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Abstract: Melissa officinalis is a medicinal plant rich in biologically active compounds which is used
worldwide for its therapeutic effects. Chemical studies on its composition have shown that it contains
mainly flavonoids, terpenoids, phenolic acids, tannins, and essential oil. The main active constituents
of Melissa officinalis are volatile compounds (geranial, neral, citronellal and geraniol), triterpenes
(ursolic acid and oleanolic acid), phenolic acids (rosmarinic acid, caffeic acid and chlorogenic acid),
and flavonoids (quercetin, rhamnocitrin, and luteolin). According to the biological studies, the essen-
tial oil and extracts of Melissa officinalis have active compounds that determine many pharmacological
effects with potential medical uses. A new field of research has led to the development of controlled
release systems with active substances from plants. Therefore, the essential oil or extract of Melissa
officinalis has become a major target to be incorporated into various controlled release systems which
allow a sustained delivery.

Keywords: Melissa officinalis; essential oil; polyphenolic compounds; pharmacological effects; controlled
release system

1. Introduction

Plants are the oldest health remedy, and have been known to people since antiquity.
Over the centuries, various cultural groups have developed traditional herbal medical
systems to improve health. From the beginning of the 19th century, the isolation of active
compounds from plants began; due to the rapid developments in the field of chemistry,
from the beginning of the 20th century the production of synthetic compounds increased [1].
Even though the use of synthetic compounds has grown in the drug industry, most de-
veloping countries continue to use drugs made from natural compounds [2]. Medicinal
plants have a variety of biological properties, which means that they play an important
role in preventing and treating various diseases [3]. These plants are a rich source of
biological active agents, and can represent raw materials that can be used to develop new,
semi-synthetic drugs.

The active substances are found in different parts of the plant, and can be extracted
from different types of seeds, roots, leaves, fruits, skin, flowers, or even the whole plant.
The active compounds extracted from most medicinal plants have direct or indirect
therapeutic effects.
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Melissa officinalis L. is a medicinal plant used in traditional medicine around the
world. It is an aromatic perennial plant; it commonly grows in the Mediterranean region
and Western Asia, being intensively cultivated in Europe [4,5] and, due to its chemical
composition and numerous pharmacological effects, it is intensively studied. This plant is
also called lemon balm, honey balm, or balm mint; it is an edible medicinal herb belonging
to the mint family Lamiaceae and the subfamily Nepetoideae [5]. It is a plant that lives
at least three years; it is bushy and upright, reaching a height between 60 and 100 cm [6].
The soft, hairy leaves are 2 to 8 cm long; they are dark green and heart shaped. The leaf
surface is coarse and deeply veined, the leaf edge is scalloped or toothed [7], and it is
rich in biological active agents; thus, the extracts highlight specific properties (Figure 1).
Melissa officinalis has a hairy root system, which makes the plant more adaptable to different
environmental conditions, but the upper parts of the plant die out in early winter and
reappear in early spring [7]. It is one of the easiest herbs to grow, and spreads so readily
that some gardeners consider it a weed [8].

Figure 1. The composition of Melissa officinalis and its pharmacological effects.

This paper provides an overview of the phytochemical composition of Melissa officinalis,
a plant which is rich in volatile compounds and polyphenolic compounds. Research on the
determination of its composition and biological activities has led to the discovery of nu-
merous pharmacological agents with different activities, such as antioxidant, antimicrobial,
and cytotoxic activities, and many others. Given the development of nanotechnology and
the desire to create new systems of controlled release, we highlighted systems that contain
bioactive compounds such as essential oil or Melissa officinalis extract, and also systems
with pure active substances. The diversity of the materials and their dimensions has led
to the formation of controlled release systems with many biological effects. This review
was especially focused on highlighting studies carried out on different controlled release
systems that contain—as bioactive component—essential oil or extract, as well as the pure
substances available from Melissa officinalis.

2. Phytochemical Composition

Chemical studies on the composition of the Melissa officinalis have shown that it con-
tains mainly flavonoids, terpenoids, phenolic acids, tannins and essential oil [9]. The main
active constituents of Melissa officinalis are volatile compounds (geranial, neral, citronellal
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and geraniol), triterpenes (ursolic acid and oleanolic acid), phenolic compounds (rosmarinic
acid, caffeic acid, and protocatechuic acid) and flavonoids (quercetin, rhamnocitrin, lute-
olin) [8,10]. Essential oil is usually considered to be the responsible therapeutic principle
for most biological activities, but polyphenols are also involved.

Melissa officinalis essential oil—obtained from the fresh or dried flower, leaf, and
branches of this plant by water steam distillation or chemical extraction—is characterised
by a fresh lemon odor and light yellow color [11].

2.1. Volatile Compounds

The volatile oil extracted from the leaves of Melissa officinalis is important due to
its pharmacological effects, and is obtained in small quantities, unlike other plants in
the Lamiaceae family. The major and minor components of the essential oil of the dried
leaves of Melissa officinalis are volatile compounds that are found in different concentrations
(Table 1).

Table 1. Components of the essential oil extracted from the dried leaves of Melissa officinalis.

Component Name Concentration of the Components of the
Essential Oil, % Reference

Majority components

(E)-Caryophyllene 1.06–6.8 [12–14]
Caryophyllene oxide 1.3–43.55 [12–16]

Citronellal 0.4–20.3 [12,13,15–17]
Geranial (citral A) 6.22–51.21 [14–18]

Geranyl acetate 0.5–19.3 [12–14,17]
Neral (citral B) 4.28–35.02 [12–18]
α-Cadinol 5.64 [14]
α-Copaene 0.1–7.02 [12,15,16]

β-Caryophyllene 1.3–29.14 [14–17]

Minority components (<5%)

(2E)-Nonen-1-al 0.2 [12]
(E)-Nerolidol 0.2 [12]

(E)-α-Bergamotene 1.24 [14]
(E)-β-Ionone 0.9 [12]

(E)-β-Ocimene 0.1–0.5 [12,13]
(E-E)-Geranyl linalool 1.59 [14]

(Z)-β-Ocimene 0.1 [15]
1,2-Benzenedicarboxilic acid, butyl 2-methylopropyl ester 0.6 [13]

1,8-Dehydro-cineol 0.1 [13]
14-Hydroxy-9-epi-(E)-caryophyllene 0.2 [13]

1-Octen-3-ol 0.2–0.3 [12,13,15]
3,5-Heptadienal,2-ethylidene-6-methyl 0.4 [13]

3-Octanone 0.2 [17]
6-Methyl-5-hepten-2-ol 0.2–1.7 [12,13,15]
Benzene acetaldehyde 0.3 [12]

Camphene 0.38–1.38 [14,16]
Camphor 0.1–0.4 [13,15]
Carvacrol 0.3–1 [12,13]

Caryophyllenol 0.5–2.23 [14]
cis-2H-3a-Methyl-octahydro-Inden-2-one 4.7 [17]

Cis-Chrysanthenol 0.7–1.7 [12,13,15]
Cis-Rose oxide 0.1–0.2 [12,15]
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Table 1. Cont.

