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Abstract

Despite tremendous advances in the development of anti-viral therapeutics, viral infections remain a chief culprit accounting for

ongoing morbidity and mortality worldwide. Natural products, in particular animal venoms, embody a veritable cornucopia of

exotic constituents, suggesting an immensurable source of anti-infective drugs. In this context, melittin, the principal constituent

in the venom of the European honeybee Apis mellifera, has been demonstrated to exert anti-cancer, anti-inflammatory, anti-

diabetic, anti-infective, and adjuvant properties. To our knowledge, there is no review appertaining to effects of melittin against

viruses, prompting us to synopsize experimental investigations on its anti-viral activity throughout the past decades.

Accumulating evidence indicates that melittin curbs infectivity of a diverse array of viruses including coxsackievirus, enterovirus,

influenza A viruses, human immunodeficiency virus (HIV), herpes simplex virus (HSV), Junín virus (JV), respiratory syncytial

virus (RSV), vesicular stomatitis virus (VSV), and tobacco mosaic virus (TMV). However, medication safety, different routes of

administrations, and molecular mechanisms behind the anti-viral activity of melittin should be scrutinized in future studies.
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Introduction

Viruses virtually parasitize every living creature on planet

earth, from animals and plants to bacteria and archaea.

Human beings have been also afflicted by these non-living

entities throughout history. Some viral diseases such as ac-

quired immune deficiency syndrome (AIDS), Ebola hemor-

rhagic fever, hepatitis B and C, influenza, and rabies still con-

tinue to evoke inordinate fear in societies [1]. For instance, the

“Spanish flu” pandemic, which swept around the globe in

1918, claimed the lives of more people than perished in

World War I [2]. The World Health Organization (WHO) es-

timates that 35 million individuals have succumbed to AIDS-

related illnesses since the beginning of the human immunode-

ficiency virus (HIV) epidemic in the early 1980s. As of 2017,

nearly 36.9 million people are living with HIV worldwide [3].

Over the past half-century, tremendous efforts have been

devoted to develop anti-viral drugs. However, this process is

time-consuming, exorbitantly expensive, and tediously metic-

ulous [4]. These problems are even further exasperated when

mutations in a viral genome give rise to drug resistance [5].

All these facts have impelled researchers to discover unique

biochemical compounds for the treatment of viral diseases. In

this respect, natural products embody a miscellaneous array of

exotic constituents, propounding an immensurable source of

anti-infective drugs [6].

Some animals such as snake, scorpions, spiders, and

bees produce poisonous secretions termed venoms to kill/

incapacitate preys or defend against predators. Regardless

of their detrimental effects, animal venoms have long held a

fascination for humankind owing to their pharmacological-

ly active components including enzymes and peptides [7,

8]. In this context, therapeutic properties of venoms for

treating neurologic and cardiovascular illnesses, cancer,

atopic dermatitis, diabetes, and gastrointestinal maladies

have been documented since medieval times [9]. Venom-

derived peptides have recently provoked great attention

among newly enthused researchers, since they are not only

selective and potent but also relatively innocuous as thera-

peutics [9, 10]. Indeed, these features together with infinite
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biodiversity of venom-derived peptides may revitalize flag-

ging drug development programs.

Heretofore, six medications derived from venom peptides

have been approved by the US Food and Drug Administration

(FDA) for clinical use: captopril (from snake, Bothrops

jararaca; 1981), eptifibatide (from snake, Sistrurus miliarius

barbouri; 1998), tirofiban (from snake, Echis carinatus;

1999), bivalirudin (from medicinal leech,Hirudo medicinalis;

2000), ziconitide (from cone snail, Conus magus; 2004), and

exenatide (from lizard, Heloderma suspectum; 2005) are used

for the treatment of hypertension, acute coronary syndromes,

acute coronary syndromes, coagulation during surgery, chron-

ic pain, and diabetes mellitus type 2, respectively [9, 11–16].

At the time of writing this article, several venom-derived pep-

tides are in clinical trials or preclinical development for curing

a vast array of maladies [17].

Melittin is the principal constituent in the venom of the

European honeybee Apis mellifera [18]. It is an amphipathic

hexacosapeptide (NH2-Gly-Ile-Gly-Ala-Val-Leu-Lys-Val-

Leu-Thr-Thr-Gly-Leu-Pro-Ala-Leu-Ile-Ser-Trp-Ile-Lys-Arg-

Lys-Arg-Gln-CONH2) in which the N- and C-terminal regions

are predominantly hydrophobic and hydrophilic, respectively

[19, 20]. This uneven distribution of polar and non-polar ami-

no acid residues gives the melittin amphipathic structure when

it is folded into an α-helical configuration [21]. Melittin is

composed of two α-helices connected through a flexible seg-

ment [22]. Tetrameric melittin is predominant at concentra-

tions found in the venom sac of the honeybee, but changes

in peptide concentration and ionic strength result in tetramer to

monomer dissociation [23, 24]. Melittin interacts with cell

membranes and induces pore formation at micromolar con-

centrations, thereby disturbing membrane function and trig-

gering cell lysis [25, 26].

In spite of some concerns over cytotoxic properties of

melittin, there is a mounting body of evidence on its therapeu-

tic values. Melittin has been shown to exert anti-cancer [27],

anti-inflammatory [28], anti-diabetic [29], anti-microbial [30],

anti-biofilm [24], and adjuvant [31] properties. Since the late

1970s, praiseworthy endeavors have been devoted to ascertain

the anti-viral action of melittin in vitro and in vivo. To the

authors’ knowledge, there is no review appertaining to effects

of melittin against viruses, prompting us to synopsize experi-

mental investigations on its anti-viral activity throughout the

past decades.

