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1 Introduction and summary of results

Wilson’s renormalization group approach to understanding critical phenomena [1] has led to

profound insights over many years. This approach relies on a Feynman diagram expansion

which needs regularization of divergences and, as is usual in a perturbative approach,

leads to asymptotic expansions. While this is well understood for renormalizable theories,

it does not make use of the enhanced conformal symmetry at the fixed point. In the

1970s, [2–5] initiated the study of the conformal bootstrap approach in understanding

critical phenomena. Unfortunately, the resulting equations proved very difficult to solve

and not much progress was made. The work of [6] in the 1980s made remarkable progress

in understanding 2d CFTs. It would take another two decades before progress was made,

starting with the work of [7] which made use of the development in understanding conformal

blocks in [8, 9] in the bootstrap program in higher dimensions [10–47].

In the modern formalism of the conformal bootstrap, building on the work of [7], one

expands a four point function in a conformal field theory in terms of the conformal blocks

of one of the channels (direct channel). Then one imposes crossing symmetry in the next

step. This is a nontrivial constraint and forms the starting point for the powerful nu-

merical approach to constraining conformal field theories. Analytic progress, with this as

the starting point, has been limited [28, 29, 35–40]. In cases with weakly broken higher

spin symmetry, some progress has been made in understanding the leading order anomalous

dimensions [48–50] for lower spin operators as well — however, it is not clear how to system-

atize this approach to get subleading orders. The double light cone limit of the bootstrap

equations in the works of [51–54] gives a systematic approach for the large spin limit. For

low spin cases, the methods of [53] allow a resummation to finite values of the spin, including

spin zero but the issue is subtle.1 It is worth exploring other methods which do not require

a resummation. In [55] it was shown how to make use of conformal symmetry of three point

functions to get the leading order (in epsilon) anomalous dimension of a large class of scalar

operators (see also [56–61]). This approach depended indirectly on the equations of motion

that follows from a lagrangian and leads to the question: how does one recover these results

using the bootstrap and go further? The modern incarnation of the bootstrap can be used

to gain some insight into the epsilon expansion using numerics [62] but is not very efficient

in getting analytic results. Hence it is desirable to seek a different starting point.

In [5], Polyakov considered a version of the conformal bootstrap that made use of

crossing symmetric blocks from the beginning. Thus while crossing symmetry was in-built,

1In some cases one can add solutions consistent with crossing and with finite support in the spin. In

many interesting cases this appears not to be the case, we thank F. Alday for discussions on this.
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consistency with the operator product expansion, for instance in the direct channel, was

not guaranteed. There are spurious poles in the expansion which need to be cancelled.

Demanding this consistency leads to an infinite number of constraints. This approach lay

dormant for a long time. In [63], this approach was revisited and it was pointed out that

it could be made to work at the next nontrivial order in the epsilon expansion. In [64,

65], it was realized that the full power of [5] could be harnessed in Mellin space [66–77]

where the systematics of non-zero spin exchange was both conceptually and calculationally

simpler. Quite remarkably, the epsilon expansion results at three loops in the Feynman

diagram approach were reproduced leading to agreement with existing results for anomalous

dimensions as well as new results for OPE coefficients which have never been calculated,

barring the stress tensor and conserved current exchanges (which are known upto two loop

order in the epsilon expansion for the Ising case).

The reason why [64, 65] worked so efficiently relied on two key ingredients. First, the

direct channel expression for the leading spurious pole naturally leads to an expansion in

terms of a convenient orthonormal basis in terms of the continuous Hahn polynomials [78,

79]. Second, the crossed channels got contributions from only one scalar operator upto the

first two or three (depending on the spin in the s-channel) subleading orders in epsilon.

We will demonstrate that this approach works for the O(N) case as well in the epsilon

expansion. This will lead to reproducing known three loop results as well as new results

for the OPE coefficients for various operators. Another reason for looking at the O(N) case

is that 1/N in the large-N limit provides another expansion parameter for a fixed spacetime

dimension d and it is natural to ask what happens in this case. There is a large body of

work using a bootstrap type approach and conformal symmetry to understand this very

important case [80–86] which ties up with the AdS/CFT correspondence. As we will show

that the single operator contribution in the crossed channel holds only upto leading order in

1/N , enabling us to easily extract the leading 1/N terms. To go beyond these orders, will

require a careful study of the systematics of all the spurious poles, not just the leading one,

and also some mixed correlators. This will be taken up in the near future in a separate work.

Another important case of N -scalars that we will consider is the theory with cubic

anisotropy [87]. In the space of couplings there are four fixed points — the Gaussian fixed

point corresponding to the free theory, the Ising fixed point corresponding to N decoupled

φ4 theories, the O(N) fixed point arising from an interaction g1(
∑N

i=1 φiφi)
2 and the cubic

fixed point corresponding to a continuum theory with the interaction g1(
∑N

i=1 φiφi)
2 +

g2
∑N

i=1(φi)
4 — for this last case the discrete symmetry φi ↔ φj , φi → −φi is preserved.

For a certain N < Nc, the O(N) fixed point is the stable fixed point while for N > Nc the

cubic fixed point is the stable fixed point. The value of Nc that follows from an epsilon

expansion analysis is less than 3. To our knowledge, this value has not been determined

using the modern numerical bootstrap and our analysis may be a useful starting point

to address the same. The N = 3 case is relevant for ferromagnets. We will set up the

equations for this problem and derive anomalous dimensions and OPE coefficients for

operators quadratic in the field. While the anomalous dimension of the singlet scalar and

the fundamental scalar are known to five loop order [87], many of the results we will quote

appear to be unknown in the literature (to the best of our knowledge).
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Assumptions. The essential assumptions that we will make in order to solve the boot-

strap conditions, in addition to there being a Z2 symmetry in all cases are:

1. There is a unique conserved stress tensor and a conserved spin-1 current. However,

the conservation of spin-1 current does not hold for cubic anisotropy.

2. In the ε-expansion the OPE coefficients of higher order operators like (φiφi)
2 begin at

O(ε). This is expected from the free theory, the only nontrivial bit in this assumption

is that it begins at O(ε) rather than say O(ε1/2).

1.1 Summary of the results

We summarize below the findings of the paper. We use the colour code of blue to indicate

results that are new.

1.1.1 ε-expansion

We find the anomalous dimensions and OPE coefficients (squared) of operators for the

critical O(N) model in d = 4 − ε at the Wilson-Fisher fized point, for general N . The

results are obtained as an expansion in ε. The table below summarizes the operators, and

the equations showing the corresponding corrections. The anomalous dimensions below

agree with literature [88–92] while the OPE coefficients are all new results.2,3

operator O dimension ∆O OPE coefficient CφφO ≡ CO
φ (3.16) -

φiφi (3.19) (3.17)

φ(iφj) −
δij
N φkφk (3.20) (3.18)

φi∂
`φi (3.25) (3.26)

φ(i∂
`φj) −

δij
N φk∂

`φk (3.25) (3.27)

φ[i∂
`φj] (3.25) (3.28)

1.1.2 Large N expansion

Our progress with the 1/N expansion is more modest and we do not report any new result.

The leading order results that arise from our analysis are consistent with known results.

2The symmetrization and antisymmetrization brackets are defined as A(ab) = (Aab+Aba)/2 and A[ab] =

(Aab −Aba)/2.
3We show only a schematic form of the operators. For example φi∂

`φi indicates a primary with sym-

metrized traceless combination of ` derivatives.
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operator O dimension ∆O OPE coefficient CφφO ≡ CO
φ (4.5) -

σ (4.6), (4.12) (4.7), (4.12)

φ(iφj) −
δij
N φkφk (4.6), (4.12) (4.7), (4.12)

φi∂
`φi (4.17) (4.19)

φ(i∂
`φj) −

δij
N φk∂

`φk (4.18) (4.20)

φ[i∂
`φj] (4.18) (4.20)

These results are in agreement with the results from [48, 86].

1.1.3 Cubic anisotropy

We also consider the special case of a broken O(N) symmetry with an interacting term like

g1(
∑

i φiφi)
2 +g2

∑
i φ

4
i , in d = 4−ε. In this model the symmetric traceless operators break

into a diagonal part and an off-diagonal part. We have obtained the anomalous dimensions

and OPE coefficients for a few operators, which are summarized below. The generalized

δijkl notation is introduced in (6.2).

operator O dimension ∆O OPE coefficient CφφO ≡ CO
φ (6.13) -

φiφi (6.14) (6.15)

φ(iφj) − δijklφkφl (6.16) (6.17)

δijklφkφl −
δij
N φkφk (6.18) (6.19)

φi∂
`φi (6.21) (6.25), table 3, 4

φ(i∂
`φj) − δijklφk∂`φl (6.22) (6.25), table 5, 6

δijklφk∂
`φl −

δij
N φk∂

`φk (6.23) (6.25), table 7, 8

φ[i∂
`φj] (6.23) (6.25), table 9, 10

The paper is organised as follows: in section 2 we set up our equations for theories

with a O(N) symmetry. Section 3 uses these equations to obtain the anomalous dimensions

and OPE coefficients for O(N) models in d = 4 − ε at the Wilson-Fisher fixed point. In

section 4 we apply our method for large N critical models. Section 5 makes some d = 3

predictions and also a large spin analysis to compare with known results. In section 6 we

show how to modify our equations for a different kind of symmetry, which is the cubic

anisotropic case. There are four appendices which give the essesntial formulas, alternate

methods to verify our findings and some results which were too big for the main text.