Component Name Concentration of the Components of the
Essential Oil, % Reference

Citronellol 0.4–1.88 [12,14]
Citronellyl acetate 0.1 [12]

Dihydrocitronellol acetate 0.3 [15]
Geraniol 0.6–0.7 [12,13,15]

Germacrene D 0.2–2.0 [12–14]
Humulene epoxide II 0.2–1.29 [13,14]

iso Aromadendren epoxide 0.46 [14]
Isogeranial 1.4–2.0 [13]
Isomenthol 2.4 [15]

Linalool 0.3–0.5 [12,15]
Linalool + trans-Sabinene hydrate 0.5–0.8 [13]

Menthol 0.3 [15]
Methyl citronellate 0.5–2.78 [12,13,16]

Methyl eugenol 0.1 [12]
Methyl geranate 0.2–0.4 [12,13,17]

Myrcene 0.1–0.3 [13,15]
n-Eicosane 0.6 [15]

Nerol 0.2 [15]
Neryl acetate 0.1 [12]

n-Heneicosane 0.4 [15]
n-Nonanal 0.1–0.4 [12,15]

para-Mentha-1(7),8-diene 0.1 [13]
p-Cymene 0.1 [12,13]

Phytol 3.64 [14]
Rosefuran epoxide 0.6–0.7 [13]

Sabinene 0.4 [13]
Thymol 0.1–3.1 [12–14]

t-Muurolol 0.59 [14]
trans-Limonene oxide 0.6 [13]

trans-para-Mentha-1(7),8-dien-2-ol 2.3 [17]
Trans-Rose oxide 0.1 [12,15]

Valencene 0.1 [15]
α-Humulene 0.2–2.6 [12,13,15,16]
α-Calacorene 0.76 [14]
α-Cubebene 0.42–1.23 [14]
β-Cubebene 0.1 [15]

β-Pinene oxide 1.1 [13]
β-sesquiphellandrene 0.97 [14]

γ-Cadinene 0.76–1.77 [14]
γ-Terpinene 0.3–0.5 [12,13]

Traces of components were not taken into account (contents below 0.05%).

Kowalski et al. [19] reported a 0.17% essential oil content, which was very low, unlike
plants in the same family. The study by Seidler-Łożykowska et al. [16] showed that the
essential oil content ranged from 0.08 to 0.20% due to fluctuations in weather conditions
during the research years. For the variability of the essential oil content and its composition,
Kittler et al. [20] studied a set of 28 accessions of lemon balm. They obtained an essential oil
content that varied between 0.01 and 0.72%, and found out—based on statistical analysis
on the composition of the essential oil—that there are two chemotypes of essential oil:
chemotype citral and chemotype germacrene D. As it is known from the literature, there
are two subspecies of the plant Melissa officinalis: officinalis and altissima. The difference
between the two subspecies is given by the composition of the essential oil, such that the
subspecies officinalis contains major amounts of citral and/or neral, but the subspecies
altissima contains only traces. Basta et al. [21] reported, in a study on the composition of
the essential oil of Melissa officinalis in Greece, the lack of the major constituents citral and
citronellal. Souihi et al. [14] reported, in a comparative study between Melissa officinalis
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from Tunisia (from two different cities), Germany, and France, the lack of citral but the
major presence of germacrene D.

The citrus-like aroma of Melissa officinalis is due to the presence of citral isomers,
as well as lesser amounts of citronellal and geranyl acetate [10]. Citral is an acyclic
monoterpene aldehyde which consists of a racemic mixture of two isomers: geranial
(trans-citral or citral A) and neral (cis-citral or citral B); it is the major compound in the
essential oil of Melissa officinalis, subspecies officinalis. In a study carried out on plants from
the Lamiaceae family, Kowalski et al. [19] reported the highest content of geranial (23.3%),
followed by neral (16.0%) and caryophyllene oxide (15.8%) in Melissa officinalis.

Nurzynska-Wierdak et al. [13] investigated changes in the chemical composition of
the dried oil of dried leaves of Melissa officinalis, from Poland, in the first and second
year of growth. They obtained, by hydrodistillation from air-dried leaves, 0.3% essential
oil; by analysis with GC-MS and GC-FID they highlighted 106 compounds, of which the
predominant components were geranial (45.2% and 45.1%) and neral (32.8% and 33.8%).
Barakat et al. [22] studied the chemical composition of Jordanian Melissa officinalis essential
oil, and found that it differed significantly from the composition of Melissa officinalis
essential oil from other countries.

In the comparative study performed by Souihi et al. [14], it was found that the essential
oil of the French population showed lower levels of geranial (7.12%) and neral (4.29%) than
that of the German population, which contains 39.31% geranial, 27.71% neral, and 12.23%
β-caryophyllene. Nouri et al. [12] conducted a study on the composition of essential oil
and rosmarinic acid in Melissa officinalis grown in southern Iran, and obtained a total yield
of 0.37% (v/w), rich in geranial and neral; compared to other research, they discovered a
high content of rosmarinic acid.

In another study, the essential oil obtained from leaves of Melissa officinalis growing
in Algeria was investigated for its chemical composition and in vitro antimicrobial activ-
ity [15]. In the essential oil—obtained by hydrodistillation and analyzed by GC-MS and
GC-FID—sixty-three compounds were identified, representing 94.10% of the total oil, and
the yield was 0.34%. The major component was geranial (44.20%), and other predominant
components were neral (30.20%) and citronellal (6.30%).

Seidler-Łożykowska et al. [16] specified in their study that the main components,
neral and geranial, had higher concentrations under higher insolation. The five most
active components identified in the essential oils extracted from plant materials were
geranial, neral, citronellal, caryophyllene oxide and β-caryophyllene. In this study, the
following results were obtained: the amount of geranial ranged from 6.22% to 21.49%, the
level of neral ranged from 4.28% to 15.08%, the citronellal content ranged from 2.80% to
19.74%, the level of caryophyllene oxide varied from 20.86% to 41.72%, and high levels of
β-caryophyllene were observed, ranging from 12.08% to 29.14%.

Based on the results obtained by Said-Al Ahl et al. [18], it was found that the harvesting
time influences the essential oil content and quality of Melissa officinalis. The highest yield
of essential oils was obtained when harvested in September, August and October, and the
lowest was obtained when harvested in January, February and March. According to these
results, it is recommended to harvest in warmer months in order to obtain a high content
of essential oil. The geranial (23.8–51.2%) and neral (20.1–35.0%) content of the essential oil
extracted from the fresh leaves of Melissa officinalis was highlighted for different months
of harvest.

The chemical composition of the essential oil has a high variability, and depends on
the origin of the plant, the climatic difference, the geographical conditions, the cultivation
conditions, the harvesting time, and the techniques applied for the extractions [10,13].

2.2. Triterpenes

Triterpenes are non-volatile components extracted from plants, and are one of the
largest classes of natural plant products, with more than twenty thousand different triter-
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penes (Table 2) [23,24]. Some triterpenes contain a different number of sulfate groups
bound to sugar or glucones [10].

Table 2. Triterpenes from Melissa officinalis extracts.