In vitro studies

Cell culture models are convenient and cost-effective tools to

study the molecular mechanisms of viral life cycles as well as

preliminary toxicological screening of drug candidates. Thus

far, many investigations have been conducted to measure ef-

ficacy of melittin against diverse viral species, which are

recapitulated in Tables 1 and 2. For the reader’s convenience,

we categorized these studies based on viral families.

Arenaviridae

The family Arenaviridae encompasses enveloped viruses

with two single stranded, ambisense RNA molecules,

and is usually associated with rodent-transmitted infec-

tions in human beings [45, 46]. The family comprises

t h r e e n e w l y s e p a r a t e d g e n e r a i n c l u d i n g

Mammarenavirus, Reptarenavirus, and Hartmanivirus.

Both Reptarenavirus and Hartmanivirus infect reptilian

hosts, whereas Mammarenavirus infects mammalian

hosts [47]. On the basis of serological cross-reactions, ge-

ne t i c , and geograph ic re la t ionsh ips , the genus

Mammarenavirus is further subdivided into two major

serogroups: The New World and the Old World [45, 47].

Noticeably, some Old World (Lassa and Lujo) and New

World (Chapare, Guanarito, Junín, Machupo, and Sabia)

arenaviruses are responsible for viral hemorrhagic fever,

one of the most devastating emergent human diseases, with

a fatality rate of 15–30% in untreated cases [48, 49]. For

instance, Junín virus (JV) causes Argentine hemorrhagic

fever, a severe viral illness endemic to the humid pampas

of Argentina, with roughly five million people at risk [50].

Though ribavirin is the only approved anti-viral agent for

treating arenaviruses in the USA; however, it exhibits un-

desirable secondary reactions [32, 51]. Thus, there is exigen-

cy to develop efficient therapeutics against arenaviruses.

Melittin has been shown to cripple JV multiplication at

non-toxic concentration ranges (0.5–3 μM) in vitro [32].

Surprisingly, 3 μM of melittin was enough to achieve a 99%

reduction of JV infectivity (Table 1). Melittin concentration

required to decrease virus yield by 50%, known as EC50, was

0.86 μM for JV (Table 2). Based on 3-(4,5-dimethylthiazol-2-

yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, concen-

tration of melittin needed to lessen cell viability by 50%

(CC50) was 8.51 μM. Besides, selectivity index (CC50/EC50)

of melittin was 9.89, suggesting that it can serve as a conceiv-

able drug for anti-viral therapy against JV [32].

Flaviviridae

The Flaviviridae is a family of arthropod-borne, enveloped

viruses with a single-strand RNA of positive polarity, and

currently has four genera, namely Flavivirus, Pestivirus,

Hepacivirus, and Pegivirus. They frequently infect mammals

and birds, causing wide range of diseases such as hepatitis,

hemorrhagic fever, fatal mucosal disease, and neurological

illnesses [52]. Some notable examples of the family are hep-

atitis C virus, yellow fever virus, West Nile virus, dengue

virus, Japanese encephalitis virus, and Zika virus, representing
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Table 1 In vitro anti-viral effects of melittin

Family/virus (strain) Methods Results References

Arenaviridae

Junín virus (IV4454) Virucidal assay and viral

yield inhibition

Melittin hampered multiplication of

Junín virus in Vero cells infected at a

multiplicity of infection (MOI) of 0.1.

[32]

Flaviviridae

Bovine viral diarrhea virus (NADL) Treatment of cells with melittin

(before and after viral infection)

Melittin was failed to reduce viral particles,

though addition of apamin potentiated

its anti-viral activity.

[33]

Herpesviridae

HSV-1 (MP, syn20, FFV3, tsB5,

and amb 1511-7)

Phase-contrast microscopy (evaluating

cell fusion and plaque morphology),

viral yield inhibition, adsorption and

penetration assays

Melittin (0.5 μM) impeded HSV-1-induced

cell fusion in glycoprotein K mutants,

but not glycoprotein B mutants. It was

also effective in inhibiting HSV-1

adsorption and penetration.

[34]

HSV-1 M (ATCC VR-539)

and HSV-2 G (ATCC VR-734)

Virucidal assay Melittin completely inactivated

HSV-1 M and HSV-2 G.

[35]

HSV-1 (F) and HSV-2 (G) Virucidal assay and viral yield inhibition Melittin (0.5–3 μM) inhibited infectivity

of both HSV-1 and HSV-2.

[32]

GFP-fused HSV Viral yield inhibition and analysis

of GFP expression

Compared to untreated groups, melittin

treatment (2 μg/mL) led to a 16-fold

reduction in viral titers and a pronounced

decrease in GFP expression in infected cells.

[36]

BoHV-1 (Los Angeles) Treatment of cells with melittin

(before and after viral infection)

and virucidal kinetics

Melittin (2 μg/mL) exhibited potent anti-viral

effects on BoHV-1. Melittin (25 μg/mL)

required 2 and 4 h to completely wipe out

BoHV-1 at 37 °C and 22 °C, respectively.

[33]

Orthomyxoviridae

GFP-fused influenza A (PR8) Viral yield inhibition, analysis of GFP

expression, virus attachment assay,

entry assay, and virucidal mechanism

Compared to untreated groups, melittin

(2 μg/mL) reduced both viral titers

and GFP expression in infected cells

(without affecting either virus-cell

attachment or virus entrance into cells).

[36]

Picornaviridae

EV-71 Viral yield inhibition, analysis of GFP

expression, and real-time polymerase

chain reaction

Melittin reduced EV-71 infectivity and

cytopathic effects as well as mRNA

expression levels of VP1 (4-fold)

compared to untreated groups.

[36]

GFP-fused coxsackievirus (H3) Viral yield inhibition and analysis of

GFP expression

Melittin (2 μg/mL) diminished both

GFP expression (1.5-fold) in infected

cells and virus titers (5-fold) compared

to untreated groups.

