 5x5-FF4. It finds 419 true posi-
tives and 647 false positives. Surprisingly, the 9x9-FF4

Melfordmodel finds significantly more (305) true pos-
itives and few additional (154) false positives, compared
to the performance on the low-error subset, giving it
a success rate of 66.5% and the best ratio of true to
false positives of anyMelfordmodel. For the full Cus-

todes benchmarks, the 9+9-FF4 model, the SVM clas-
sifier, and the Stencil classifier all have poor perfor-
mance. The F1 score for each network model is shown
in Figure 14. The Custodes model has an F1 score of
0.76, whereas the best network model 5x5-FF4 has an
F1 score of 0.3.

5.7 Direct Experience with Melford

In this section, we discuss our experience applying
Melford to analyze spreadsheets not in theCustodes

benchmark suite. We chose the entire EUSES collec-
tion of 720 financial spreadsheets as our test (a collec-
tion much larger than the 70 workbooks in the Cus-

todes benchmarks). Our goal was to demonstrate that
Melford was effective at finding real bugs in spread-
sheets that we had not previously looked at. Of the
original 720 financial workbooks, we removed 24 be-
cause our tool was unable to parse the character sets
present in them, leaving 696 workbooks containing a
total of 1,513 individual sheets.
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Figure 14: The F1 scores for different models on the full
Custodes dataset of 268 spreadsheets.

We used the 5x5-FF1 model to process all the work-
books in the EUSES financial spreadsheet collection.
The total time to analyze the 696 workbooks was just
under 3 hours of wallclock time on a workstation class
desktop machine (see more details about the perfor-
mance below). Our tool reported 818 out of a to-
tal of 218,438 numeric cells (an error reporting rate
of 0.037%) as potential errors in 227 of the 1,513 sheets.
We followed up by manually inspecting those sheets to
determine if the results were true positives or not. Over
the course of 3 hours, one of us inspected each sheet and
determined whether we believed the highlighted cell was
indeed an error. In many cases we were able to confirm
that a cell contained an error because when we replaced
the number with the use of an adjacent formula, the for-
mula correctly computed the number that was replaced,
indicating that the author had inadvertently replaced a
formula with a number.

Based on our analysis, we identified true positive
errors, all previously unreported, in 32 sheets from 26
workbooks. We consider the ability to quickly find so
many true errors with no prior familiarity with the
spreadsheets an accurate test of how effective our tool
will be in practice when applied to real spreadsheets.

To illustrate how we used Melford in action,
Figure 15 shows the formula view of the output of
Melford for the MEMORIAL sheet of the hospital-
dataset2002.xls workbook. The figure shows that the
adjacent cells contain formulas whereas cell F14 con-
tains a number. Replacing the number in F14 with the
formula in E14 produces the same number as a result.
The entire list of true positive errors and Melford-
annotated spreadsheets accompany this paper as a
zipped directory of Supplementary Material.
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Figure 15: Example of Melford finding a true error (cell
F14) in the MEMORIAL sheet of the workbook hospital-

dataset2002.xls in the EUSES financial spreadsheet col-
lection.

5.8 Classification Execution Time

Our performance results were obtained using an HP
Z820 Workstation with 64 gigabytes of memory running
Windows 8.1 Enterprise. We measured the execution
time for Melford to classify all the numeric cells for
the entire set of 696 EUSES financial spreadsheets and
plotted the total classification time against the number
of numeric cells in each sheet. The result, shown in
Figure 16 shows that the total time scales linearly with
the number of cells. A linear regression fits the data
with an intercept of 3.56 seconds and a per cell cost
of 0.011 seconds.

This measurement reflects that our current C# im-
plementation of Melford starts up a Python virtual
machine to process all the cells in a sheet to call the
keras library and so we believe that the 3.5 second con-

y = 0.0113x + 3.5632
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Figure 16: Classification time (y-axis, in seconds) vs. the
number of cells classified (x-axis).

Figure 17: Error checking rules in Excel 2013.

stant reflects that overhead. A faster implementation
that evaluates the model in C# itself without having
to start a separate Python process would significantly
decrease the overhead.

6. Related Work

In this section, we consider the most closely related work
on finding errors in spreadsheets as well as other work
that has applied neural networks for reasoning about
software. Because the issue of correctness of spread-
sheets has been of importance since they were first in-
troduced, there have been a number of approaches to
finding and fixing errors. A more comprehensive discus-
sion of approaches to finding and fixing errors in spread-
sheets was recently published by Jannach et al. [26].