Component Name Content *,
µg/g Part of Plant Reference

Betulinic acid 12.85–169.88 aerial parts [4]
Oleanolic acid 915.03–6151.67 aerial parts [4]

Ursolic acid 3577.00–11,234.97 aerial parts [4]
23-Sulfate ester of niga-ichigoside F1 n.a. leaves and stems [25]

3β,16β,23-Trihydroxy-13,28-epoxyurs-11-ene-3-O-β-D-glucopyranoside n.a. dried leaves and stems [24]
3,23-Disulfate ester of 2α,3β,19α,23-tetrahydroxyurs-12-en-28-oicacid n.a. dried leaves and stems [24]
3,23-Disulfate ester of 2α,3β,19α,23-tetrahydroxyurs-12-en-28-oicacid

28-O-β-D-glucopyranoside n.a. dried leaves and stems [24]

3,23-Disulfate ester of2α,3β,23,29-tetrahydroxyolean-12-en-28-oicacid n.a. dried leaves and stems [24]
3,23-disulfate ester of 3β-23,29-trihydroxyolean-12-en-28-oic acid n.a. dried leaves and stems [24]

3,23-Disulfate ester of 2α,3β-23,29-tetrahydroxyolean-12-ene-28-oicacid n.a. dried leaves and stems [24]
23-sulfate ester of 2α,3β,19 α,23-tetrahydroxyurs-12-en-28-oic acid n.a. fresh leaves and stems [26]

23-sulfate ester of 2α,3β,19 α,23-tetrahydroxyurs-12-en-28-oic acid 28-O-β-
D-glucopyranoside n.a. fresh leaves and stems [26]

Melissioside A n.a. leaves and stems [25]
Melissioside B n.a. leaves and stems [25]
Melissioside C n.a. leaves and stems [25]

n.a. = not available; * expressed on a dry weight basis.

The most common triterpenes in Melissa officinalis extracts are ursolic acid and oleanolic
acid. In the studies of Ghiulai et al. [4] and Ibarra et al. [27], ursolic acid and oleanolic
acid were extracted together with polyphenolic compounds in order to show the biological
properties of the plant. Using different extraction conditions, different extracts can be
obtained with different compositions, and thus different activities. The first extraction was
obtained by maceration for 9 days in 70% ethanol, the second was obtained by maceration
in 96% ethanol for 24 h under continuous stirring, and the third was extracted by sonication
in 80% methanol for one hour. In the three extractions, the largest amount of ursolic acid
was obtained, followed by oleanolic acid and small amounts of betulinic acid. Comparing
the values of the obtained concentrations, the extraction in methanol with sonication is
the most favorable, obtaining the best results: ursolic acid (11,234.97 µg/g), oleanolic acid
(6151.67 µg/g) and betulinic acid (169.88 µg/g).

There are very few studies on the non-volatile components of Melissa officinalis.
Mencherini et al. [24,26] found five disulfated ursene triterpenes and an ursenic glycoside
from an extract of dried stems and leaves, and two sulfated triterpenes in an extract of fresh
leaves and stems.

In a recent study, Abdel-Naime et al. [25] identified three ursene triterpene glycosides
and a known 23-sulfate triterpenoid glycoside ester of niga-ichigoside F1, which was
isolated before by Mencherini et al. [24]. The three ursene triterpenes glycoside discovered
were Melissioside A-C.

Triterpenes are found in Melissa officinalis in high concentrations, along with numerous
polyphenolic compounds.

2.3. Polyphenolic Compounds

Polyphenolic compounds are a group of secondary metabolites which includes flavonoids
(e.g., anthocyanins, flavones, isoflavones) and phenolic acids, which have many biological
properties (Table 3) [28].
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Table 3. Major polyphenolic compounds from Melissa officinalis extracts.

Group Name Compound Name Content *,
µg/g Part of Plant Reference

Phenolic acids

Caffeic acid 39.38–860.72 Dried leaves [4]

Caftaric acid 1.85–344.34 Dried leaves [4]

Chlorogenic acid 0.62–75.529 Dried leaves [4,29]

Ferulic acid 1.03–45.489 Dried leaves [4,29]

Gentisic acid 10.40–60.48 Dried leaves [4]

p-Coumaric acid 1.06–20.72 Dried leaves [4]
13.37 ± 2.84 Aerialparts [30]

Rosmarinic acid
3515.60–86,637.60 Dried leaves [4]

6914.1 ± 779 Aerial parts [30]

Flavonoids

Apigenin 0.66–84.53 Dried leaves [4,29]
41.71 ± 20.6 Aerial parts [30]

Cynaroside 408.13 ± 30.0 Aerial parts [30]

Daidzein 51.25 ± 8.07 Aerial parts [30]

Hyperoside 3.30–16.240 Dried leaves [4]

Isoquercetin 6.82–162.40 Dried leaves [4]

Kaempherol 21.84 Dried leaves [4]

Luteolin 0.81–26.32 Dried leaves [4]

Myricetin 3.45–17.92 Dried leaves [4]

Quercetin 153.46 Dried leaves [29]

Quercetrol 5.72–33.60 Dried leaves [4]

Rutin 8.11–1462.99 Dried leaves [4,29]

* expressed on a dry weight basis.

Phenolic acids compose a large group of natural compounds, which exhibit a wide
range of biological activities. Flavonoids are a class of polyphenolic compounds, classified
according to their chemical structures into flavonols, flavones, flavanones, isoflavones, cat-
echins, anthocyanidins and chalcones [31]. Phenolic acids and flavonoids contain chemical
structural elements that are responsible for the antioxidant process, and their antioxidant
activities have been well established biochemically. Phenolic acids are important bioactive
constituents of Melissa officinalis, among which are rosmarinic, caffeic, chlorogenic and ferulic
acids. Following the phenolic profiles of the three types of extracts from the study performed
by Ghiulai et al. [4], it was observed that rosmarinic acid was obtained in the highest amount
(86,637.60 µg/g). The extraction with methanol, by sonication, favored the extraction of all of
the phenolic compounds sought; thus, it can be observed that, depending on the extraction
technique, some compounds can be in high concentrations and others cannot be detected.

Barros et al. [28] carried out a comparative study on the phenolic profiles of commercial
samples and samples grown in the garden, prepared by infusion. In the samples were
identified rosmarinic acid, as the main component, and derivatives of caffeic acid (trimers:
lithospermic acid, salvianolic acid A, C and F and yunnaneic acid F; tetramers: salvianolic
acid B and sagerinic acid). Despite the similar profile observed in all of the studied lemon
balm samples, the quantities found of each compound were different. Cultivated and
in vitro cultured samples presented the lowest quantities of phenolic compounds (59.59
and 30.21 mg/g infusion), whereas commercial samples showed the highest contents
(109.24 mg/g for a tea bag and 101.03 mg/g for a granulate sample).

Through extraction techniques—enzyme-assisted extraction and pressurized liquid
extraction—Miron et al. [32] obtained extracts from Melissa officinalis which were very rich
in caffeic acid and rosmarinic acid derivatives, some of which were identified for the first
time in this plant, such as: salvianolic acid H/I, salvianolic acid E, salvianolic acid L and
the salvianolic acid L isomer.
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Gallic acid is one of the biologically active phenolic acids that was reported in the study
of Perreira et al. [33] as an important phenolic acid for the antioxidant and anticholinesterase
activity of Melissa officinalis.