[36]

Pneumoviridae

GFP-fused RSV Viral yield inhibition and analysis of

GFP expression

Melittin (2 μg/mL) markedly reduced

not only virus titers but also GFP

expression in infected cells compared

to untreated groups.

[36]

Rhabdoviridae

GFP-fused VSV Viral yield inhibition, analysis of GFP

expression, and virucidal kinetics

Melittin (2 μg/mL) rapidly (5–30 min)

suppressed VSV infectivity, and

caused substantial reduction in both

virus titer and GFP expression in

infected cells compared to untreated groups.

[36]

VHSV Immunostaining focus assay Melittin-loaded liposomes and immunoliposomes

inhibited VHSV-infected cell foci formation

and reduced the VHSV spread in cell culture.

[37]
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a severe global public health problem with major socioeco-

nomic consequences [53].

Very recently, Picoli et al. investigated anti-viral ef-

fects of melittin on bovine viral diarrhea virus (BVDV)

[33], the causative agent of bovine viral diarrhea which

leads to considerable financial losses in many beef-

exporting countries [54]. Melittin had no satisfactory

anti-viral activity against BVDV, before and after infec-

tion of Madin–Darby bovine kidney cells with the virus

(multiplicity of infection; MOI = 0.1). Intriguingly, com-

binations of melittin with bee venom-derived apamin

were superior against BVDV than each agent alone,

highlighting that apamin potentiates anti-BVDV efficacy

of melittin [33]. Based on these findings, it is sensible

to combine melittin with other available anti-viral drugs

to ascertain whether the new combinations can abolish

Flavivirus infectivity.

Herpesviridae

Viruses forming the family Herpesviridae contain double-

stranded linear DNA encased within an icosapentahedral cap-

sid, which is wrapped in a tegument and a lipid envelope [55].

Among more than hundred known herpes viruses, nine infect

humans including herpes simplex virus 1 (HSV-1), HSV-2,

varicella zoster virus (VZV), cytomegalovirus (CMV), human

herpes virus (HHV)-6A, HHV-6B, HHV-7, Epstein-Barr virus

(EBV), and Kaposi’s sarcoma-associated herpesvirus

(KSHV/HHV-8) [56]. Unquestionably, herpes simplex viruses

are one of the most pervasive pathogens among humans,

afflicting up to 95% of the adult population worldwide [57,

58]. Clinical manifestations range from benign and generally

self-limiting forms including cold sores and genital herpes to

the rare but severe and sometimes even life-menacing infec-

tions such as herpes encephalitis. Acyclovir (ACV) and

Table 1 (continued)

Family/virus (strain) Methods Results References

Retroviridae

MuLV (ATS-124) Direct virolysis and electron microscopy Melittin (50 μg) disintegrated the viral membrane,

resulting in complete release of reverse

transcriptase after 30 min of incubation at 20 °C.

[38]

RAV-2 Direct virolysis (permeabilization

of viral envelope)

Melittin made the viral envelope permeable.

Compared to NP-40, melittin caused

less damage to viral structure, permitting

synthesis of full-length cDNA.

[39]

HIV-1 (SF2) Direct virolysis (permeabilization

of viral envelope)

Melittin (20–100 μg/mL) was exploited to

permeabilize HIV-1 envelope. Melittin

treatment led to a 30% higher endogenous

cDNA yield compared to Triton X-100.

[40]

HIV-1 (IIIB) Viral yield inhibition, treatment of

HIV-1-infected cells with melittin,

and western blot analysis

Melittin at 0.5 and 2.5 μg/mL reduced HIV

infectivity in supernatants of KE37/1

T lymphoma cells by ≤ 40% and 100%,

respectively. Compared to untreated cells,

expression of a 31 kDa protein was reduced

in melittin-treated cell extracts.

[41]

HIV-1 (IIIB) and HIV-1 (RF) Treatment of infected cells with

melittin, quantitative RT–PCR

analysis, assessment of HIV LTR

activity, and western blot analysis

Melittin dose-dependently inhibited virus

production in T lymphoma or fibroblastoid

cells infected with HIV-1. Melittin treatment

of T cells diminished levels of Gag antigen,

viral mRNA, and HIV LTR activity.

[42]

HIV-1 (NLHX) and HIV-1

(NLYU2)

Virucidal assay (measuring luciferase

activity) and HIV-1 capture assay

(measuring total amount of viral

protein p24 by ELISA)

Both free melittin and melittin-loaded

nanoparticles reduced HIV-1 infectivity.

Melittin-loaded nanoparticles captured

more HIV-1 compared to blank nanoparticles.

[43]

Virgaviridae

TMV (U1) Virucidal assay (determining percentage

of local lesions on tobacco leaves),

bond-shift assay, and circular

dichroism measurements

Melittin diminished infectivity of TMV

and induced conformational changes

in TMV RNA.

[44]

BoHV-1 bovine herpesvirus type 1,ELISA enzyme-linked immunosorbent assay, EV-71 enterovirus 71,GFP-fused influenza A green fluorescent protein-

fused influenza A (A/PuertoRico/8/34) (H1N1), HIV-1 human immunodeficiency virus-1, HSV-1 herpes simplex virus 1, LTR long terminal repeat,

MuLV Rauscher murine leukemia virus, RAV-2 Rous associated virus-2, RSV respiratory syncytial virus, RT-PCR quantitative reverse transcriptase-

polymerase chain reaction, TMV tobacco mosaic virus, VHSV fish viral hemorrhagic septicemia rhabdovirus, VSV vesicular stomatitis virus
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related nucleoside analogues have been successfully

employed in treating HSV infections, but the treatment should

be commenced as soon as possible after onset of symptoms.