2 Mellin space bootstrap for O(N)

We begin by reviewing the analysis of [64, 65] and extend the ideas to theories with O(N)

symmetry. For the O(N) case the spectrum contains operators that behave differently

– 4 –
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from one another under O(N) transformations. A two point OPE can have the following

operator content in the spectrum,

φi × φj ⊃ {1, S, T(ij), A[ij]} , (2.1)

where S denotes O(N) singlets of even spin, T denotes O(N) symmetric traceless tensors of

even spin, and A denotes O(N) antisymmetric tensors of odd spin. These operators do not

mix with each other under O(N) rotations, and give rise to different symmetry structures

in a four point OPE. More discussion for O(N) models and their symmetries can be found

in [80–85, 95].

2.1 s-channel

A generic four point function of the fundamentals of the O(N) in the s-channel can be

written as

〈φi1(x1)φi2(x2)φi3(x3)φi4(x4)〉 =
A(u, v)

(x12 x34)2∆φ
(2.2)

where4

A(u, v) =
∑
S+

C∆,` (δi1i2δi3i4) g∆,`(u, v)

+
∑
T+

C∆,`

(
δi1i3δi2i4 + δi1i4δi2i3 −

2

N
δi1i2δi3i4

)
g∆,`(u, v)

+
∑
A−

C∆,` (δi1i4δi2i3 − δi1i3δi2i4) g∆,`(u, v) . (2.3)

The + denotes even spins, and the − denotes odd spins. Each sector has different C∆,`-s

corresponding to exchanges in that sector. The sums run over primary operators of dimen-

sion ∆ and spin ` and C∆,` is the square of the OPE coefficient of the operator carrying

dimension ∆ and spin `. We will sometimes loosely refer to C∆,` as the OPE coefficient.

Following the analysis of [64, 65] we will write the four point function in the basis of

Witten diagrams, as follows

A(u, v) =
∑
∆,`

c∆,`(W
(s)
∆,`(u, v) +W

(t)
∆,`(u, v) +W

(u)
∆,`(u, v)) . (2.4)

Here the constants c∆,` are related to the OPE coefficients C∆,` via a normalization factor

defined in (A.1). We can write the Mellin representation of a Witten diagram (for identical

external scalars) as follows,

W
(s)
∆,`(u, v) =

∫
ds dt

(2πi)2
us vt Γ(−t)2 Γ(s+ t)2 Γ(∆φ − s)2M

(s)
∆,`(s, t) (2.5)

where M
(s)
∆,`(s, t) is the Mellin amplitude of W

(s)
∆,`(u, v) given by,

M
(s)
∆,`(s, t) =

∫ i∞

−i∞
dν µ

(s)
∆,`(ν)Ω

(s)
ν,`(s)P

(s)
ν,` (s, t) (2.6)

4We will choose the normalization of blocks such that in small u and 1 − v limit g∆,`(u, v) ∼
u(∆−`)/2(1− v)`.

– 5 –
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where we have,

µ
(s)
∆,`(ν) =

Γ2(
2∆φ−h+`+ν

2 )Γ2(
2∆φ−h+`−ν

2 )

2πi((∆− h)2 − ν2)Γ(ν)Γ(−ν)(h+ ν − 1)`(h− ν − 1)`
. (2.7)

and

Ω
(s)
ν,`(s) =

Γ(λ2 − s)Γ(λ̄2 − s)
Γ(∆φ − s)2

. (2.8)

Here we have λ2 = (h + ν − `)/2, λ̄2 = (h − ν − `)/2 and h = d
2 . The Mack polynomials

P
(s)
∆−h,`(s, t) are polynomials of degree ` in s and t. Their form is shown explicitly in

appendix A.2.

For the four point function written in (2.2) carrying the O(N) indices, the sum of

Witten diagrams in a certain channel can be decomposed according to singlet, traceless

symmetric and anti-symmetric operator exchanges. The s-channel can be written as,∑
∆,`

c∆,`W
(s)
∆,`(u, v) =

∫
ds dt

(2πi)2
us vt Γ(−t)2 Γ(s+ t)2 Γ(∆φ − s)2

×
(

(δi1i2δi3i4)MS,(s)(s, t)+

(
δi1i3δi2i4 +δi1i4δi2i3−

2

N
δi1i2δi3i4

)
MT,(s)(s, t)

+(δi1i4δi2i3 − δi1i3δi2i4)MA,(s)(s, t)

)
(2.9)

with,

M i,(s)(s, t) =
∑
∆,`,i

∫
dν ci∆,`M

(s)
∆,`(s, t) . (2.10)

where i stands for S, T,A for singlet, symmetric traceless and antisymmetric operators

respectively.

2.2 t-channel

The t-channel can be done in a similar manner by replacing x2 ↔ x4 , i2 ↔ i4 and

u↔ v. After this interchange we can bring the integral into the form (2.5), by relabelling

t+ ∆φ → s and s−∆φ → t. Then the Witten diagrams in the t-channel can be written in

Mellin space as,∑
∆,`′

c∆,`′W
(t)
∆,`′(u,v)=

∫
dsdt

(2πi)2
usvtΓ(−t)2Γ(s+t)2Γ(∆φ−s)2

(
(δi1i4δi3i2)MS,(t)(s,t)

+

(
δi1i2δi4i3 +δi1i3δi4i2−

2

N
δi1i4δi3i2

)
MT,(t)(s,t)+(δi1i2δi4i3−δi1i3δi4i2)MA,(t)(s,t)

)
(2.11)

where,

M i,(t)(s,t)=
∑

∆,`′,i

∫
dνci∆,`′M

(t)
∆,`′(s,t)=

∑
∆,`′,i

ci∆,`′

∫ i∞

−i∞
dνµ

(t)
∆,`′(ν)Ω

(t)
ν,`′(t)P

(t)
ν,`′(s−∆φ,t+∆φ).

(2.12)

– 6 –
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Here we have,

Ω
(t)
ν,`′(t) =

Γ(1
2(h+ ν − `′)− t−∆φ)Γ(1

2(h− ν − `′)− t−∆φ)

Γ2(−t)
. (2.13)

and P
(t)
ν,` (s, t) is obtained from P

(s)
ν,` (s, t) by interchanging s ↔ t. For identical scalars,

µ
(t)
∆,`′(ν) is the same as µ

(s)
∆,`′(ν).

Similarly in u-channel we can write,∑
∆,`′

c∆,`′W
(u)
∆,`′(u,v)=

∫
dsdt

(2πi)2
usvtΓ(−t)2Γ(s+t)2Γ(∆φ−s)2

(
(δi1i3δi2i4)MS,(u)(s,t)

+

(
δi1i2δi3i4+δi1i4δi3i2−

2

N
δi1i3δi2i4

)
MT,(u)(s,t)+(δi1i4δi2i3−δi1i2δi3i4)MA,(u)(s,t)

)
(2.14)

where,

M i,(u)(s, t)=
∑

∆,`′,i

∫
dν ci∆,`′M

(u)
∆,`′(s, t) =

∑
∆,`′,i

∫
dν ci∆,`′µ

(u)
∆,`′(ν)Ω

(u)
ν,`′(s+t)P

(u)
ν,`′ (s−∆φ, t) .

(2.15)

Here we have,

Ω
(u)
ν,`′(s+ t) =

Γ(1
2(h+ ν − `′) + s+ t−∆φ)Γ(1

2(h− ν − `′) + s+ t−∆φ)

Γ2(s+ t)
. (2.16)

In u-channel the Mack polynomial P
(u)
ν,` (s, t) is obtained from P

(s)
ν,` (s, t) by transforming s→

−s− t and t→ t. Once again for identical scalars, we have µ
(u)
∆,`′(ν) is the same as µ

(s)
∆,`′(ν).

2.3 Total amplitude

The total crossing symmetric amplitude is given by,

A(u, v) =

∫
ds dt

(2πi)2
us vt Γ(−t)2 Γ(s+ t)2 Γ(∆φ − s)2 (2.17)

×
[
(δi1i2δi3i4)

(
MS,(s)(s, t)− 2

N
MT,(s)(s, t) +MT,(t)(s, t) +MT,(u)(s, t) +MA,(t)(s, t)−MA,(u)(s, t)

)
+(δi1i4δi3i2)

(
MS,(t)(s, t) +MT,(s)(s, t)− 2

N
MT,(t)(s, t) +MT,(u)(s, t) +MA,(s)(s, t) +MA,(u)(s, t)

)
×(δi1i3δi2i4)

(
MS,(u)(s, t)+MT,(s)(s, t)+,MT,(t)(s, t)− 2

N
MT,(u)(s, t)−MA,(s)(s, t)−MA,(t)(s, t)

)]
.