In a study of seven medicinal plants (from five plant families) grown in Slovakia, Gayi-
bov et al. [30] investigated the content of polyphenols and the content of flavonoids, as well
as the antioxidant activity and antimicrobial activity. This study included three plants of the
Lamiaceae family: Melissa officinalis, Salvia officinalis and Thymus pannonicus. The polyphe-
nolic content obtained is quite similar (20.90 ± 1.06, 20.01 ± 0.71 and 23.98 ± 1.37 mg
gallic acid equivalents/g sample), but the flavonoid content varied lightly (11.56 ± 0.15,
14.35 ± 0.49 and 19.35 ± 1.22 mg quercetin/g of sample). In this study, it was observed
that Melissa officinalis contained the highest content of rosmarinic acid (6914.1 ± 779), but
some of the compounds which followed were missing.

Spiridon et al. [34] conducted a comparative study on the polyphenol content of
some important medicinal plants in Romania, originating in the southeastern region,
such as oregano (Origanum vulgare), lavender (Lavandula angustifolia) and lemon balm
(Melissa officinalis). In this study, the extraction yield for plants, calculated on the dry weight
of the raw material, was as follows: 7.89% for lavender, 11.38% for oregano, and 11.93% for
lemon balm. In lemon balm, the total content of phenolic compounds (54.9± 2.14 mg gallic
acid equivalents/g) and flavonoids (25.8 ± 6.26 mg rosmarinic acid/g) was identified to be
higher than in lavender but lower than in oregano.

In another study conducted on Melissa officinalis grown in Romania, Fierascu et al. [29]
highlighted the phytochemical composition of the ethanolic extract from dried leaves, which
was obtained by the accelerated extraction of the solvent. In this study, high values were
obtained for chlorogenic acid (72.529 ± 0.24 mg/kg), ferulic acid (45.489 ± 0.15 mg/kg),
quercetin (153.465 ± 0.32 mg/kg) and rutin (1462.997 ± 1.24 mg/kg).

Melissa officinalis is a plant which is rich in polyphenolic compounds, but depending
on the extraction method and the solvent used, different compositions of the extracts can
be obtained; this influences the biological activities strongly.

2.4. Other Components

As presented above, Melissa officinalis is a source of active biocompounds such as
volatile compounds, triterpenes and polyphenolic compounds, but, in addition to these, it
also contains other important biological active agents. Ashori et al. [35] conducted a study
on the chemical composition of the stalk of Melissa officinalis. The content of extractive
agents, lignin, polysaccharides and ash was determined, with the observation that the re-
sults showed a high content of alpha-cellulose and a low content of lignin. Komes et al. [36]
reported the content of tannins, phenolic acids and flavonoids in non-hydrolyzed and
hydrolyzed extracts from various plants, including Melissa officinalis. Dias et al. [37] per-
formed a comparative study between two commercial samples, an in vitro culture sample
and a normal culture sample. After the analysis of all of the samples, they observed the
highest levels of proteins (8 g/100 g dw) and ash (12 g/100 g dw) in the in vitro cultured
lemon balm content; the highest levels of carbohydrates were found in the granulate com-
mercial sample (85 g/100 g dw), and a bag of commercial lemon balm had the highest
energetic value (377 kcal/100 g dw) due to its higher fat content (3 g/100 g dw).

Overall, Melissa officinalis has a complex chemical composition, with many active
biocompounds, which differ depending on the way in which the extraction is performed
and the part of the plant that is subjected to extraction.

3. Pharmacological Studies

According to many biological studies, plant extracts and volatile oils are known for
many beneficial activities for the human body. Melissa officinalis is considered to be a
medicinal plant due to the numerous pharmacological effects associated with its chemical
composition (Table 4).
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Table 4. Pharmacological effects reported from Melissa officinalis extracts.

Effect Model Dosage or Concentration Tested Systems Results Type of Extract Reference

Antiproliferative

in vitro 20, 100, 250 µg/mL Breast cancer cells MDA-MB-
231 and healthy HaCat cells

Inhibitory effect on migration and proliferation
of both types of cells ethanolic extract [38]

in vitro 50% Human Colon Cancer Cell
Line (HCT-116)

The 50 % ethanolic extract showed significant
differences after 72 h of treatment, reducing cell

proliferation to values close to 40%

ethanolic and
aqueous extracts [39]

Antitumor in vitro Different concentration
Human tumor cell lines:

MCF-7,
AGS and NCI-H460

Obtained revealed that the ethanolic extract
presented the highest cell growth inhibitory

potential in all the human tumor cell lines tested

ethanolic, methanolic,
hydro-methanolic,

hydro-ethanolic and
aqueous extracts)

[40]

Antioxidant

in vitro Different concentration Encephalic tissue from male
Wistar rats

Effective agent in the prevention of various
neurological diseases associated with

oxidative stress

ethanolic, methanolic and
aqueous extracts [41]

in vitro 1, 2.5, 5 and 10 mg/mL
DPPH radical scavenging
activity assay, β-carotene

bleaching test and ABTS assay
Good antioxidant activity essential oil [42]

Antiangiogenic in vitro, in ovo 50 µg/mL
Two breast cancer cell lines,

MCF-7
And MDA-MB-231

Highest cell inhibitory activity was exhibited by
the 96% ethanolic extract

ethanolic extracts and
methanolic extracts [4]

Cardioprotective in vivo 25, 50 and 100 mg/kg b.w. *
(4.23/8.46/16.91 mg/kg b.w. *) Rats

Antioxidant and cardio-protective effects against
arrhythmias induced by ischemia and

ischemia-reperfusion
ethanolic leaf extract [43]

Antinociceptive
Antihyperglycemic in vivo 0.01, 0.02 and 0.04 mg/day

(0.0063/0.0126/0.0252 mg/kg b.w. *) Male adult Wistar rats
Long-term oral administration of essential oil (at
an effective dose of 0.04 mg/day) can suppress

chemical hyperalgesia in diabetic rats
essential oil [44]

Anxiolytic
Antidepressant in vivo 50, 75 and 150 mg/kg b.w./day *

(3.91/5.86/11.72 mg/kg b.w. *) Albino BALB/c male mice
Hydro-alcoholic extract (75 and 150 mg/kg)

significantly reversed anxiety- and
depressive-like behaviors

hydro-alcoholic extract [45]

Neuroprotective

in vitro 5, 10, 50, 100, 500 µg/mL Cortical neuronal
Culture system

Protective
effects on neurons in the brain balm oil [46]

in vivo 50, 100, 200 and 400 mg/kg b.w. *
(8.35/16.71/33.41/66.83 mg/kg b.w. *) Male rats

Treatment with 100 mg/kg of oil attenuated the
increased caspase-3 like protease

activity significantly
balm oil [46]
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Table 4. Cont.