Furthermore, efficiency of the current anti-HSV drugs is gen-

erally limited and gives rise to only marginal improvements in

lesion healing time or episode duration [59]. For this reason,

there is room for more efficacious therapies.

HSV entrance into cells occurs following fusion of viral

envelope with host cell membrane. Several glycoproteins

are involved in HSV-induced cell fusion [60]. It is worth

mentioning that wild-type HSV-1 strains usually induce a

limited amount of cell fusion, while certain HSV mutants

known as syn mutants lead to extensive syncytium forma-

tion [61]. Disturbance of trans-membrane ion gradients

impedes HSV-1-induced cell fusion [62]. This fact together

with perturbation effects of melittin on Na+, K+ pump [63]

propelled researchers to explore whether melittin influ-

ences HSV-1-induced cell fusion [34]. Fusion of Vero cells

infected with HSV strains (MP, syn20, and FFV3) harbor-

ing the syn1 mutation in glycoprotein K was inhibited in

the presence of melittin (0.5 μM), with no evidence of

cytotoxicity toward Vero cells (Table 1). By contrast,

melittin (0.5 μM) failed to affect cell fusion induced by

HSV strains containing mutations in glycoprotein B (tsB5

and amb 1511–7). In presence of melittin, binding of oua-

bain (a specific inhibitor of the Na+, K+ ATPase) to the

Na+, K+ pump of HSV-1-infected Vero cells was drastical-

ly diminished. The peptide also reduced HSV-1 yield in

Vero cells compared to untreated control. In addition, the

authors found that melittin is able to obstruct HSV-1 at-

tachment onto Vero cells in a dose-dependent manner and

to hinder HSV-1 penetration into cells [34].

Melittin has been demonstrated to exert marked anti-

herpetic activity against HSV-1 M and HSV-2 G [35].

However, melittin at concentration of 100 μg/mL displayed

99.9 ± 0.2% cytotoxicity towards ME-180 human cervical

carcinoma cells. Similarly, an extensive hemolysis (94.6%)

occurred at concentration of 80 μg/mL [35]. It has been also

evinced that 3 μM of melittin curbed in vitro infectivity of

both HSV-1 and HSV-2 by 80%. Incubation of Vero cell with

melittin (> 5 μM) at 37 °C for 24 h resulted in cell rounding

and monolayer detachment, as manifested by light microsco-

py [32]. Selectivity index of melittin was calculated to be 6.30

and 4.15 for HSV-1 and HSV-2, respectively (Table 2). In

another major study, Uddin et al. found that melittin directly

inhibits Green Fluorescent Protein (GFP)-fused HSV (EC50 of

Table 2 Anti-viral activities, cytotoxicity effects, and selectivity indices of melittin

Family/virus (strain) EC50 ± SD Cells CC50 ± SD SI References

Arenaviridae

Junín virus (IV4454) 0.86 μM Vero 8.51 μM 9.89 [32]

Flaviviridae

Bovine viral diarrhea virus (NADL) ND MDCK 2.32 μg/mL ND [33]

Herpesviridae

HSV-1 (F) 1.35 μM Vero 8.51 μM 6.30 [32]

HSV-2 (G) 2.05 μM Vero 8.51 μM 4.15 [32]

GFP-fused HSV 0.94 ± 0.07 μg/mL Vero 6.23 ± 0.07 μg/mL 6.62 [36]

Orthomyxoviridae

GFP-fused influenza A (PR8) 1.15 ± 0.09 μg/mL MDCK 7.66 ± 0.94 μg/mL 6.66 [36]

Picornaviridae

EV-71 0.76 ± 0.03 μg/mL HeLa 4.36 ± 0.54 μg/mL 5.73 [36]

GFP-fused coxsakievirus (H3) 0.99 ± 0.09 μg/mL HeLa 4.36 ± 0.54 μg/mL 4.40 [36]

Pneumoviridae

GFP-fused RSV 0.35 ± 0.08 μg/mL HEp2 5.02 ± 0.17 μg/mL 14.34 [36]

Rhabdoviridae

GFP-fused VSV 1.18 ± 0.09 μg/mL Vero 6.23 ± 0.07 μg/mL 5.27 [36]

Retroviridae

HIV-1 (NLHX) 2.4 μM Vaginal epithelial cells (VK2) ND ND [43]

HIV-1 (NLYU2) 3.6 μM Vaginal epithelial cells (VK2) ND ND [43]

BoHV-1 bovine herpesvirus type 1, CC50melittin concentration needed to lessen cell viability by 50%, EC50 melittin concentration required to decrease

virus yield by 50%, EV-71 enterovirus 71, GFP-fused influenza A green fluorescent protein-fused influenza A (A/PuertoRico/8/34) (H1N1), HIV-1

human immunodeficiency virus-1, HSV-1 herpes simplex virus 1, ND not determined, MDCK Madin–Darby canine kidney, RSV respiratory syncytial

virus, SD standard deviation, SI selectivity index (CC50/EC50)
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0.94 ± 0.07 μg/mL) [36], which corroborates the findings of

the earlier investigations [32, 34, 35]. Compared to untreated

viruses, melittin treatment of GFP-HSV minimized not only

GFP expression in infected cells but also viral titers (16-fold).

A new investigation [33] revealed the potential anti-

viral effects of melittin on bovine herpesvirus type 1

(BoHV-1, Los Angeles strain). Administration of melittin

(2 μg/mL) on Madin–Darby bovine kidney cells before

and after infection with BoHV-1 (MOI = 0.1) resulted in

marked reduction of viral titers. In light of virucidal kinet-

ics, complete obliteration of BoHV-1 was achieved after a

2-h incubation of the virus with 25 μg/mL of melittin at

37 °C [33], implying rapid anti-viral effects of melittin.

Given that melittin curtails the infectivity of HSV in sev-

eral ways, it is imperative to evaluate its anti-viral effec-

tiveness against other members of Herpesviridae as well.