Now the Mellin integral (2.5) in every component Witten diagram W∆,`(u, v) has poles in

the Mellin variable s at,

2s = (∆− `) + 2n where n = 0, 1, 2 · · · . (2.18)

These poles correspond to operators present in the OPE (there are also shadow poles

occuring at (d − ∆ − `) + 2n but they can be eliminated by an appropriate choice of

contour). They come from the Mellin amplitude M∆,` when we look at the simple pole at

ν = ±(∆ − h) and the Γ-functions in Ω
(s)
ν,`(s). These poles then reproduce the u(∆−`)/2+n

dependence that one expects in the OPE. We call these the physical poles.

– 7 –
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Now there are also poles in s that do not correspond to operators present in the OPE.

These poles occur at,

s = ∆φ + n where n = 0, 1, 2 · · · . (2.19)

These poles come from the Γ2(∆φ − s) function measure in the Mellin integral, as well as

from the Γ(λ̄2− s) and Γ2(
2∆φ−h+`−ν

2 ) combined in M∆,`(s, t). In the Mellin integral these

poles give u∆φ+n log u and u∆φ+n dependence which are spurious because they typically

do not occur in the s-channel OPE.5 Since one already obtains s-channel OPE, which is

the full A(u, v), from the physical poles, these other poles are called unpysical poles, and

the spurious u-dependences as unphysical terms.

Let us look at unphysical terms, with the leading order in u. These occur at the pole

s = ∆φ and the residues are simply given by the individual Mellin apmlitudes evaluated at

s = ∆φ. They can be expanded in terms of the basis of the continuous Hahn polynomials

Q2s+`
`,0 . So let us write

M i,(s)(s→ ∆φ, t) =
∑
∆,`,i

ci∆,`q
i,(s)
∆,` Q

2∆φ+`
`,0 (t) + · · ·

M i,(t)(s→ ∆φ, t) =
∑

∆,`,`′,i

ci∆,`q
i,(t)
∆,`|`′ Q

2∆φ+`
`,0 (t) + · · ·

M i,(u)(s→ ∆φ, t) =
∑

∆,`,`′,i

ci∆,`q
i,(u)
∆,`|`′ Q

2∆φ+`
`,0 (t) + · · · (2.20)

Here the · · · denote physical pole contributions, and other spurious poles. The polynomials

Q∆
`,0(t) are given in terms of the Mack polynomaials P

(s)
ν,` (s, t) as

Q∆
`,0(t) =

4`

(∆− 1)`(2h−∆− 1)`
P∆−h,`

(
s =

∆− `
2

, t

)
. (2.21)

In the s-channel we have,

q
i,(s)
∆,` (s) = −41−` (2s+ `− 1)` (2h− 2s− `− 1)` Γ(h− `− 2s)µ

(s)
∆,`(ν)

Γ(∆φ − s)2
. (2.22)

Let us write this as,

q
i,(s)
∆,` (s) = q

(2,t)
∆,` + (s−∆φ)q

(1,s)
∆,` +O((s−∆φ)2) (2.23)

= −
41−`Γ(2∆φ + `− h)

(`−∆ + 2∆φ)(`+ ∆ + 2∆φ − 2h)
+ (s−∆φ)

42−`Γ(2∆φ + `− h+ 1)

(`−∆ + 2∆φ)2(`+ ∆ + 2∆φ − 2h)2
,

where i stands for S, T,A for singlet, symmetric traceless and antisymmetric operators

respectively. In the above equation the first term in the second line, is associated with the

log term u∆φ log u , while the second term is part of the coefficient of the non-logarithmic

term u∆φ (we will call this term the power law). We will need to sum up the coefficients of

both log and power law terms from all the three channels and equate them to 0. For this

5Except when the operator with dimension 2∆φ is protected in which case we will have to consider the

contribution from these operators like the way we would treat the disconnected part.
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purpose, only the two terms shown in (2.23) are enough since once the log coefficients are

0, all that is left in the power law coefficient is the second term in (2.23).

The expansions in the t and u channels are possible because the continuous Hahn

polynomials Q∆
`,0(t) are orthogonal polnomials. Their orthogonality property reads

1

2πi

∫ i∞

−i∞
dt Γ2(s+ t)Γ2(−t)Q2s+`

`,0 (t)Q2s+`′

`′,0 (t) = κ`(s)δ`,`′ , (2.24)

where κ`(s) is defined in (A.7). The properties of continuous Hahn polynomials are detailed

in appendix A.3 . Using this for the crossed channels we have,

q
i,(t)

∆,`|`′(s)=
1

κ`(s)

∫
dt

2πi
Γ(s+t)2Q2s+`

`,0 (t)

∫
dνΓ(λ2−t−∆φ)Γ(λ̄2−t−∆φ)µ

(t)
∆,`(ν)P

(t)

ν,`′(s−∆φ,t+∆φ)

(2.25)

q
i,(u)
∆,` (s)=

1

κ`(s)

∫
dt

2πi
Γ(s+t)2Q2s+`+

`+,0
(t)×

∫
dνΓ(λ2−t−∆φ)Γ(λ̄2−t−∆φ)µ

(u)

`′ (ν)P
(u)

ν,`′(s−∆φ,t).

(2.26)

So near the pole s = ∆φ the integrand would look like,

A(u,v)=

∫
dsdt

(2πi)2
usvtΓ(−t)2Γ(s+t)2Γ(∆φ−s)2

[
(δi1i2δi3i4)

( ∑
∆,`,S+

(
cS∆,`q

S(s)
∆,` +

∑
`′

cS∆,`′

N
(q
S(t)

∆,`|`′+q
S(u)

∆,`|`′)

)

+
∑

∆,`,`′,T+

cT∆,`′

(
1+

1

N
− 2

N2

)
(q
T (u)

∆,`|`′+q
T (t)

∆,`|`′)+
∑

∆,`,`′,A−

cA∆,`′

(
1− 1

N

)
(q
A(t)

∆,`|`′−q
A(u)

∆,`|`′)

)

+

(
δi1i4δi3i2 +δi1i3δi2i4−

2

N
δi1i2δi3i4

)
1

2

( ∑
∆,`,`′,S+

cS∆,`′(q
S(t)

∆,`|`′+q
S(u)

∆,`|`′)

+
∑

∆,`,T+

(
2cT∆,`q

T (s)
∆,` +

∑
`′

cT∆,`′

(
1− 2

N

)
(q
T (t)

∆,`|`′+q
T (u)

∆,`|`′)

)
+

∑
∆,`,`′,A−

cA∆,`′(q
A(u)

∆,`|`′−q
A(t)

∆,`|`′)

)

+(δi1i4δi3i2−δi1i3δi2i4)
1

2

( ∑
∆,`,`′,S+

cS∆,`′(q
S(t)

∆,`|`′−q
S(u)

∆,`|`′)+
∑

∆,`,`′,T+

(
1+

2

N

)
cT∆,`′(q

T (u)

∆,`|`′−q
T (t)

∆,`|`′)

+
∑

∆,`,A−

(
2cA∆,`q

A(s)
∆,` +

∑
`′

cA∆,`′(q
A(u)

∆,`|`′+q
A(t)

∆,`|`′)

))]
Q2s+`
`,0 (t) + ··· (2.27)

The explicit formulas for q
i,(t)
∆,`|`′ and q

i,(t)
∆,`|`′ are given in (A.9). As given in (2.23) we can

expand q
i,(t)
∆,`|`′(s) and q

i,(u)
∆,`|`′(s) around the point s = ∆φ to get,

q
i,(t)
∆,`|`′(s) ≡ q

i,(2,t)
∆,`|`′ + (s−∆φ)q

i,(1,t)
∆,`|`′ + . . .

q
i,(u)
∆,`|`′(s) ≡ q

i,(2,u)
∆,`|`′ + (s−∆φ)q

i,(1,u)
∆,`|`′ + . . . (2.28)

The terms q
i,(2,s/t/u)
∆,` give the log unphysical terms. Once we set the log terms to 0, the

power law unphysical terms are given in terms of q
i,(1,s/t/u)
∆,` . In the crossed channel we will

mostly need the expression for the `′ = 0 contributions which are given by,

q
(2,t)
∆,`|`′=0 =

∫
dν
µ

(t)
∆,0(ν)Γ(λ)Γ(λ̄)2`((∆φ)`)

2

κ`(∆φ)(2∆φ + `− 1)`

∑̀
q=0

(−`)q(2∆φ + `− 1)qΓ(q + λ)Γ(q + λ̄)

((∆φ)q)2 q!Γ(q − 2k + λ+ λ̄)
,

(2.29)
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and

q
(1,t)
∆,`|`′=0 =

∫
dνµ

(t)
∆,0(ν)∂s

[
2`((s)`)

2

κ`(s)(2s+ `− 1)`
Γ(s−∆φ + λ)Γ(s−∆φ + λ̄)

×
∑̀
q=0

(−`)q(2s+ `− 1)q
((s)q)2 q!