Effect Model Dosage or Concentration Tested Systems Results Type of Extract Reference

GABA-T inhibitor in vitro 0–4 mg/mL Rat brain

Phytochemical characterization of the crude
extract determined rosmarinic acid as the major

compound responsible for activity (40%
inhibition at 100 µg/mL) since it represented

approximately 1.5% of the dry mass of the leaves

methanol extract [47]

Anti-kinetoplastidae in vitro 31.25, 62.5, 125, 250 µg/mL T. cruzi, L. brasiliensi,
L. infantum

A potential source of natural product featuring
anti-Leishmania and anti-Trypanosoma activity ethanol extract [48]

Analgesic in vivo 5, 10, 20 mg/kg b.w. *
(0.87/1.73/3.46 mg/kg b.w. *) Male Wistar rats

Intrathecal administration could significantly
improve hot-water and formalin-induced pain in

male Wistar rats
hydro-alcoholic extract [49]

Hypnotic in vivo 200, 400 and 800 mg/kg b.w. *
(14.81/29.61/59.23 mg/kg b.w. *) Male Swiss mice Extracts may be useful for insomnia hydro-alcoholic extracts [50]

Antidiabetic

in vivo 0.0125 mg/d db/db mice Anti-hyperglycaemic agent essential oil [51]

in vivo 0.4%, 0.8% (w/w) Otsuka Long-Evans
Tokushima fatty rats

An effective therapeutic strategy to treat human
obesity and type 2 diabetes herbal extract [52]

Anti-Alzheimer in vitro 8.8 mg/mL GSK-3B, CK-1δ, and BACE-1
Best activity for ck-1δ inhibitory activity with

maximum inhibitory concentration values at half
(IC50) below 250 µg/mL

methanol extract [53]

Antispasmodic ex vivo 1, 5, 10, 25, and 50 mg/mL Different segments of the
gastrointestinal tract of mice

Site- and dose-dependent effects on the
contractile activity of the gastrointestinal tract hydro-ethanolic leaf extract [54]

Antiviral in vitro 1.5–150 µg/mL RC-37 cells High virucidal activity against
HSV-1 aqueous extract [55]

Antifungal in vitro

15.5–2000 µg/mL Human
Pathogenic fungi

Good antifungal activity
ethanol extracts [56]

0.25–2 µL/mL Phytopathogenic fungi
in apples essential oil [57]

Antibacterial in vitro 10 and 15 mg/mL E. coli, L. monocytogenes, S.
aureus and S. typhimurium A significant antimicrobial effect essential oil [42]

* estimated human equivalent dose. b.w. = body weight.
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Some of the pharmacological activities may be connected with the polyphenolic com-
pounds occurring in Melissa officinalis, which include phenolic acids and flavonoids [45,58].
Most studies have focused on Melissa officinalis leaf extracts, obtaining phenolic profiles cor-
related with antiproliferative [39], antiangiogenic [4], antiviral [55,59], antioxidant [41,42],
anti-anxiety [45], antidepressant [45], anti-Alzheimer [53], neuroprotective [46], cardiopro-
tective [43], antifungal [56,57] and antibacterial [42] effects. Moaca et al. [38] performed
a comparative study between extractions from stems and leaves in order to evaluate the
antioxidant activity, the total phenolic contents, and the cytotoxic and antiproliferative
effects. In this study, a good antioxidant activity was observed to be correlated with the high
total polyphenol content of the leaf ethanolic extract (32.76 mg gallic acid equivalents/g)
as opposed to the seed ethanolic extract (8.4 mg gallic acid equivalents/g). The extracts
obtained showed a different profile of cytotoxic effects on breast cancer cells, MDA-MB-231,
but with significant antitumor activity for future in vitro studies. Ghiulai et al. [4] investi-
gated the potential for angioprevention and chemoprevention in breast cancer from various
extracts of Melissa officinalis. The antioxidant activity and in vitro effect on cell viability
were evaluated on two breast cancer cell lines, MCF7 and MDA-MB-231. Based on the
evaluation in ovo, using the chorioallantoic membrane test, it was found that 96% ethanolic
extract is the strongest chemopreventive agent.

The ethanolic extract of Melissa officinalis showed an antiproliferative effect on the
human colon cancer cell line (HCT-116) [39], as well as a strong antitumor effect on the
human tumor cell lines MCF-7, AGS and NCI-H460 [40].

Many studies have shown the good antioxidant activity of Melissa officinalis extracts,
which is an important step in the identification of the various beneficial effects on the
human body. Perreira et al. [41] suggested that this plant could be used as a potential
agent for the prevention of various neurological diseases associated with oxidative damage,
reporting the best antioxidant activity and the highest content of reducing agents compared
to Matricaria recutita and Cymbopogon citratus.

In vitro studies have shown potential pharmacological effects of Melissa officinalis
extracts on specific cells or tissues, but in vivo animal studies are needed in order to confirm
these effects.

The results of in vivo studies in mice have shown that Melissa officinalis extract can be
considered a protective agent in various neurological diseases associated with ischemic
brain injury [46], and can inhibit anxiety and depression [45].

In vivo studies have shows the pharmacological effects of doses of Melissa officinalis
extracts in animals. In order to develop new drugs, it is necessary to move forward from
the equivalent dose for animals to the equivalent dose for humans. There are different
calculation models for the estimation of the equivalent dose in humans based on existing
studies. The estimation of the human equivalent dose is an important step in the develop-
ment of a new herbal medicine in order to further evaluate the toxic or safety aspects. In
order to facilitate the interpretation of the results of in vivo studies, we converted animal
doses to human equivalent doses (HED) with the following formula [60]:

HED
[

mg
kg

]= Animal dose [
mg
kg

]
∗
(

Animal weight [kg]
Human weight [kg]

)0.33

Based on the estimated human equivalent doses, it can be concluded that antihyper-
glycemic activity is assured with 0.38–1.5 mg/human/day, while cardioprotective activity
can be assured with 253.8–1014 mg/human/day, and anxiolytic activity can be assured
with 234–703 mg/human/day; these values are comparable to the drugs available on the
market [61–63]. In the case of neuroprotection, the estimated human equivalent dose is
501–4000 mg/human/day, close to the value for phenobarbital, which is administered at
40 mg/kg [64]. Analgesic activity can be assured with only 52–207 mg/human/day, which
is many times lower than the daily dose for other available drugs [65]; however, for hypno-
sis a much higher estimated dose is necessary, such as 888–3554 mg/human/day [66–68].
In all cases, the estimation of the daily dose was carried out for an average body weight of
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60 kg. However, it must be taken into account that biochemical processes vary between
species, and that clinical trials are needed in order to ensure that a new drug is effective
and safe.

Table 5 presents some of the most important components of Melissa officinalis extracts,
along with their documented antimicrobial, antioxidant or anti-inflamatory activities. The
biological profile of the essential oil or extracts from Melissa officinalis is the direct result of
these compounds’ presence. One natural successful strategy to enhance a property, be it
antioxidant or antimicrobial activity, is to combine multiple compounds with the desired
property. The synergy will allow the manifestation of a higher level of antibacterial activity,
for example, while keeping the concentration low. This is also a successful strategy to
combat microbial acquired resistance.

Table 5. Main components of Melissa officinalis and their activity.

Substance Activity Reference

Geranial (citral A) Antibacterial, antifungal [69,70]

Neral (citral B) Antibacterial, antifungal [71,72]

Citronellal Antimicrobial, insecticidal [73,74]

β-Caryophyllene Anti-inflammatory, antioxidant, antibacterial [75,76]

α-Cadinol Antifungal, hepatoprotective [77,78]

Geranyl acetate Antibacterial, insecticidal [79,80]

Betulinic acid Antiviral, anti-inflammatory, anticancer [81,82]

Oleanolic acid Antiviral, hepatoprotective [83,84]

Ursolic acid Antibacterial, antioxidant [85,86]

Caffeic acid Antioxidant, anti-inflammatory [87,88]

Caftaric acid Antioxidant [89,90]

Rosmarinic acid Antioxidant, anti-inflammatory [91,92]

Ferulic acid Antioxidant [93,94]

Chlorogenic acid Antidiabetic, antioxidant [95,96]

p-Coumaric acid Antioxidant, anti-inflammatory [97,98]

Cynaroside Antioxidant, anti-inflammatory [99,100]

Rutin Antioxidant, anti-inflammatory [101,102]

The synergic activity was well documented in the literature for several classes of
drugs/substances, with some of these effects being reviewed already for antibiotics and
plant extracts/essential oils even in multidrug-resistant staphylococci [103].