Orthomyxoviridae

The family Orthomyxoviridae comprises enveloped viruses

with negative sense, segmented, single-stranded RNA, and

includes seven genera: Influenzavirus A, Influenzavirus B,

Influenzavirus C, Influenzavirus D, Isavirus, Quaranjavirus,

and Thogotovirus [46, 64]. Influenza viruses are the most

prominent member of this family [65]. WHO has been esti-

mated that influenza-mediated debilitating respiratory ail-

ments occur in 3 to 5 million people annually, of whom rough-

ly 290,000 to 650,000 succumb to influenza-related illnesses

[66]. Influenza A viruses are further subtyped on the basis of

two main antigenic determinants named hemagglutinin (HA;

H1–H16) and neuraminidase (NA; N1–N9) [67]. High genetic

variation rates of influenza viruses due to mutation,

reassortment, and/or recombination together with the lack of

effective anti-influenza agents underscore the necessity of de-

veloping novel anti-viral drugs [68].

Melittin is able to mitigate infectivity of influenza A

virus [36]. In this regard, 1.15 ± 0.09 μg/mL of melittin

was sufficient for 50% reduction in plaque-forming units

(PFUs) of GFP-fused influenza A (H1N1, PR8-GFP).

Furthermore, CC50 of melittin was 7.66 ± 0.94 μg/mL for

Madin–Darby canine kidney cells. Considering both anti-

viral and cytotoxic activities, selectivity index of melittin

was 6.66 (Table 2), inferring that anti-influenza activity of

melittin does not emanate from cytotoxic effect of the pep-

tide [36]. In initial stages of infection, melittin (2 μg/mL)

did not interfere with both cell attachment and entry of

PR8-GFP strain. When PR8-GFP strain was co-incubated

with melittin (for 30 min at 4 °C), waning in viral mass was

observed, as evaluated by velocity sedimentation ultracen-

trifugation and subsequent immunoblotting [36]. At 24 h

post-infection, melittin treatment (2 μg/mL, 30 min) of

PR8-GFP led to significant reduction in viral titers (5-fold,

P < 0.01) and GFP expression compared to untreated PR8-

GFP. These data suggest direct effect of melittin on PR8-

GFP surface, prior to virus-cell attachment. Li et al. postu-

lated that surface charge interactions between a cationic

peptide from scorpion venom named Mucroporin-M1 and

influenza H5N1 can diminish viral infectivity [68]. Thus,

melittin may interact with phospholipid bilayer of viral en-

velope through electrostatic interactions and destabilize vi-

ral particles, eventually leading to virolysis.

Picornaviridae

All of the Picornaviridae members have single-stranded pos-

itive sense RNA genome with a non-enveloped icosahedral

capsid [65]. As one of the largest viral families, it currently

has 35 genera including 80 species. These viruses cause a

wide variety of maladies involving respiratory and gastroin-

testinal tracts, central nervous system, heart, liver, skin, and

eye [69].

One study [36] demonstrated the anti-viral effects of

melittin against enterovirus 71 (EV-71), one of the chief cul-

prits behind the hand, foot, and mouth disease, which can lead

to neurological, cardiac, and respiratory complications in

young children [70]. Melittin/EV-71-treated cells exhibited

lower cytopathic effects (CPEs) and higher cellular viability

than those of EV-71-infected cells. Furthermore, mRNA ex-

pression levels of capsid protein VP1 in melittin/EV-71-treat-

ed cells displayed a 4-fold decrement compared to EV-71-

infected cells (Table 1). As evidenced in Table 2, EC50 and

CC50 of melittin for EV-71 and HeLa were 0.76 ± 0.03 and

4.36 ± 0.54 μg/mL, respectively, resulting in selectivity index

of 5.73. These observations confirmed the inhibitory effects of

melittin on either EV-71 replication or CPE induction, making

the peptide an attractive candidate for prophylactic or thera-

peutic use against enterovirus infections [36].

Uddin et al. [36] also found that melittin suppresses infec-

tivity of GFP-fused coxsackievirus H3 (cardiopathogenic H3

strain of coxsackievirus B3) with EC50 of 0.99 ± 0.09 μg/mL.

Moreover, CC50 of melittin for HEp-2 cells was 4.36 ±

0.54 μg/mL. Selectivity index of melittin was also calculated

to be 4.40. Co-incubation of H3-GFP (MOI = 2) with 2 μg/

mL of melittin for 30 min at 4 °C and subsequent inoculation

of the mixture to HeLa cells resulted in 5-fold (P < 0.05) and

1.5-fold (P < 0.05) reduction in viral titers and GFP expres-

sion, respectively, compared to H3-GFP-infected cells not

subjected to melittin treatment. Indeed, these findings imply

that melittin has pronounced virucidal activity against

coxsackievirus at non-cytotoxic concentrations.

Pneumoviridae

The family Pneumoviridae contains enveloped viruses with

single-stranded, negative-sense RNA, and has two genera,

Orthopneumovirus and Metapneumovirus [65]. The genus
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Metapneumovirus has two species (Avian metapneumovirus

and Human metapneumovirus), while Orthopneumovirus

contains three species (Bovine respiratory syncytial virus,

Human respiratory syncytial virus, and Murine pneumonia

virus) [71]. Human respiratory syncytial virus (RSV) is a ma-

jor etiological agent of respiratory diseases such as pneumonia

and bronchiolitis, particularly in children, elderly, and

immunocompromized patients [72]. Worldwide, around 33.8

million new cases of RSV-associated acute lower respiratory

infection are estimated to occur in children under the ages of

5 years annually, of whom at least 3.4 million required hospi-

talizations [73, 74]. Despite the magnitude of RSV disease,

treatment has been limited to supportive measures, broncho-

dilators, epinephrine, and ribavirin [75].