Γ(q + s+ λ−∆φ)Γ(q + s+ λ̄−∆φ)

Γ(q + 2s+ λ+ λ̄− 2∆φ)

]
s=∆φ

,

(2.30)

where λ = (h+ν)/2 and λ̄ = (h−ν)/2. Using properties of Q`,0(t) as given in appendix A.3

one can show that,

q
(t)
∆,`|`′(s) = (−1)` q

(u)
∆,`|`′(s) . (2.31)

2.4 Disconnected piece

The above analysis does not include the case where the exchange operator is an identity

operator which gives the disconnected part of the four point function. This is given by,

Adis(u, v) = δi1i2δi3i4 + δi1i4δi2i3

(u
v

)∆φ

+ δi1i3δi2i4u
∆φ . (2.32)

This has a Mellin transform that can be written as,

Adis(u, v) =

∫
ds dt

(2πi)2
us vt Γ(−t)2 Γ(s+ t)2 Γ(∆φ − s)2

(
δi1i2δi3i4M

(s)
dis + δi1i4δi2i3M

(t)
dis + δi1i3δi2i4M

(u)
dis

)
,

(2.33)

where the Mellin amplitudes of the disconnected s, t and u channels are given by,

M
(s)
dis (s, t) =

(Γ2(∆φ − s)Γ2(−t)Γ2(s+ t))−1

st
,

M
(t)
dis(s, t) =

(Γ2(∆φ − s)Γ2(−t)Γ2(s+ t))−1

(s−∆φ)(t+ ∆φ)
,

M
(u)
dis (s, t) =

(Γ2(∆φ − s)Γ2(−t)Γ2(s+ t))−1

(∆φ − s− t)t
.

(2.34)

Note that, the Mellin amplitude of the identity piece is not well-defined. However, for our

purposes it suffices to consider only the relevant poles, as in (2.34).

The equation (2.33) can be rearranged according to singlet, traceless symmetric and

antisymmetric tensor combinations, as below,

Adis(u,v)=

∫
dsdt

(2πi)2
usvtΓ(−t)2Γ(s+t)2Γ(∆φ−s)2×

[
δi1i2 δi3i4

(
M

(s)
dis +

1

N
(M

(t)
dis +M

(u)
dis )

)
(2.35)

+
1

2

(
δi1i4δi3i2 +δi1i3δi2i4−

2

N
δi1i2δi3i4

)(
M

(t)
dis +M

(u)
dis

)
+

1

2

(
δi1i4δi3i2−δi1i3δi2i4

)(
M

(t)
dis−M

(u)
dis

)]
This integral also has spurious poles, but they only come from the simple poles of M

(t)
dis(s, t)

and M
(u)
dis (s, t). Now the spurious terms come only from t and u channel disconnected parts

and there are no log terms from them. Since we have only power law u∆φ we will expand

the Mellin amplitude in the basis of continuous Hahn Polynomials, as shown below,

M
(t)
dis(s→ ∆φ, t) =

∑
`

Q2s+`
`,0 (t) q

(1,t)
∆=0,`|`′=0 M

(u)
dis (s→ ∆φ, t) =

∑
`

Q2s+`
`,0 (t) q

(1,u)
∆=0,`|`′=0

(2.36)

– 10 –



J
H
E
P
0
7
(
2
0
1
7
)
0
1
9

where we have,

q
(1,t)
∆=0,`|`′=0(s)=

κ`(s)
−1

Γ(∆φ−s)2

∫
dt

2πi
M

(t)
dis(s,t)Q

2s+`
`,0 (t) =−

κ`(s)
−1(s−∆φ)

Γ(∆φ−s+1)2
Q2s+`
`,0 (−∆φ)

and q
(1,u)
∆=0,`|`′=0(s)=

κ`(s)
−1

Γ(∆φ−s)2

∫
dt

2πi
M

(u)
dis (s,t)Q2s+`

`,0 (t) = −
κ`(s)

−1(s−∆φ)

Γ(∆φ−s+1)2
Q2s+`
`,0 (0).

(2.37)

Since this term is associated with the power law term, the q
(1,t/u)
∆=0,`|`′=0(s) will have to cancel

with the ∂s((s−∆φ)q′∆,`)|s=∆φ
terms from (2.20). In terms of q

(1,s/t/u)
∆,` , (2.35) reads,

Adis(u,v) =

∫
dsdt

(2πi)2
usvtΓ(−t)2Γ(s+t)2Γ(∆φ−s)2

[
δi1i2 δi3i4

∑
`

(
q

(s)dis
` +

1

N
(q

(t)

∆=0,`|`′=0+q
(u)

∆=0,`|`′=0)

)
+

1

2

(
δi1i4δi3i2 +δi1i3δi2i4−

2

N
δi1i2δi3i4

)∑
`

(
q

(t)

∆=0,`|`′=0+q
(u)

∆=0,`|`′=0

)
+

1

2

(
δi1i4δi3i2−δi1i3δi2i4

)∑
`

(
q

(t)

∆=0,`|`′=0−q
(u)

∆=0,`|`′=0

)]
Q2s+`
`,0 (t) + ··· (2.38)

Here the · · · indicate terms regular when s→ ∆φ.

2.5 Constraint equations

Let us now take the equations (2.27) and (2.38) and equate the coefficients of logs and pow-

ers laws to 0. For the log terms we just put s = ∆φ in q∆,`(s) in all channels, and equate

them to 0 for every value of `, and for each of the singlet, symmetric and antisymmetric

sectors. This is because since the Q2s+`
` (t)-s form a complete basis, each of them are inde-

pendent, and so are each of the tensor structures. So we get six equations for every `, two

corresponding to each sector. Using (2.31) the constraint equations undergo considerable

simplifications. For even spin singlet exchange in the s-channel the constraints reduce to

the following,

∑
∆

[
cS∆,`q

S(2,s)
∆,`|`′ +

2

N

∑
`′

cS∆,`′q
S(2,t)
∆,`|`′+2

(
1+

1

N
− 2

N2

)∑
`′

cT∆,`′q
T (2,t)
∆,`|`′

]
= 0. (2.39)

∑
∆

[
cS∆,`q

S(1,s)
∆,`|`′ +

2

N

∑
`′

cS∆,`′ q
S(1,t)
∆,`|`′+2

(
1+

1

N
− 2

N2

)∑
`′

cT∆,`′q
T (1,t)
∆,` +

2

N
q

(1,t)
0,`|0

]
= 0. (2.40)

For a symmetric traceless operator exchange in s-channel, we have,

∑
∆

[∑
`′

2cS∆,`q
S(2,t)
∆,`|`′+2cT∆,`q

T (2,s)
∆,` +2

(
1− 2

N

)∑
`′

cT∆,`′q
T (2,t)
∆,`|`′

]
= 0. (2.41)

∑
∆

[
2
∑
`′

cS∆,`′q
S(1,t)
∆,`|`′+2cT∆,`q

T (1,s)
∆,` +2

(
1− 2

N

)∑
`′

cT∆,`′q
T (1,t)
∆,`,`′ +2q

(1,t)
∆=0,`|`′=0

]
= 0. (2.42)
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Similarly, the constraint equations for antisymmetric odd spin operator exchange in the

s-channel are given by,

∑
∆

[
2
∑
`′

cS∆,`′q
S(2,t)
∆,`|`′−2

(
1+

2

N

)∑
`′

cT∆,`′q
T (2,t)
∆,`|`′ +2cA∆,`q

A(2,s)
∆,`

]
= 0. (2.43)

∑
∆

[
2
∑
`′

cS∆,`′q
S(1,t)
∆,`|`′−2

(
1+

2

N

)∑
`′

cT∆,`′q
T (1,t)
∆,`|`′ +2cA∆,`q

A(1,s)
∆,` +2q

(1,t)
0,`|0

]
= 0. (2.44)

In writing the above equations we have used (2.31) and the fact that antisymmetric oper-

ators have odd spins and others have even spins.

3 ε-expansion from constraint equations

In this section we will use the above equations to get the dimensions and OPE coefficients

of operators in (φiφ
i)2 with an O(N) global symmetry in d = 4 − ε dimension at the

Wilson-Fisher fixed point. The lagrangian in this theory is given by,

S =

∫
ddx

[
(∂φi)

2

2
+ g(φiφ

i)2

]
. (3.1)

However we will not be using the explicit form of the lagrangian. Instead we will use the

following assumptions:

• There is a conserved stress tensor.

• Z2 symmetry (φi ↔ −φi) is present.

• There are N identical fundamental scalars.