Melissa officinalis and other plant extracts (Iberis amara, Silybum marianum and a mix-
ture of Angelica archangelica and Carum carvi) were evaluated in association with STW5, a
well-known fixed herbal multicomponent preparation recommended, at least, by the Ger-
man treatment guideline for some gastrointestinal diseases under non-inflammatory and
inflammatory conditions. It was found that only Melissa officinalis plant extract manifested
a strong synergic effect when intestinal smooth muscle cells were considered [104]. The
oral administration of a Melissa officinalis infusion can be also beneficial for the radiology
staff, as the oxidative stress and DNA damage are reduced [105]. At present, only a few
studies have been reported on the synergies between Melissa officinalis and other plants.
Due to the volatile compounds in Melissa officinalis essential oil, the following effects have
been reported: antifungal, antioxidant, antidiabetic, antibacterial and antimicrobial effects.
These effects have also been reported in various extracts of Melissa officinalis.

In some research articles, in vitro and in vivo studies have been done to attribute
pharmacological effects to Melissa officinalis, but more studies are needed in order to
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correlate the biological activity with the presence of certain components, and finally to be
able to design specific compositions to obtain the desired biological activity.

4. Controlled Release Systems

Recent medical research has been related to the development of drug delivery systems
containing natural or synthetic active substances (including those of herbal origin) with
the main aim to provide biological active agents according to a proper kinetic, in order
to protect them against harsh conditions or to assure targeted delivery [106]. The use of
new drug delivery systems to transport drugs to certain parts of the body is an option that
could solve various problems like in vivo instability, poor bioavailability, low solubility,
and poor absorption in the body [107]. When a drug is introduced into the human body
using traditional methods of administration, there are a lot of biotransformations that occur
as a result of the drug’s interaction with the biological environment. Drug delivery systems
have been designed to change the pharmacokinetics of drugs; thus, the major objectives
of nanomedicine in terms of controlled drug administration are to maximize the bioavail-
ability and efficacy of drugs, and to control their pharmacokinetics, pharmacodynamics,
nonspecific toxicity, immunogenicity, and biorecognition [108,109].

A drug delivery system refers to a technical system that comprehensively regulates the
availability of the drugs in living organisms in terms of the place of delivery, time and dose.
The main objectives of a drug delivery system is to ensure the controlled release of drugs
and their targeted delivery, to improve solubility and stability, to regulate metabolism and
promote absorption, and to transport drugs across biological barriers [110]. These systems
are designed to deliver the active content in a predictable in vivo pattern over an expected
period of time [111].

The development of nanotechnology has led to the formation of specific nano-carriers
of organic or inorganic, natural or synthetic origin. Nano-carriers are materials with nano-
metric dimensions which are used as vehicles for the transport of the desired biologically
active agents [112]. The incorporation of plant extracts in these carriers (such as vesicles,
microspheres, nanoemulsions, polymeric nanoparticles, nanocapsules, solid lipid nanopar-
ticles, or phytosomes, etc.) has proven to be a new technology with a lot of advantages for
the administration of herbal medicines [113,114].

Drugs typically interact specifically with biological receptors or molecules, such as
enzymes, to produce physiological or pharmacological effects, either by activating or
inhibiting these biological targets [115]. The main challenge is to develop an effective
formulation that combines the active compounds of interest with a suitable delivery system
to produce the desired effect [109].

Among recent research studies, Melissa officinalis is one of the medicinal plants from
which bioactive compounds are extracted in order to be introduced into controlled release
systems (Figure 2). Furthermore, some of the components also found in Melissa officinalis
extracts have been used in various research studies as active compounds incorporated into
controlled release systems.

4.1. Drug Delivery Systems Based on Pure Components Which Are Available in Melissa officinalis

Depending on the type of delivery system and the encapsulated active substance,
numerous controlled release systems with different biological effects have been developed
(Table 6).



Int. J. Mol. Sci. 2022, 23, 3591 14 of 25

Figure 2. Drug delivery systems for Melissa officinalis components (realized with BioRender.com,
accessed on 7 March 2022).

Table 6. Controlled release systems with active substances which are available in Melissa officinalis.

Type of Delivery System
Delivery System

Effect Reference
Type of Carrier Active Agent

Organic/Inorganic
Nanoparticles

poloxamer, soybean lecithin ethosome

caffeic acid antioxidant

[116]

chitosan, sodium alginate [117]

poloxamer [118]

chitosan
rosmarinic acid * antioxidant [119,120]

rosmarinic acid

antimicrobial [121]

PEG-containing amine anti-inflammatory [122]

glycerol monostearate, soya lecithin,
hydrogenated soya phosphatidyl choline therapeutic [123]

mesoporous silica antioxidant [124]

nanostructured lipid citral anticancer [125,126]

Hydrogels
chitosan

citral
anticancer [127]

imine-PEG-ylated chitosan local therapy [128]

Vesicles

soybean phospholipids citral antimicrobial [129]

ethosome caffeic acid antioxidant [116]

soybean phosphatidyl-choline liposomes β-caryophyllene antiproliferative [130]

* from a natural extract.

Nanoparticles used as delivery vehicles consist of various biodegradable materials,
such as natural or synthetic polymers (including proteins, lipids, polysaccharides, lactides,
polyurethanes, and polyglycols, etc.), ceramic powders, metals and metal oxides, and
composites, etc. [131]. The composition and morphology of nanoparticles can be adapted to
produce a suitable release profile in order to cross the biological barriers in the body [132].

Caffeic acid and rosmarinic acid are phenolic acids which are naturally present in
many plants, and it is known that these phenolic compounds are antioxidants which can be
used to fight against many diseases. In the study of Sguizzato et al. [118], it was proposed
to load caffeic acid into solid lipid nanoparticles based on polaxamer. Caffeic acid-loaded
solid lipid nanoparticles were produced by a method based on lipid fusion, homogeniza-
tion and ultrasound treatment. The results of this study confirmed the production of a
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nanoparticulate gel with caffeic acid, following their previous study on the incorporation
of caffeic acid into solid lipid nanoparticles [117]. In both studies, the encapsulation of
caffeic acid in solid lipid nanoparticles has been shown to be promising in the application
of caffeic acid to the skin, and/or for its delivery to the colon. Subsequently, in a study by
Hallan et al. [116], a comparison was made between solid lipid nanoparticles and ethosomal
vesicles regarding the skin delivery of caffeic acid in which the antioxidant activity and
permeability of caffeic acid in the skin were evaluated in vitro, and an in vivo comparative
irritation test was performed.