Melittin has the ability to extinguish RSV infectivity [36].

Compared to RSV-infected HEp-2 cells without melittin treat-

ment, incubation of GFP-RSV with 2 μg/mL of melittin for

30 min at 4 °C and subsequent inoculation of the mixture to

HEp-2 cells (MOI of 1) caused significant decrements in GFP

expression (P < 0.01) and viral supernatant titers (82-fold, P <

0.01) at 24 h post-infection (Table 1). EC50 and CC50 toward

RSV-GFP and HEp-2 cells were 0.35 ± 0.08 and 5.02 ±

0.17 μg/mL, respectively (Table 2). Given that melittin

displayed higher level of selectivity toward RSVover HEp-2

cells (selectivity index of 14.34), the peptide can be consid-

ered as an auspicious agent for anti-RSV therapy.

Retroviridae

Retroviruses are enveloped viruses with two copies of

positive-sense RNAwhich use their own reverse transcrip-

tase (RT) to generate DNA from its RNA genome [65].

Viruses belonging to Retroviridae are responsible for eco-

nomically devastating diseases ranging from malignancies

to immune deficiencies and neurologic disorders. HIV,

which is historically related to the AIDS pandemic, is cat-

egorized under the genus Lentivirus within the family of

Retroviridae. Thus far, six therapeutic classes of anti-

retroviral drugs are available for the management of HIV

infection including entry or fusion inhibitors, nucleoside/

nucleotide analogue reverse-transcriptase inhibitors

(NRTIs/NtRIs), non-nucleoside reverse transcriptase inhib-

itors (NNRTIs), integrase inhibitors, and protease inhibitors

[76]. Although anti-retroviral combination therapy en-

hances life expectancy substantially, there is still no cure

for AIDS. In fact, all HIV cure approaches are generally in

their infancy [65].

There are several lines of evidence concerning anti-

retroviral activities of melittin against different retroviruses

(Table 1). The first investigation on anti-viral efficacy of

melittin dates back to the late 1970s, when Esser et al. ap-

praised direct virolytic effect of melittin toward Rauscher mu-

rine leukemia virus (MuLV). The authors demonstrated that

50 μg of melittin is enough to “peel off” the viral envelope

[38]. As an alternative to non-ionic detergent NP-40, melittin

can permeabilize avian retrovirus envelope for cDNA synthe-

sis [39], confirming an earlier finding reported by Esser et al.

[38]. Permeabilization of HIV-1 envelope for synthesis of

cDNA is further exemplified in a study conducted by Yong

et al. [40].

Melittin can also minimize production of HIV-1 in persis-

tently HIV-1-infected KE37/1 T lymphoma cells [41]. In this

context, complete reduction of viral particles in supernatants

of HIV-1-infected cells was observed after applying of

melittin at a non-cytotoxic concentration of 2.5 μg/mL.

Western blot analysis demonstrated the reduction of a

31 kDa protein in melittin-treated cell extracts [41]. This pro-

tein could relate to some fragments of processed Gag/Pol pre-

cursor polyprotein or p31 integrase. Furthermore, data re-

trieved from C-terminal and truncated derivatives of melittin

suggest that both amphipathic alpha-helical part (residues 1–

20) and cationic amino acid residues in the C-terminal end of

melittin are accounted for its anti-viral properties against HIV-

1, resulting in intracellular impairment of viral protein produc-

tion rather than a direct disruption of viral envelope [41].

Another survey proved the anti-HIV effectiveness of

melittin at non-cytotoxic concentrations [42]. In this respect,

melittin attenuated HIV-1 production in HUT78-RF (chroni-

cally HIV-1-infected T cells), HUT78 (acutely HIV-1-infected

T cells), and LC5-CD4 (acutely HIV-1-infected fibroblasts) in

a dose-dependent manner. In the case of melittin-treated cells,

metabolic activity at the 50% infectious dose (ID50) was

higher than 85% of control cultures. Furthermore, western blot

analysis indicated that levels of Gag antigen declined in

KE37/1 (acutely HIV-1-infected T lymphoma cells) lysates

following 9 days treatment with melittin (1.05 and 1.4 μM)

compared to controls [42]. Quantitative reverse transcriptase-

polymerase chain reaction (RT-PCR) results also demonstrat-

ed that meli t t in does not suppress expression of

porphobilinogen deaminase, a cellular housekeeping gene.

Interestingly, melittin suppresses HIV long terminal repeat

(LTR) activity in a Tat-independent manner, indicating that

melittin interferes with host cell-directed viral gene expression

[42]. All the cumulative evidence indicates that dose-

dependent anti-HIVeffect of melittin is mediated by suppress-

ing HIV transcription and decreasing overall levels of viral

gene products rather than the lysis of cellular or viral

membranes.

Hood et al. reported the first proof-of-concept investiga-

tion concerning inhibition of HIV-1 infectivity by melittin-

loaded nanocarriers [43]. In order to quantify HIV-1 infec-

tivity, the authors applied TZM-bl cell line, which is HeLa-

derived cells capable of expressing CD4, CCR5, and

CXCR4. The cell line also harbors luciferase reporter gene

under the control of an HIV-1 promoter [77]. After incuba-

tion of 50 ng HIV-1 NLHX (CXCR4 tropic) or HIV-1
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NLYU2 (CCR5 tropic) strains with soluble CD4 (served as

a positive control), nanoparticles, and free melittin at 37 °C,

treated viruses were exploited to infect TZM-bl reporter

cells for 48 h at 37 °C. This is followed by lysing the cells

and gauging luciferase activity (as a measurement of HIV-1

infectivity). Remarkably, free melittin at concentrations

greater than 6 μM was able to extirpate infectivity of both

NLHX and NLYU2 strains. Although 2 μM of free melittin

did not influenced viability of TZM-bl reporter cells, con-

centrations above 2 μM rapidly diminished cellular viabil-

ity, indicating a narrow therapeutic range of melittin.