6.1 Excel Built-in Support

Microsoft Excel [2] includes built-in support to help
users identify errors in spreadsheets. Figure 17 shows
a dialog with a list of errors that Excel 2013 highlights.
The approach supported by Excel is based on recogniz-
ing common pre-defined patterns of errors and flagging
specific cells that the patterns identify as potentially
wrong. Some of the rules check the contents of cells
(e.g., checking that the result of a computation is not
itself an error). Other checking involves the relation be-
tween cells such as if the calculations of formulas over
columns use inconsistent ranges or formulas omit cells
in a contiguous region. The Excel approach relies on a
fixed, manually curated set of rules that check for cases
that are common and likely to be true errors.

6.2 Spreadsheet Smells

In software development, the approach of using au-
tomation to detect patterns of coding that are as-
sociated with bad design or bad practices is called
detecting “code smells” [34]. Recently, this approach
has also been applied to detecting errors in spread-
sheets [5, 8, 16, 17, 24]. The key elements of this ap-
proach have similarities to the approach implemented
in Microsoft Excel — common patterns of bad coding
or bad design practices are cataloged and instances of
occurrences of such practices are highlighted for inspec-
tion. This work has evolved in the last few years and
the catalog of the kinds of errors that such approaches
detect has expanded.
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For example, in recent work [5], the smells include:
cell value deviation (either numeric or via string dis-
tance), empty cells in unexpected places, cells that don’t
have the same type as other cells in a column/row, bad
references (to empty cells), computations with many ref-
erences or resulting from a long chain of dependences,
and formulas with high conditional complexity (inspired
directly from code smells in programming).

6.3 Custodes

More recent work has focused on combining spread-
sheet smells with looking for cells that are classified
as outliers [14, 18]. The work closest to ours is Cus-

todes [14], which uses clustering techniques to identify
groups of cells believed to have common properties and
then looking for anti-patterns to find outliers in these
groups. Specifically,Custodes uses a two-stage cluster-
ing strategy to define groups of cells believed to share a
common role.

The first stage clusters cells that contain similar
ASTs and have similar dependences while the second
stage adds cells to the cluster based on a set of “weak”
features that include cell address, labels, etc. Once
the clusters are formed they look for specific kinds of
anomalies that represent potential errors such as a miss-
ing formula or a hard-coded constant (which is equiva-
lent to our number-where-formula-expected error).

Custodes differs from Melford in the basic ap-
proach used. Our approach requires no specific clus-
tering algorithm or enumeration of strong and weak
clustering features but reasons about the contents of
cells based on local patterns that we learn automati-
cally through training. Custodes is aggressive at cre-
ating clusters and classifying cells as errors, allowing it
to generalize from a small number of cells to predict that
an entire column is erroneous. Because it uses more lo-
cal reasoning, Melford will not make such aggressive
generalizations, resulting in both a lower true positive
and false positive rate as our results demonstrate.

Figure 18 illustrates some of the pros and cons of the
Custodes approach. The figure presents the formula
view of the sheet, with formulas only appearing in two of
the rows. Each cell marked with a red triangle indicates
a true error. The cells filled in green and yellow indicate
clusters that the Custodes algorithm infers. Note that
a large number of cells in each column are included in
clusters despite the presence of only one or two formulas
which are used as a basis for forming the clusters.

In the case of the green cluster, generalizing from a
small number of formulas allows Custodes to correctly
identify numerous true positive errors, whereas we see
with the yellow cluster that many of the cells in the
cluster are not errors (indicated by the absence of a red
triangle in the upper right cells). Overall, in this sheet,

Figure 18: Custodes labeling for the workbook in-

ter2.xls in the sheet “Summary of Vital Statistics.”

out of 422 true errors, Custodes correctly finds 387
and incorrectly reports 21.

6.4 Other Approaches

Another approach to finding bugs in spreadsheets in-
volves inferring types and units, and reasoning about
their compatibility [4, 6, 20]. Spreadsheets typically
have a limited type system involving types such as num-
bers, strings, formulas, etc. These approaches attempt
to define collections of cells with a common type by
examining values (e.g, strings that contain numeric val-
ues) and the spreadsheet layout and using them as clues
for inference. While prior work has attempted to in-
fer the spatial structure of tables, including identifying
headers [4], no prior work has used neural networks for
this purpose.

As mentioned, finding numeric outliers in spread-
sheets is one of the “smells” considered in prior work.
Auditing tools that find values that fall outside of ex-
pected distributions can be effective. For example, tech-
niques to determine if the values in spreadsheets follow
Benford’s Law [1] are used in forensic analytics to detect
spreadsheets with fraudulent data in them [12, 30].

More recent work goes beyond examining individual
values and considers the impact that values have on
chains of computation, including the “outputs” of the
spreadsheet [10]. This work directs the attention of
the spreadsheet author not to erroneous values, but
instead to those values that have the most impact on
the conclusions drawn from the spreadsheet.