Wani et al. [121] developed rosmarinic-acid-loaded chitosan nanoparticles, and their
in vitro and in vivo release properties were evaluated. Chitosan is a natural polysaccharide
with versatile biopolymeric properties. Due to its properties, chitosan is recognized for
biomedical use as a safe material; it can be used in various applications, including drug
delivery [133]. Rosmarinic acid is a polyphenolic compound with biological activity moni-
tored in many studies with plant extracts. da Silva et al. [119,120] studied the encapsulation
in chitosan nanoparticles of rosmarinic acid from Salvia officinalis and Satureja montana
extracts. In a subsequent study, they showed that the obtained nanoparticles can be used as
drug delivery systems for ocular applications in oxidative eye conditions. Chung et al. [122]
synthesized nanoparticles from poly(ethylene glycol) (PEG) and rosmarinic acid, and found
that this type of nanoparticle is a promising alternative in the treatment of various inflam-
matory diseases. The results obtained by Bhatt et al. [123] confirmed that the formulation
of solid lipid nanoparticles as a drug delivery system loaded with rosmarinic acid is a
non-invasive nose-to-brain drug delivery system, and that it is a promising approach for
the treatment of Huntington’s disease.

Mesoporous silica nanoparticles are efficient delivery systems compared to other
materials they have demonstrated excellent properties for applications in the biological
system. Depending on the synthesis conditions, different types of mesoporous silica with
variable pore sizes can be obtained.

Arriagada et al. [124] developed mesoporous silica nanoparticles loaded with ros-
marinic acid and morin hydrate (a flavonoid found in fruits and plants). The results of the
encapsulation of rosmarinic acid and morin hydrate in mesoporous silica indicated strong
antioxidant effects. After studying the release kinetics of the substances, the authors of
the article recommend the incorporation of antioxidant nanosystems into pharmaceutical
formulations for the release of the active substances in the intestine.

Citral is the main component of the essential oil of the dried leaves of Melissa officinalis;
Nordin et al. [125] loaded it into lipid nanoparticles for the administration of anti-cancer
drugs. In this study, the nanoparticles obtained by the loading of citral in a nanostructured
lipid carrrier system were characterized, and their safety profiles were examined in vitro
and in vivo by observing that they are not toxic. Subsequently, Nordin et al. [126] reported
that a citral-loaded nanostructured lipid carrier is an effective delivery system for triple-
negative breast cancer treatments.

Hydrogels are a class of materials with multiple properties, including a matrix for the
encapsulation, transport and release of drugs. Hydrogels based on polysaccharide, espe-
cially those based on chitosan, provide a high degree of biocompatibility. Ailincai et al. [127,128]
created a series of drug delivery systems prepared by the hydrogelation of chitosan with
citral in the presence of an antineoplastic drug 5-fluorouracil; in the following study, they
designed and characterized the hydrogels obtained by reacting PEGylated chitosan deriva-
tives with citral. By following the in vitro and in vivo release kinetics, the efficacy of these
drug delivery systems was established.

In a comparative study, Usach et al. [129] studied the loading of the essential oil
from the leaves of Citrus limon var. pompia and citral into phospholipid vesicles. The
phospholipid vesicles with essential oil were compared with the phospholipid vesicles
containing citral, and it was found that they are small in size; both showed antimicrobial
activity, but the vesicles with citral were slightly more effective against Escherichia coli,
Staphylococcus aureus and Candida albicans.
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β-caryophyllene is a volatile compound with many biological activities; it is found
in large quantities in essential oil extracted from various plants. Because β-caryophyllene
has a high level of lipophilicity and poor stability in hydrophilic environments, several
complex systems have been tried. Di Sotto et al. [130] studied the preparation of lipo-
somes from phosphatidylcholine in soy with β-caryophyllene by the thin-film hydration
method, followed by extrusion. The results of the study showed that liposomes loaded
with β-caryophyllene are potential effective delivery systems, and that the parameters
of the lipid–drug ratio and lamerity are important for the release of β-caryophyllene
by liposomes.

Scientific advances are based on research into biomaterials which are compatible
with the biologically active constituents of extracts in order to revolutionize drug delivery
systems. At present, there is a continuous demand for new biomaterials at the nano scale
because the interest for the development of nanomedicine is very high [107].

4.2. Drug Delivery Systems Based on Melissa officinalis Extracts

Regarding the expansion of research into new controlled release systems containing
active biocomponents extracted from natural plants, Melissa officinalis is one of the recently
studied plants. Different types of Melissa officinalis extracts incorporated into matrices in
the form of glycerosomes, films, hydrogels, dispersions and nanocapsules have been used
to form controlled release systems (Table 7).

Table 7. Controlled release systems with Melissa officinalis extracts.

Type of Delivery System
Delivery System

Effect Reference
Type of Carrier Type of Extract

Glycerosomes phosphatidylcholine and cholesterol essential oil anti-herpetic [134]

Films

starch and glycerol Hydroalcoholic extract anti-herpetic [135]

chitosan and zinc oxide nanoparticles
essential oil antimicrobial [136,137]sodium caseinate and zinc

oxide nanoparticles

Hydrogel
methylcellulose essential oil

antimicrobial for
candida albicans in

the oral cavity
[138]

calcium alginate aqueous extract antioxidant [139]

Dispersion water-based polyurethane-urea infusion antimicrobial [140]

Nanocapsule
isolated whey proteins and sodium caseinate essential oil n.a. [141]

nanoparticles of magnetite, essential oil,
polylactic acid, chitosan essential oil anti-staphylococcal [142]

Nanoparticle

silver, gold and gold-silver ethanolic extract antimicrobial [29]

silver aqueous extract

antioxidant and
cytotoxic for the
acute myeloid

leukemia

[143]

silver infusion antibacterial [144]

Nanocomposite silver-hydroxyapatite infusion antibacterial [145]

n.a. = not available.

Antiherpetic activity has been demonstrated in two studies. Vanti et al. [134] studied
the loading of Melissa officinalis essential oil inside glycerosomes, and they evaluated these
vesicles for anti-herpetic activity against HSV type 1. Initially, they tried to obtain liposomal
vesicles with phosphatidylcholine (P90G) and cholesterol in different ratios, but they were
difficult to reproduce and poorly stable, so they approached the situation differently and
made blisters out of a lipid film. The lipid film was composed of P90G and cholesterol,
and was then hydrated under various conditions with a 10% v/v glycerol/water solution;
it was then loaded into glycerosomes at 10 mg/mL essential oil of Melissa officinalis by
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the thin-layer evaporation method, in two steps. Analyses and tests showed that they
obtained spherical glycosomes with several lamellae, which were nano-sized and able to
pass through the pores of the skin, and were also able keep the constituents of Melissa
officinalis essential oil from the degradation process during storage. In-vitro research
showed that glycerosomes loaded with essential oil have a strong anti-HSV-1 activity,
without cytotoxic effects.

In the second study, Rechia et al. [135] studied the properties of a drug administration
system for the treatment of labial herpes. Four polymeric films with different concen-
trations of starch, glycerol and hydroalcoholic extract of Melissa officinalis were trialed.
The results of the analysis showed that the increase in glycerol content in the films im-
proved the characteristics of the drug delivery system, and that the films obtained from
starch/glycerol/Melissa officinalis extract can be used for the treatment of labial herpes.

Due to the antimicrobial action of the essential oil, Serra et al. [138] found an antifungal
drug to inhibit the growth of Candida albicans in the oral cavity. In this study, an attempt was
made to encapsulate Melissa officinalis essential oil in methylcellulose hydrogels. Methylcel-
lulose was used to prepare 10% (w/v) hydrogels with 1 and 2% (w/v) essential oil from
Melissa officinalis. The analysis showed the use of hydrogels as drug delivery systems be-
cause methylcellulose hydrogel (10% (w/v)) with 2% (v/v) essential oil of Melissa officinalis
significantly reduced the retention of Candida albicans.