Contrary to free melittin, melittin-loaded nanoparticles

had no toxicity toward vaginal keratinocytes in vitro [43].

Besides, 50% inhibitory concentration of melittin-loaded

nanoparticles were 2.4 and 3.6 μM against NLHX and

NLYU2 strains, respectively, with no adverse effects on

reporter cell viability. Lipid-to-lipid membrane hemi-

fusion events may facilitate melittin transportation from

nanoparticle lipid monolayers to HIV-1 envelope bilayers,

subsequently resulting in melittin aggregation, pore forma-

tion, and deactivation of viral packaging [43]. Simplicity of

nanoparticle production, lack of melittin nanoparticles tox-

icity against vaginal keratinocytes, and their potential in

reducing HIV-1 infectivity are striking properties of this

approach for intra-vaginal prevention of HIV transmission.

Rhabdoviridae

Members of Rhabdoviridae have characteristic bullet-shaped

or bacilliform membrane-enveloped particles with single-

stranded, negative-sense RNA. Viruses belonging to

Rhabdoviridae afflict an extremely broad range of hosts in-

cluding plants, fish, mammals, reptiles, and even invertebrates

[65]. Vesicular stomatitis virus (VSV) is an arthropod-borne

Rhabdovirus that cause vesicular disease in cattle, horses, and

swine, leading to negative economic impacts on animal hus-

bandry [78, 79].

One study was performed in an attempt to appraise anti-

viral effects of melittin on VSV in vitro [36]. In this respect,

melittin (0.5–10 μg/mL) was co-incubated with VSV-GFP for

30 min at 4 °C, after which viral suspensions with MOI of 0.2

were inoculated to Vero cells. Melittin displayed EC50 value

of 1.18 ± 0.09 μg/mL against VSV-GFP, while it showed

CC50 of 6.23 ± 0.07 μg/mL toward Vero cells, resulting in

selectivity index of 5.27 [36]. Incubation of melittin (2 μg/

mL) with VSV-GFP at 4 °C for 30 min and subsequent inoc-

ulation to Vero cells caused a discernible depletion of GFP

expression at 24 h post-infection, while high levels of GFP

expression was observed in virus-infected groups without

melittin treatment, as disclosed through fluorescence micros-

copy. In comparison to virus-infected groups, a pronounced

decline in viral titer of VSV-GFP (1598-fold, P < 0.01) was

observed following a 30 min of exposure to melittin.

Moreover, VSV-GFP infectivity to HEK293T cells began to

reduce after a 5-min incubation with melittin (2 μg/mL) and

continued to wane during 10, 20, and 30 min, indicating rapid

virucidal kinetics of melittin [36].

Delivery of biochemical compounds by immunoliposomes

encompassing complete or fragmented antibodies represents

an optimistic strategy for coping with cancers and viral infec-

tions [80]. In an effort to construct and to evaluate anti-

microbial peptide (AMP)-loaded immunoliposome system,

Falco et al. incorporated melittin into immunoliposomes con-

taining antibodies against glycoprotein G of fish viral hemor-

rhagic septicemia rhabdovirus (VHSV), a rhabdovirus infect-

ing cold-blooded aquatic creatures [37]. At concentrations

equivalent to 25 and 50 μM, both melittin-loaded liposomes

and immunoliposomes were capable of inhibiting VHSV-

infected cell foci formation in a dose- and time-dependent

manner. For instance, inhibition rates of VHSV infectivity

were 89.9% and 95.2% in the presence of melittin-loaded

liposomes (50 μM) and immunoliposomes (50 μM), respec-

tively. Both melittin-loaded liposomes and immunoliposomes

interdicted the infectivity of VHSV after virus adsorption to

fish cell line epithelioma papulosum cyprini (EPC) at time

point 0 and 4 h post-infection [37]. In addition, EPC cell

monolayers exhibited > 80% viability after a 24-h exposure

to melittin-loaded liposomes (25 μM) and immunoliposomes

(50 μM) at 14 °C. These findings suggest that AMP-loaded

immunoliposomes might have an enormous potential to pre-

vent or treat viral infections as the configuration of their con-

stituents (i.e., AMP type, antibody fragments, and/or phos-

pholipid composition) can be optimized.

Virgaviridae

Virgaviridae is a family of plant-associated viruses with

rod-shaped virions and single-stranded, positive-sense

RNA genome [81]. As a typical member of Virgaviridae,

tobacco mosaic virus (TMV) had a long and illustrious

history since the late nineteenth century. The virus invades

a wide spectrum of plants, in particular genera belonging to

Solanaceae [82].

Amino acid sequences of melittin and coat protein of

tobacco mosaic virus (TMV) at positions 71–94, which

are known to be pivotal for protein-RNA and protein-

protein interactions, exhibit partial resemblance. Based

on this similarity, an investigation was conducted by

Marcos et al. to decipher whether melittin abrogates

TMV infectivity and interacts with the viral particles and

their RNA genomes [44]. Addition of melittin (5 μM) into

a solution containing TMV led to reduction (10%) in

number of necrotic local lesions on tobacco leaves com-

pared to non-treated samples. As inferred from far-

ultraviolet circular dichroism (CD) spectroscopy, melittin

adopted a random coil and alpha-helical conformations in
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the absence and presence of TMV RNA, respectively.

When combined with 5 μM of melittin, TMV RNA

showed not only a significant enhancement in electropho-

retic mobility but also shifts in CD spectrum, suggesting

RNA conformational changes are induced by melittin

[44]. In general, these findings open up a range of new

applications for melittin in the field of plant and agricul-

tural virology.