• The OPE coefficients of higher order operators which vanish in the free theory start

at O(ε) in the interacting theory so that the C∆,` of these operators are O(ε2).

These assumptions will be enough, to determine the dimensions and OPE coefficients,

from the equations above. Our starting point will be the conservation of stress tensor. This

means we will use ∆`=2 = d as an input. Let us write the dimension of φi as ∆φ = 1+δ
(1)
φ ε+

δ
(2)
φ ε2 + δ

(3)
φ ε3 +O(ε4). It starts with 1 becuase in the free theory dimension of the funda-

mental scalar is (d−2)/2 = 1+O(ε). For the stress tensor OPE coefficient we write C2h,2 =

C
(0)
S,2 +C

(1)
S,2ε+C

(2)
S,2ε

2 +C
(3)
S,2ε

3 +O(ε4). In the singlet equations (2.39) and (2.40), we have,

cS2h,2q
S(2,s)
2h,`=2 = −45

4

(
C

(0)
S,2

(
1 + 2δ

(1)
φ

))
ε +O(ε2) . (3.2)

Expansion of the derivative q
(1,s)
`=2 in ε is given by,

cS2h,2q
S(1,s)
2h,`=2 =

45C
(0)
S,2

2
+

3

2
ε
(

2C
(0)
S,2 + 15C

(1)
S,2 + 30C

(0)
S,2γEδ

(1)
φ

)
+O(ε2) . (3.3)
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Here γE is the Euler-gamma. The disconnected part (2.37) for ` = 0 gives,

q
(1,t)
∆=0,`=2|`′=0 + q

(1,u)
∆=0,`=2|`′=0 = −15

2
−

(47 + 60γE)δ
(1)
φ

4
ε + +O(ε2) . (3.4)

The O(ε2) and O(ε3) terms are too tedious and hence not written here. The crossed channel

terms as shown below start from O(ε2) order. So solving (2.39) and (2.40) at O(ε) we get,

δ
(1)
φ = −1

2
, C

(0)
S,2 =

1

3N
and C

(1)
S,2 = − 11

36N
. (3.5)

The spin-0 singlet and traceless symmetric operators have the leading contributions in

t-channel. We denote their dimensions as,

∆S,0 = 2 + δ
(1)
S,0ε+ δ

(2)
S,0ε

2 + δ
(3)
S,0ε

3 + O(ε4)

∆T,0 = 2 + δ
(1)
T,0ε+ δ

(2)
T,0ε

2 + δ
(3)
T,0ε

3 + O(ε4) (3.6)

and their respective OPE coefficients as,

CS,0 = C
(0)
S,0 + C

(1)
S,0 ε+ C

(2)
S,0 ε

2 + C
(3)
S,0 ε

3 + O(ε4)

CT,0 = C
(0)
T,0 + C

(1)
T,0 ε+ C

(2)
T,0 ε

2 + C
(3)
T,0 ε

3 + O(ε4) . (3.7)

With this let us look at the singlet and traceless symmetric equations (2.39), (2.40), (2.41)

and (2.42) for ` = 0. The q
T (s)
`=0 and q

T (s)
`=0 for spin 0 are given by,

cS∆S ,0
q
S(2,s)
∆S ,`=0 = −C(0)

S,0δ
(1)
S,0

(
1 + δ

(1)
S,0

) ε
2

+
ε2

2

(
−δ(1)

S,0

(
1 + δ

(1)
S,0

)(
C

(1)
S,0 + C

(0)
S,0

(
−γE + δ

(1)
S,0

))
−C(0)

S,0

(
1 + 2δ

(1)
S,0

)
δ

(2)
S,0 − 2C

(0)
S,0

(
1 + 2δ

(1)
S,0

(
1 + δ

(1)
S,0

))
δ

(2)
φ

)
cT∆T ,0

q
T (2,s)
∆T `=0 = −C(0)

T,0δ
(1)
T,0

(
1 + δ

(1)
T,0

) ε
2

+
ε2

2

(
−δ(1)

T,0

(
1 + δ

(1)
T,0

)(
C

(1)
T,0 + C

(0)
T,0

(
−γE + δ

(1)
T,0

))
−C(0)

T,0

(
1 + 2δ

(1)
T,0

)
δ

(2)
T,0 − 2C

(0)
T,0

(
1 + 2δ

(1)
T,0

(
1 + δ

(1)
T,0

))
δ

(2)
φ

)
. (3.8)

The derivatives are given by,

cS∆S ,0
q
S(1,s)
∆S ,`=0 = C

(0)
S,0 +

(
C

(1)
S,0 + C

(0)
S,0

(
−γE + δ

(1)
S,0

))
ε (3.9)

+

C(2)
S,0 + C

(1)
S,0

(
−γE + δ

(1)
S,0

)
+
C

(0)
S,0

2

(
γ2
E − 2γEδ

(1)
S,0 + 2δ

(2)
S,0

)
+ 2C

(0)
S,0γEδ

(2)
φ

 ε2

cT∆T ,0
q
T (1,s)
∆T ,`=0 = C

(0)
T,0 +

(
C

(1)
T,0 + C

(0)
T,0

(
−γE + δ

(1)
T,0

))
ε

+

C(2)
T,0 + C

(1)
T,0

(
−γE + δ

(1)
T,0

)
+
C

(0)
T,0

2

(
γ2
E − 2γEδ

(1)
T,0 + 2δ

(2)
T,0

)
+ 2C

(0)
∆T ,0

γEδ
(2)
φ

 ε2 .

The spin 0 disconnected parts reads,

q
(1,t)
∆=0,`=0|`′=0 +q

(1,u)
∆=0,`=0|`′=0 = −2−4(1+γE)εδ

(1)
φ −4ε2

(
γE(2 + γE)(δ

(1)
φ )2 + (1 + γE)δ

(2)
φ

)
.

(3.10)
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To determine the C
(0)
S,0, C

(0)
T,0, δ

(1)
S,0, δ

(1)
T,0, · · · we would also need the crosssed channels. In the

t(or u)-channel for q
S,(t)
`=0 and q

T,(t)
`=0 only the `′ = 0 operators have the leading contributions.

This is also true for ` > 0. This nice feature is discussed in detail later in this section. So

we have,

cS∆S ,0q
S(2,t)
∆S ,`=0|`′=0=−C(0)

S,0

(
1+δ

(1)
S,0

)2 ε

2

+
ε2

108

(
1+δ

(1)
S,0

)(
27
((

1+δ
(1)
S,0

)(
C

(0)
S,0−2C

(1)
S,0+2C

(0)
S,0γE−2C

(0)
S,0δ

(1)
S,0

)
−4C

(0)
S,0δ

(2)
S,0

)
−2C

(0)
S,0δ

(1)
S,0δ

(2)
φ

)
+O(ε3), (3.11)

and the derivative,

cS∆S ,0
q
S(1,t)
∆S ,`=0|`′=0 = −

C
(0)
S,0ε

2

18
+O(ε3) + · · · . (3.12)

The correponding terms for q
T (t)
`=0 and its derivatives are simply given by replacing with the

traceless symmetric scalar,

q
T (2,t)
∆T ,`=0|`′=0 = q

S(2,t)
`=0 ( C

(0)
S,0 → C

(0)
T,0, C

(1)
S,0 → C

(1)
T,0, δ

(1)
S,0 → δ

(1)
T,0 ) (3.13)

and

q
T (1,t)
∆T ,`=0|`′=0 = q

T (1,t)
∆S ,`=0|`′=0(C

(0)
S,0 → C

(0)
T,0) (3.14)

Now using the above in (2.39), (2.40), (2.41) and (2.42) to get the solutions of

C
(0)
S,0, C

(0)
T,0, C

(1)
S,0, C

(1)
T,0, δ

(1)
S,0 and δ

(1)
T,0. These solutions are listed at the end of this subsec-

tion. But let us first use them to obtain the crossed channel terms with ` = 2. It is only

the spin 0 operators that will contribute to the q
i(t)
`=2. They are given by,

cS∆S ,0q
S(2,t)
∆S ,`=2|0=

5

32
C

(0)
S,0(δ

(1)
S,0−2δ

(1)
φ )2ε2 and cT∆T ,0q

T (2,t)
∆T ,`=2|0=

5

32
C

(0)
T,0(δ

(1)
T,0−2δ

(1)
φ )2ε2 .

cS∆S ,0q
S(1,t)
∆S ,`=2|0=−21

64
C

(0)
S,0(δ

(1)
S,0−2δ

(1)
φ )2ε2 and cT∆T ,0q

T (1,t)
∆T ,`=2|0=−21

64
C

(0)
T,0(δ

(1)
T,0−2δ

(1)
φ )2ε2 .

(3.15)

This allows us to solve for (2.39) and (2.40) for ` = 2 at the O(ε2) order. Thus we get δ
(2)
φ .