Najafi-Soulari et al. [139] investigated the encapsulation of Melissa officinalis aqueous
extract in calcium alginate hydrogel beads. Three significant parameters (extract, sodium
alginate, and calcium chloride concentrations) were varied in order to obtain the maximum
encapsulation efficiency. It was proven that the antioxidant activity of the extract did not
change after encapsulation, and the most effective encapsulation was obtained with the
concentration of sodium alginate solution, at 1.84%, the concentration of calcium chloride,
at 0.2%, and the concentration of lemon balm extract, at 0.4%. In this study, they tried to
cover the alginate beads with chitosan, but the results showed that the extract content is
lost due to the immersion of the beads in the chitosan solution. However, the coated beads
had better results for the release of the extract in the simulated intestinal fluid, indicating
the protective effect of the chitosan layer.

Sani et al. [136,137,146] studied the encapsulation of Melissa officinalis essential oil in
microcapsules and bioactive films. In the first study [146], the encapsulation of essential oil
in isolated whey proteins and sodium caseinate was investigated using the ultrasonication
technique. The results showed that ultrasound intensification had a negative impact, and
that the smallest particle size was obtained at higher isolated whey protein levels, and with
the lowest ultrasonic power. Sani et al. [136,137] produced bioactive films from chitosan and
zinc oxide nanoparticles—respectively, sodium caseinate and zinc oxide nanoparticles—in
which Melissa officinalis essential oil was encapsulated, and the antimicrobial properties of
the obtained films were tested.

Santamaria-Echart et al. [140] studied different ways of incorporating extracts of
Melissa officinalis and Salvia officinalis into water-based polyurethane–urea dispersions.
The plant extracts were obtained by infusion, and were incorporated into water-based
polyurethane-urea dispersions in different phases of the production process (the post-,
in-situ and pre-methods). Regarding the antibacterial properties, the results showed that
the properties of the two extracts differed depending on the method of their incorporation
into the polyurethane nanoparticles.

In order to create a bioactive surface, Grumezescu et al. [142] functionalized mag-
netic microspheres with Melissa officinalis essential oil. The magnetic microspheres were
composed of nanoparticles of magnetite (8 nm), essential oil, polylactic acid and chitosan
using a solvent evaporation method, and were film-coated by MAPLE (Matrix Assisted
Pulsed Laser Evaporation). In vitro experiments showed that the prepared surface had
anti-staphylococcal properties.

Metallic nanoparticles are used in numerous research studies; as such, Fierascu et al. [29]
synthesized silver, gold metallic nanoparticles, and gold–silver bimetallic nanoparticles
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with ethanolic extract from Melissa officinalis. The analytical results showed that silver
nanoparticles with a diameter of about 13 nm, gold nanoparticles with a diameter of
about 10 nm, and bimetallic nanoparticles composed of small particles of about 8 nm with
a flower-like structure were obtained. The nanoparticles obtained were tested for their
antimicrobial properties and mutagenicity, but it was observed that bimetallic nanoparticles
have an intermediate biological action, and can be used further in applications.

In the study by Ahmeda et al. [143], Melissa officinalis aqueous extract incorporated into
silver nanoparticles had a pharmaceutical potential similar to mitoxantrone (a chemothera-
peutic agent). The nanoparticles obtained were spherical, measuring between 5–30 nm, and
it was observed that the use of a higher concentration of extract decreases the average size
of the silver nanoparticles. By performing in vitro and in vivo experiments, similar results
were obtained with mitroxantrone for the treatment of acute myeloid leukemia, and the
excellent antioxidant and cytotoxic properties of silver nanoparticles with Melissa officinalis
extract were observed. Ruiz-Baltazar et al. [144,147] performed a study on the synthesis
of silver nanoparticles, and in the next study they synthesized a silver-hydroxyapatite
nanocomposite. In both studies, the extract of Melissa officinalis obtained by infusion was
incorporated into the silver nanoparticles. It was observed that the functionalized nanopar-
ticles showed a very good interaction with the hydroxyapatite matrix because its structure
allows the substitution of calcium ions (Ca2+) with other metal ions such as silver (Ag+).
The antibacterial properties of silver nanoparticles functionalized with Melissa officinalis
extract were tested, but the silver–hydroxyapatite nanocomposite was characterized only
chemically and structurally.

The results of the studies showed the compatibility of Melissa officinalis extracts with
different types of carrier materials. Some systems could be enhanced with different sub-
stances in order to obtain materials with the best possible properties from systems in
which different properties have been demonstrated, including increased stability, increased
activity, increased solubility, and decreased toxicity [113].

The incorporation of zinc oxide nanoparticles and Melissa officinalis essential oil greatly
improved the physical and mechanical properties of chitosan [136] and sodium caseinate
films [137]. In the case of the systems obtained from starch, glycerol and Melissa officinalis
extract, an increase of the characteristics of the films obtained was observed with the
increase of the glycerol content [135].

There are many examples in the literature, such as those listed, but one needs to
know the scope of the materials and the desired characteristics to be improved with
different substances. Controlled release systems offer many advantages in the develop-
ment of medicine, but most of the findings focus on acute toxicity [148]. In order to evaluate
the toxicity and safety of a system, long-term toxicity studies are required, as various
interactions may occur between the active substance, the material, and the biological en-
vironment, in time. At the cellular level, various reactions may occur as a result of the
encounter with the nanomaterial, such that various changes in the balance between inflam-
matory and anti-inflammatory mechanisms can be identified [149]. Toxicological analyzes
are critical, and play a key role in the development of new systems [150]. Thus, in order to
be officially approved as a medicinal product, controlled release systems must be subjected
to in vitro and in vivo tests of their toxicology within the preclinical development phase.

5. Conclusions and Future Perspectives

This review summarized the phytochemical composition and pharmacological effects
of Melissa officinalis, as well as the controlled release systems which have been investigated
to date. Studies on the chemical composition of the essential oil and many types of extracts
have been reported; depending on the area, the period, and the method of harvesting
the plant, different concentrations of active substances have been obtained. The pharma-
cological effects of the extracts are mainly assigned to the presence of large amounts of
polyphenolic compounds, such as antioxidant, antimicrobial, antiproliferative, and cyto-
toxic effects, and so on. By investigating the mechanisms of action and pharmacokinetics



Int. J. Mol. Sci. 2022, 23, 3591 19 of 25

of the extracts and active compounds, new systems with biological activities for the human
body and the environment can be obtained. The controlled release systems developed so
far represent a future perspective for the development of new systems. These systems may
contain other materials as a delivery system, or those made so far may be improved. With
many substances, essential oils, and natural plant extracts available, many materials can
be functionalized in order to develop controlled release systems. Materials such as silica,
polysaccharides, polymers, and lipids can be used as encapsulation carriers. Functionalized
controlled release systems can be enhanced with various substances so that they can be
used, depending on the desired field.

As a future perspective, the phytochemical composition and pharmacological effects
attributed to Melissa officinalis represent an opportunity to create new controlled release
systems with the potential for targeted delivery.
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