6.5 Neural Networks for Software Reasoning

There has been a lot of recent interest in using neu-
ral networks for analysis of programs. Neural networks
have recently been used to learn language model embed-
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ding of introductory programming code, to automati-
cally cluster and propagate teacher feedback [32], and
for fixing syntax errors in student assignments [11]. A
convolution network with attention mechanism was also
recently applied to perform summarization of source
code snippets into descriptive function name-like sum-
maries [7].

Mou et al. [29] propose a novel tree-based convo-
lutional neural network (TBCNN) for encoding pro-
grams, and they use the learnt encodings to classify
short source code snippets obtained from a program-
ming contest according to their functionality. Our work
is inspired by the use of neural networks to the do-
main of software reasoning. Although spreadsheets can
be thought of as a form of software, they are quite dif-
ferent from general programs in the sense that there is
a visual layout aspect to it (similar to pictures), unlike
general-purpose programs.

Neural networks are also used in detecting malware.
Firdausie et al. provide a survey of runtime behavioral
techniques for malware detection [21]. Other projects
have applied neural networks to static malware classifi-
caion tasks as well [36, 37].

7. Threats To Validity

A threat to internal validity is that we assume that
the spreadsheet datasets we use for training our mod-
els do not have any anomalies. We try to minimize this
threat by using two quality training datasets — VEnron
and ExcelSamples, which come from reputable sources
as opposed to random spreadsheets on the web. An-
other internal threat for Melford’s evaluation results
on the Custodes benchmark set is that the ground
truth was obtained with manual labeling and it might
have some incorrect labels as a result. In fact, we have
found a small number of such labeleling mistakes during
a manual analysis. Another internal threat of using the
Custodes dataset is the representativeness of bench-
mark set for real-world spreadsheets. To mitigate these
issues, we evaluated our models on the EUSES finan-
cial spreadsheets dataset. Since these spreadsheets do
not have ground truth associated with it, we had to
perform a manual analysis of reported issues, which is
another threat to internal validity.

An external threat to validity is that the ExcelSam-
ples data can not be shared publicly. For mitigating this
threat, we are planning to at least make our learned
models public, so that at least comparisons can be per-
formed against these models.

8. Conclusion

This paper proposes Melford, a tool for finding errors
in spreadsheets. The specific errors we detect are cases
where an author has placed a number in a cell where

there should be a formula, such as in the row totaling
the numbers in a column. We use a spatial abstraction
of the cells around a particular cell to build a classifier
that predicts whether a cell should contain a formula
whenever it contains a number.

Melford uses a simple spreadsheet abstraction, re-
quires no labeled data, and allows us to rapidly explore
potential new classifiers to improve the effectiveness of
the technique. Our classifier has a low false-positive rate
and finds more than 100 real errors in a collection of 70
benchmark workbooks. We also applied Melford to
almost all of the financial spreadsheets in the EUSES
corpus and within hours confirmed real errors that were
previously unknown to us in 26 of the 696 workbooks.

We have shown that with neural networks, a simple
abstraction of a spreadsheet combined with a moderate
corpus of less than 20,000 files can be used to create a
classifier that is both fast and effective. We anticipate
that we can extend this work in two important ways.

❼ First, we believe that there are many additional ways
in which the contents of a spreadsheet can be ab-
stracted and that this additional information can be
used to build better classifiers. Specifically, we cur-
rently do not encode any information about the ac-
tual formulas, what cells they reference, etc. Like-
wise, we do not use any information about the pre-
sentation of the spreadsheet, such as font informa-
tion, color, etc., all of which are often used by hu-
mans as a way to convey information to viewers. Fi-
nally, we believe that incorporating the contents of
strings (such as the use the word “Total”) and num-
bers can improve the accuracy of the classifier.

❼ Another direction we plan to take this work is to con-
sider other classification tasks. For example, recently
it was discovered that many spreadsheets contain-
ing genome data had cells containing errors, where
genome sequences had been accidentally coerced to
dates and numbers [25]. We can train the classifier
to detect such cells and highlight them. Other kinds
of anomalies we believe can be detected with our
approach include incorrect cell ranges in formulas
and incorrect operators. Beyond finding errors, we
believe it should be possible to extract table struc-
ture (identifying the headers, boundaries, etc.) from
spreadsheets.

We believe that neural networks have a great deal of
potential for helping users reason quickly and effectively
about the contents of a spreadsheet. We hope that this
paper inspires other researchers to consider the exciting
intersection of deep learning methods and spreadsheet
correctness.
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