With this information we go back to solving (2.39), (2.40), (2.41) and (2.42) for ` = 0 at

the order of O(ε2). Then we return to ` = 2 and solve for ` = 2. That gives us ∆φ up to

the O(ε3) order. Skipping the details of O(ε3) let us just give the results. The dimension

of φ is obtained to be,

∆φ = 1− ε

2
+

(N + 2)

4 (N + 8)2
ε2 − (2 +N) (−272 +N (N − 56))

16 (8 +N)4
ε3 + O(ε4) . (3.16)
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For the singlet and symmetric traceless scalars we get,

CS,0 =
2

N
− 2(2 +N)

8N +N2
ε− 6 (28 + 20N + 3N2)

N (8 +N)3
ε2 + C

(3)
S,0ε

3 , (3.17)

CT,0 = 1− 2 ε

8 +N
− 6 (14 + 3N)

(8 +N)3
ε2 + C

(3)
T,0ε

3 , (3.18)

∆S,0 = 2− 6 ε

8 +N
+
ε2 (2 +N) (44 + 13N)

2 (8 +N)3
, (3.19)

∆T,0 = 2− 6 +N

8 +N
ε− (N − 22) (4 +N)

2 (8 +N)3
ε2 . (3.20)

The OPE coefficient of the stress tensor is given by,

CS,2=
1

3N
− 11ε

36N
+

(
514+145N+7N2

)
ε2

108N(8+N)2
+

(
41824+27968N+3462N2−193N3+N4

)
ε3

1296N(8+N)4
+O(ε4).

(3.21)

This is how far one can go with ` = 0 and ` = 2. Obtaining the anomalous dimensions

and OPE coefficients to next order of ε becomes difficult since, as we discuss below, an

infinite number of operators start contributing in both the channels at the next order.

However for the terms q
i,(1,s)
∆,`=0 and q

i,(1,t)
∆,`=0,`′ at the O(ε3), only one operator contributes in

each channel, even though for the analogous terms q
i,(2,s)
∆,`=0 and q

i,(2,t)
∆,`=0,`′ an infinite number

of terms contribute at O(ε3). This means even though we would not be able to compute the

O(ε3) ` = 0 anomalous dimensions, δ
(3)
S,0 and δ

(3)
T,0, if we knew these quantites, we would be

able to compute the O(ε3) OPE coefficients C
(3)
S,0 and C

(3)
T,0. Borrowing the O(ε3) anomalous

dimensions from [88–91],

δ
(3)
S,0 = −

(2 +N)
(
3N3 + 96(8 +N)(22 + 5N)ζ(3)− 5312− 2672N − 452N2

)
8(8 +N)5

,

δ
(3)
T,0 =

10624 + 4192N + 56N2 − 134N3 − 5N4 − 192(8 +N)(22 + 5N)ζ(3)

8(8 +N)5
, (3.22)

we can solve (2.39) and (2.41) for ` = 0 at O(ε3) order, to get,

C
(3)
S,0=

(2+N)
(
−4256−1216N−46N2+19N3+(8+N)(1504+N(344+N(14+N)))ζ(3)

)
2N(8+N)5

,

C
(3)
T,0=

27N3+N4+2(8+N)(752+N(204+7N))ζ(3)−4256−1728N−110N2

2(8+N)5
. (3.23)

3.1 ε-expansion for higher spin exchange

We now proceed to study the higher spin operators using the constraint equations. We use

the constraint equations (2.39)–(2.44) to find the OPE coefficient and anomalous dimension

for the spin ` singlet, symmetric traceless and antisymmetric operator exchange in the s-

channel. The higher spin conformal dimension are of the order ∆ = 2 ∆φ + `+ O(ε2). Let

us denote their dimensions and OPE coefficients as,

∆i,` = 2− ε+ `+ δ
(2)
i,` ε

2 + δ
(3)
i,` ε

3 + O(ε4)

Ci,` = C
(0)
i,` + C

(1)
i,` ε+ C

(2)
i,` ε

2 + +C
(3)
i,` ε

3 +O(ε4) (3.24)
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where the subscript i stands for singlet(S), symmetric traceless (T ) and antisymmetric

(A) exchange respectively. Here we use the fact that the singlet and symmetric traceless

operators exist for even spins only, and the antisymmetric ones for odd spins. Even for the

general ` cases, we find only the spin 0 singlet and symmetric traceless scalars contributing

to the t and u channels, under the ε-expansion. The higher spin operators do not contribute

to the crossed channels upto O(ε3). However, they will contribute to the O(ε4) order. This

is discussed at the end of this section.

To find the unknowns we solve (2.39)–(2.44), order by order. The steps are exactly

similar as chalked out for spin 2. So we skip the details and give the solutions directly.

The conformal dimensions in the three sectors are given by,

∆S,` = 2−ε+`+ε2
(N+2)

2(N+8)2

(
1− 6

`(`+1)

)
+ε3

(2+N)

8`2(`+1)2(8+N)4

[
8N(`−1)`(7`(`+3)+54)−N2

(
(`(`+2)−39)`2+28

)
−16(N+8)2`(`+1)H`−1−448(N+4)+16`(17`(`(`+2)+3)−126)

]
+O(ε4)

∆T,` = 2−ε+`+ε2
(N+2)

2(N+8)2

(
1− 2(6+N)

(N+2)`(`+1)

)
− ε

3`−2(`+1)−2

8(8+N)4

×
[
4(8+N)(112+N(30+N))+48(6+N)(14+3N)`−(4+N)(408+N(122+7N))`2−272

+2(2+N)((N−56)N)`3+(2+N)((N−56)N−272)`4+64(4+N)(8+N)`(1+`)H`−1

]
+O(ε4)

∆A,` = 2−ε+`+ε2
(N+2)

2(N+8)2

(
1− 2

`(`+1)

)
+ε3

(2+N)

8`2(`+1)2(8+N)4

[
16(`−1)(32+`(74+17`2+51`))

+8N(`−1)(12+`(30+21`+7`2))−N2(4+`2(−7+`2+2`))−32`(`+1)(8+N)H`−1

]
+O(ε4), (3.25)

where H` is a harmonic number of order `.

It should be noted that for ` = 1 the anomalous dimension ∆A,` vanishes as it is the

conserved current. Also for ` = 2 we have vanishing anomalous dimension for singlet rep-

resentation which is the conserved stress-tensor. However, for ` = 2 symmetric traceless

operators acquire an anomalous dimension. We can compute the higher spin OPE coeffi-

cients for any given spin ` upto O(ε3). The explicit expressions for individual N and ` up

to the O(ε2) are given below. Their O(ε3) part have been obtained for individual `-s, and

can be automated for any value of ` — a general formula can be obtained using a different

method [100]. First few have been listed here.

CS,`
Cfree
S,`

=1 +ε2
[

(2+N)
(
6+2

(
−3−2`+2`2+`3

)
H`−

(
−6−5`+2`2+`3

)
H2`

)
2(8+N)2`(1+`)2

]
+ c

(3)
S,`ε

3 (3.26)

CT,`
Cfree
T,`

=1+ε2
[

(2(6+N)+2(1+`)(−6−N+(2+N)`(1+`))H`−(1+`)(−2(6+N)+(2+N)`(1+`))H2`

2(8+N)2`(1+`)2

]
+ c

(3)
T,`ε

3 (3.27)

CA,`
Cfree
A,`

=1 +ε2
[

(2+N)
(
2+2

(
−1+2`2+`3

)
H`+

(
2+`−2`2−`3

)
H2`

)
2(8+N)2`(1+`)2

]
+ c

(3)
T,`ε

3 (3.28)
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The O(ε3) terms c
(3)
i,` can be computed for any given spin. They also obey a general `

formula. These are given in appendix D .

The anomalous dimension corrections are in good agreement with the known re-

sults [88]. The OPE ccoefficient corrections are new, except for ` = 1 and 2, which

correspond to cJ and cT , which were calculated till O(ε2) [97], and agree with our results.

In appendix B we give an alternative computation of cT from symmetry arguments that

agrees with our result (5.3), up to the O(ε3) order.

3.2 Simplification under ε-expansion

While evaluating the equations (2.39)–(2.44), we could get away with just one operator in

the s-channel and two operators (the singlet and traceless symmetric scalars) in the crossed

channels. This is because the other operators in the sum contribute from a subleading

(O(ε4)) order in ε. Let us see how the other operators are suppressed, in ε in all the channels.

3.2.1 s-channel

For a spin ` in the s-channel one can have operators with dimension ∆2m,` = ` + 2 +

2m + δmε + O(ε2). Such operators have the form O2m,` ∼ φi∂
aφ∂bφ∂cφ, where among

a + b + c = 2m + ` derivatives, 2m derivatives are contracted and ` derivatives carry

indices. For them, the q
(2,s)
∆,` is given by,

c∆,`q
i(2,s)
∆,` =

C2m,`ε
2(−1)2m+`2−2+4m+3` m(m+`)(1+2m+2`)(δm+1)2Γ2(m)Γ(`)Γ2

(
1
2 +m+`

)
πΓ4(1+m+`)

+O
(
ε3
)
. (3.29)

Here C2m,` is the OPE coefficient of the operator. Since the operator is made of four φ-s,

it does not exist in the free theory, and in the interacting theory the generic three point

function goes as 〈φiφjO2m,`〉 ∼ ε. Since the OPE coefficient is the square of the three point

function, we have C2m,` ∼ ε2 and the whole expression above contributes at O(ε4). Now,

there can be other operators too, with higher number of φ-s. But they contribute at a

more subleading order because their OPE coefficients are even further suppressed in ε.