In vivo studies

Apart from in vitro investigations, some empirical evi-

dences exist with regard to anti-viral efficiency of melittin

in animal models. For instance, co-incubation of melittin

(100 ng) with 5MLD50 (dose lethal to 50% of mice) of

influenza A virus subtype H1N1 for 30 min and subse-

quent intranasal administration of the mixture resulted in

100% survivability of six-week-old C57BL/6 female mice

up to 8 days post-infection (dpi), whereas all phosphate-

buffered saline (PBS)/H1N1-treated mice displayed sever-

al respiratory disease symptoms and perished at 8 dpi.

Unlike PBS/H1N1-treated mice, melittin/H1N1-treated

mice were protected from body weight loss. Since

melittin/H1N1-treated mice exhibited considerably lower

lung viral titer in comparison to PBS/H1N1 treated mice

at 5 dpi, melittin rescued them from lethal infections of

influenza A [36].

The effectiveness of melittin for the treatment of

influenza-infected chicken embryos has been exemplified

in a report by Michálek et al. [83]. In this regard, influenza

A virus subtype H7N7 was inoculated into embryo’s allan-

tois of 9-day-old specific pathogen-free (SPF) embryonat-

ed chicken eggs and incubated for 24 h, after which differ-

ent concentrations of melittin was injected into allantoic

fluid. Chicken embryos received only influenza A virus

showed survival rates of 40%, implicating high pathoge-

nicity of the virus against embryos. By contrast, influenza-

infected embryos which were inoculated with melittin

(0.05, 0.5, and 1 μM) exhibited 80% viability. However,

higher concentrations of melittin (2 and 4 μM) were toxic

for influenza-infected embryos, resulting in survival rates

of 40%. These experimental data suggest that melittin is

well tolerated by chicken embryos for up to 1 μM [83]. On

the whole, melittin holds promise for a new avenue of anti-

influenza therapy, from medicine to husbandry.

A prospective, placebo-controlled double-blinded trial

was conducted to evaluate the effects of subcutaneously

administrated melittin (500 μg per kg body weight) on

the general health status of feline immunodeficiency virus

(FIV)-infected cats and the severity of clinical symptoms

during a 6-week treatment period [84]. In contrast to the

placebo group receiving PBS, treatment with melittin led

to a constant improvement in cats’ general health status,

expressed as Karnofsky’s score. Statistically, a significant

difference (P = 0.015) in improvement of conjunctivitis

was observed between melittin-treated and placebo-

treated cats. Although both groups exhibited amelioration

of stomatitis, however, this was not significant. Moreover,

no adverse effects including hemolysis and irritation at the

injection site in FIV-infected cats were noted [84]. In the

case of laboratory parameters (e.g., packed cell volume,

hemoglobin, and white blood cells), there were no statisti-

cally significant differences between both groups. As for

immunologic parameters including CD4+ lymphocytes,

CD8+ lymphocytes, and CD4/CD8 ratio, no significant

differences between both groups were evident. Similar

results were also observed with regard to surrogate param-

eters (biopterin and 7-xanthopterin in serum and urine) in

both groups. Authors stated that lack of significant chang-

es could be attributable to various reasons including in-

ability of melittin to yield strong anti-viral activity

in vivo, administration of low dosage of melittin, long

treatment intervals, short length of treatment period, and

development of antibodies against melittin [84]. Overall,

assessment of changes in FIV load together with

increasing the total number of cats should be considered

for future investigations to provide more trustworthy

statistical findings.

Plausible anti-viral mechanisms

A better understanding of anti-microbial mechanisms of

melittin will definitely help us to optimize anti-viral strategies.

Many AMPs act primarily through membrane disruption [85].

In this context, direct interaction of melittin with viral enve-

lopes or capsid proteins interferes with binding or uptake of

viruses by cells [34, 42, 43]. Besides, other plausible anti-viral

mechanisms of action such as impediment of viral multiplica-

tion [36], decreasing expression levels of viral mRNAs [36,

42], inducing conformational changes in viral genome [44],

deactivation of viral packaging [43], attenuation of viral cyto-

pathic effects [36], and inhibition of viral-induced cell fusion

[34] have been documented in the literature, as depicted in

Fig. 1.

Future prospects

As hinted above, melittin exerts broad spectrum of anti-viral

activities, albeit being relatively cytotoxic at higher doses.

Multiple approaches can be propounded to diminish cytotox-

icity of melittin while augmenting its anti-viral effects, thereby

heightening therapeutic indices of the peptide. In this regard,

targeted in vivo delivery of AMPs like melittin through a
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nanocarrier exemplifies a safe solution with desirable pharma-

cokinetics for both anti-viral and anti-cancer therapies [86,

87]. An alternate novel enticing strategy is conjugation of

melittin with aptamers, which are oligonucleotide or peptide

molecules capable of binding to their targets with high affinity

and specificity [88]. Designing hydrogels embedded with

melittin for topical treatment of herpes blisters and papilloma

virus-related warts is the other practicable approach which has

not been reported hitherto. Last but not least, combination of

melittin and current anti-viral drugs may reduce both concerns

associated with cytotoxicity of melittin and probability of de-

veloping drug-resistant viruses.

Conclusions

Several decades of endeavor have allowed researchers to par-

tially disclose anti-viral effects of melittin against both RNA

and DNA viruses that fall within diverse viral families.

However, tangible challenges such as medication safety lie

ahead in the path toward clinical application of melittin as

an anti-viral drug. As a consequence, future investigations

may need to focus on deciphering mechanisms behind the

anti-viral activity of melittin, examining various routes of ad-

ministrations, and scrutinizing the effectiveness of melittin in

primate models to retrieve additional pre-clinical data.

Undoubtedly, anti-infective properties of melittin will provide

new avenues in all fields of clinical researches, particularly

medical virology.
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