3.2.2 t-channel

In the crossed channels the simplifications happen due to cancellation of residues of various

poles among one another, under ε expansion — the discussion is similar to the one in [65].

The cancellations are such that all the operators in the crossed channels start contributing

from O(ε4). The only operators that can contribute at a more leading order are the

lowest dimension scalars. Even for these operators there are only two poles whose residues

contribute at a leading order, and all other residues cancel among one another to start

from O(ε4) or more.

For `′ = 0 the expression (2.25) or (A.9) can have poles at (after substituting s = ∆φ),

• I. ν = (∆− h)

• II. ν = (2∆φ − h+ 2n)

• III. ν = (h+ 2n) .
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Here n is a positive integer. For the lowest dimension operators, i.e. those with dimension

∆ = 2 + δ
(1)
0 ε+O(ε2), we have the following residues cancelling each other,

Resν=h+2n−2 +Resν=2∆φ−h+2n = O(ε4) . (3.30)

So only the poles I and II (for n1 = 0) contribute to our computations.

Heavier scalars having dimensions of the form ∆2m,0 = 2 + 2m+ δmε+O(ε) contribute

only from O(ε4). Tis is due to the following cancellations of residues:

Resν=2∆φ−h = O(ε5)

Resν=∆−h +Resν=h−2∆φ+2s+2m−2 +Resν=2∆φ−h+2m = O(ε4)

Resν=h−2∆φ+2s+2n−2 +Resν=2∆φ−h+n = O(ε4) with n 6= m. (3.31)

For spin `′ > 0 we have the following poles in the crossed channels:

• I. ν = (∆− h)

• II. ν = (h+ `′ + 2n)

• III. ν = (2∆φ + `′ − h+ 2n)

• IV. ν = (h− 1), (h− 2), · · · , (h− 2 + `′)

Here we observe two different cases:

Lowest dimension spin `′. These are operators of the form ∆`′ = 2−ε+`′+O(ε2), whose

dimensions we computed in the paper . We observe the following cancellations for them,

Resν=∆−h +Resν=h−2+`′ +Resν=2∆φ+`′−h = O(ε4)

Resν=h+`′+2n +Resν=2∆φ−h+`′+2n+2 = O(ε4) where n = 0, 1, 2, · · ·
Resν=h−1 ∼ Resν=h−2 ∼ · · ·Resν=h+`′−3 = O(ε4) . (3.32)

Higher dimensional spin `′ operators. These are the operators O2m,`′ we discussed

in 3.2.1 having the dimensions ∆2m,` = `+ 2 + 2m+ δmε+O(ε2) . Their OPE coefficients

go like C2m,`′ ∼ O(ε2) or higher. Accounting for this suppression we have the following

cancellations,

Resν=h−2+`′ +Resν=2∆φ+`′−h = O(ε4)

Resν=∆−h +Resν=h+`′+2m−2 +Resν=2∆φ−h+`′+2m = O(ε4)

Resν=h+`′+2n +Resν=2∆φ−h+`′+2n+2 = O(ε4) where n 6= m− 1

Resν=h−1 ∼ Resν=h−2 ∼ · · ·Resν=h+`′−3 = O(ε4) . (3.33)

Thus the crossed channels get contributions from only a finite number of operators. We

refer the readers to appendix F of [65] for a more detailed discussion of these simplifcations.
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4 Large N critical O(N) model

In this section we focus on the constraint equations to fix the OPE coefficients and anoma-

lous dimensions of operators appearing in the large N expansion of the φ4 theory in d

(≡ 2h)dimension. Here we start with the conserved current which suggests that we will use

∆`=1 = d−1 as the input. Let us write the dimension of φ as ∆φ = h−1+ 1
N δ

(1)
φ +O(1/N2).

It starts with h − 1 because the dimension of the fundamental scalar in free theory

is (d − 2)/2 = h − 1. We write the spin one conserved current OPE coefficient as

C2h−1,1 = C
(0)
A,1 + 1

NC
(1)
A,1 +O(1/N2). In the equations (2.43) and (2.44), we have,

cA2h−1,1q
A(2,s)
2h−1,`=1 = − 1

N

2−1+2hC
(0)
A,1δ

(1)
φ Γ

(
1
2 + h

)
√
πΓ(h− 1)Γ[h]2

+ O(1/N2)

cS∆S ,0
q
S(2,t)
∆S ,`=1|`′=0 = − 1

N

C
(1)
S,0(h− 2)2(−1 + h)Γ(2h)

2Γ3(h)Γ(1 + h)
+ O(1/N2) . (4.1)

In q
S,(2,t)
∆S ,`=1|`′ only `′ = 0 has contributed. Other operators contribute from O(1/N2) because

of similar reasons as we explained in section 3.2. The q
T (t)
`=1 also starts from O(1/N2). The

large N expansion of the derivative q
A(1,s)
`=1 is given by,

cA2h−1,1q
A(1,s)
2h−1,`=1 =

2−1+2hC
(0)
A,1Γ

(
1
2 + h

)
√
πΓ(h− 1)Γ2(h)

+ O(1/N) . (4.2)

The disconnected part for ` = 1 is given by,

q
(1,t)
∆=0,`=1|`′=0 = − Γ(2h)

2Γ2(h− 1)Γ2(h)
. (4.3)

Solving the constraints we get,

C
(0)
A,1 =

h− 1

2
, δ

(1)
φ =

2C
(1)
S,0 (h− 2)2

h (h− 1)
. (4.4)

We find C
(1)
S,0 in the next subsection. Using that result given in (4.12) we can fix δ

(1)
φ .

δ
(1)
φ =

4h−1 (h− 2) Γ(h− 1
2) sin(π h)

π3/2 Γ(1 + h)
(4.5)

This agrees with eq. 4.6 of [48].

4.1 Spin ` = 0 in the s-channel

We will first discuss the case of spin 0 operators exchange. Let us denote the anomalous

dimensions of the spin-0 singlet and symmetric traceless operators as,

∆S,0 = 2 +
1

N
δ

(1)
S,0 +O(1/N2)

∆T,0 = 2(h− 1) +
1

N
δ

(1)
T,0 +O(1/N2) (4.6)
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and their respective OPE coefficients as,

CS,0 = C
(0)
S,0 +

1

N
C

(1)
S,0 +O(1/N2)

CT,0 = C
(0)
T,0 +

1

N
C

(1)
T,0 +O(1/N2) . (4.7)

We have verified that it is essential to have ∆S,0 begin with 2, instead of 2h − 1 in order

to have consistency of the equations. This is consistent with the fact that the Lagrange

multiplier field is the shadow of φiφi.

We focus on the singlet and symmetric traceless equations (2.39)–(2.42) for ` = 0. In

the large N limit the q
S(s)
`=0 and q

T (s)
`=0 -channel has the following expansion,

cS∆S ,0
q
S(2,s)
∆S ,`=0 = − 1

N

C
(0)
S,0

(
δ

(1)
S,0 + 2δ

(1)
φ

)
Γ(3− h)

2 Γ(h− 1)
+ O(1/N2)

cT∆T ,0
q
T (2,s)
∆T ,`=0 =

1

N

22h−4C
(0)
T,0

(
δ

(1)
T,0 − 2δ

(1)
φ

)
Γ
(
h− 1

2

)
N
√
πΓ3(h− 1)

+ O(1/N2) (4.8)

The derivatives are given by,

cS∆S ,0q
S(1,s)
∆S ,`=0 =

CS,0Γ(3−h)

Γ(h−1)
+

(
C

(1)
S,0+C

(0)
S,0δ

(1)
S,0(H2−h+Hh−2)+C

(0)
S,0

(
δ

(1)
S,0+2δ

(1)
φ γE

))
Γ(3−h)

NΓ(h−1)
(4.9)

+O(1/N2)

cT∆T ,0q
T (1,s)
∆T ,`=0 =

22h−3C
(0)
T,0Γ

(
h− 1

2

)
√
πΓ(h−1)

+
1

N

Γ2
(
h− 3

2

)
πΓ2(h−1)Γ(2h−3)

(
42h−4

(
C

(1)
T,0(2h−3)+C

(0)
T,0(2h−3)δ

(1)
T,0

×
(

log 4−Hh−2+Hh− 5
2
−H2h−4

)
+C

(0)
T,0

(
δ

(1)
T,0+2(2h−3)δ

(1)
φ γE

))
Γ2

(
h− 3

2

))
+O

(
1

N2

)
.

The disconnected part is given by,

q
(1,t)
0,0|0 = −2Γ(2h− 2)

Γ4(h− 1)
+

4δ
(1)
φ (2Hh−2 −H2h−3 − γE) Γ(2h− 2)

NΓ4(h− 1)
. (4.10)

In the crossed (t or u) channel q
S,(t)
`=0 and q

T,(t)
`=0 only the `′ = 0 operators have the leading

contributions as discussed in section 3.2 . The crossed channel and the derivatives have the

following large N expansion,

cS∆S ,0q
S(2,t)

∆S ,`=0|`′=0 =
4h−2C

(0)
S,0(2h−2)Γ(h− 1

2
)

√
πΓ(h−1)2Γ(h)

+O(1/N)

cS∆S ,0q
S(1,t)

∆S ,`=0|`′=0 =
4h−2C

(1)
S,0(h−2)(6h−8−4(h−1)(2h−3)Hh−1+2(h−1)(−3+2h)H2h−4)Γ

(
h− 3

2

)
(−1+h)N

√
πΓ2(h−1)Γ(h)

+O(1/N). (4.11)

The O(1/N) term of q
′S(t)
`=0 is too ugly to write here. The crossed channel q

T (t)
`=0 and the

derivative start from O(1/N2). We use the above in the constraint equations (2.39)–(2.42)

to get the solutions for C
(0)
S,0, C

(0)
T,0, C

(1)
S,0, C

(1)
T,0 , δ

(1)
T,0. They are given by,

C
(0)
S,0 = 0, C

(0)
T,0 = 1, C

(1)
S,0 =

2Γ(2h− 2) sin(π h)

π (h− 2) Γ(h− 1)2
, C

(1)
T,0 =

22h−1 sin(πh)Γ
(
h− 1

2

)
π3/2(h− 1)Γ(h)

δ
(1)
T,0 = −

4h sin(πh)Γ
(
h− 1

2

)
π3/2Γ(h+ 1)

. (4.12)
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The anomalous dimension of spin zero symmetric operators match with known results [48].

An important point is that using the constraint equations we could not fix the anomalous

dimension of the singlet as it requires the solution at O(1/N2). At this order the higher

spin operators start contributing to the t-channel. This is a similar problem to the one

we faced in ε-expansion, as dicussed in section 3.2, that prevented us from going beyond a

certain order in ε.

4.2 Higher spin in the s-channel

Now we will use the spin zero results obtained above to determine the anomalous dimensions

and OPE coefficients of operators with spin `. Let us denote the higher spin singlet, sym-

metric traceless and antisymmetric operators and the corresponding OPE coefficients as,

∆i,` = 2h− 2 + `+
1

N
δ

(1)
i,` +O(1/N2)

C∆i,` ≡ Ci,` = C
(0)
i,` +

1

N
C

(1)
i,` +O(1/N2) (4.13)

where the subscipt i is the shorthand S, T,A for singlet, symmetric traceless and antisym-

metric exchange respectively. Now we use the constraint equations (2.39)–(2.44) to extract

the singlet, symmetric traceless and antisymmetric anomalous dimensions and OPE

coefficients. The q
i(s)
` , q

i(t)
` and their derivatives have the following large N expansion,

ci∆i,`
q
i(2,s)
∆i,`

= − 1

N

2−`−1C
(0)
i,` (2`+2h−3)(2δ

(1)
φ −δ

(1)
i,` )Γ(2`+2h−3)2

Γ(`+h−1)4Γ(`+2h−3)
+O(1/N2)

cS∆S ,`
q
S(2,t)
∆S ,`|`′=0 =

1

N

(−1)`2`+4h−5(h−2)Γ(h− 1
2)Γ(`+h− 1

2)sin(hπ)

π2(`+h−2)Γ(h−1)3Γ(1+`)Γ(`+h)
+O(1/N2). (4.14)

The crossed channel q
T (t)
` and its derivative start at O(1/N2). The derivative of q

i(s)
∆i,`

is

given by,

ci∆i,`q
i(1,s)
∆i,`

=
(−1)`2−8+4h+3`C

(0)
i,` (2h+2`−3)Γ2

(
h+`− 3

2

)
πΓ2(h+`−1)Γ(2h+`−3)

+O(1/N) (4.15)

cS∆i,`q
S(1,t)
∆i,`|`′=0=− 1

N

21−`C
(1)
S,0(Hh+`−2+Hh+`−1−H2h+2`−3)Γ(h+`−2)Γ(2(−1+h+`))

`!Γ2(h−2)Γ2(h+`−1)Γ(h+`)
+O(1/N2).

The disconnected piece for spin ` has the following large N expansion,

q
(1,t)
∆=0,`|`′=0=− 21−`Γ(−2+2h+2`)

`!Γ2(h−1)Γ2(h+`−1)
+

1

N

22−`δ
(1)
φ Γ(2h−2+2`)(Hh−2+Hh−2+`−H2h−3+2`−γE)

`!Γ2(h−1)Γ2(h+`−1)
.

(4.16)

Now we solve the constraint equations (2.39)–(2.44) to compute the anomalous dimension

and OPE coefficient of spin ` operators. The solutions are given by,

∆S,`=2h−2+`+O(1/N) (4.17)

∆T/A,`=2h−2+`+
1

N

2δ
(1)
φ ((`−1)(2h+`−2))

(h+`−2)(h+`−1)
+O(1/N2) (4.18)

CS,`=
1

N

√
π25−2h−2`Γ(h+`−1)Γ(2h+`−3)

Γ(h−1)2Γ(`+1)Γ
(
h+`− 3

2

) +O(1/N2) (4.19)
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CT/A,`=C
(0)

T/A,`+
C

(1)

T/A,`

N
+O(1/N2) (4.20)

C
(0)

T/A,`=

√
π42−h−`Γ(h+`−1)Γ(2h+`−3)

Γ(h−1)2Γ(`+1)Γ
(
h+`− 3

2

)
C

(1)

T/A=
23−2`(h−2)sin(hπ)Γ

(
h− 1

2

)
Γ(h+`−1)Γ(2h+`−3)

πh(h−1)Γ3(h−1)Γ(1+`)Γ
(
h+`− 3

2

)
(h+`−2)(h+`−1)

[
h(h−1)Hh+`−2 (4.21)

+
2h4+(`−2)(`−1)2(2`−3)+h3(8`−13)+h2(27+`(6`−35))+h(`(46+`(8`−33))−22)

(h+`−2)(h+`−1)(2h+2`−3)

−Hh−2(h+`−2)(h+`−1)+(`−1)(2h+`−2)Hh+`−3+(`−1)(2h+`−2)
(
H2h+`−4−H2(h+`−2)

)]
.

Note that the anomalous dimension vanishes for ` = 2 singlet and ` = 1 antisymmetric

operators as it should, corresponding to the conservation of the stress-tensor and current.

These results are in agreement with known results [48, 86, 113]. In appendix C we show

how to extract the OPE coefficients and anomlaous dimension corrections from the exact

form of the correlator at 1/N .

5 Comparison with known results

5.1 Padé approximations

We can construct the Padé approximant for the O(N) models

Padé[m,n](d) =
A0 + A1 d+ A2 d

2 + · · ·+Am d
m

1 + B1 d+ B2 d2 + · · ·+Bn dn
(5.1)

for any given physical quantity known in the d = 4 − ε and d = 2 + ε expansions upto a

given order — we will closely follow the discussion in [98]. The coefficients in (5.1) are fixed

by demanding that the expansion (5.1) agrees with the known perturbative expansions in

d = 4− ε and d = 2 + ε at each order.

We can use the following d = 4 − ε expansion results for cJ/cJ free and cT /cT free to

order ε3 given in section 3 as well as the d = 2 + ε results given in [98],6

cJ/cJ free = 1− 3 (N + 2)

4 (N + 8)2
ε2 − (N + 2)(N2 + 132N + 632)

8 (N + 8)4
ε3 + O(ε4) in d = 4− ε

=
N − 2

N
+

ε

N
+ O(ε2) in d = 2 + ε (5.2)

cT /cT free = 1− 5 (N + 2)

12 (N + 8)2
ε2− (N + 2)(7N2 + 382N + 1708)

36 (N + 8)4
ε3+O(ε4) in d=4−ε

= 1− 1

N
+

3 (N − 1)

4N (N − 2)
ε2 + O(ε3) in d = 2 + ε (5.3)

We construct the approximant Padé[3,2] and Padé[4,2] for cJ/cJ free and cT /cT free respec-

tively. These approximants are well-behaved and in good agreement with large N results

in 2 < d < 4. The results of Padé approximant for cJ/cJ free and cT /cT free for several values

of N are listed in the tables 1 and 2.

6These are given by cJ/c
free
J =

Cfree
A,1

CA,1
and cT /c

free
T =

4∆2
φC

free
S,2

(d−2)2CS,2
.
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N ε3 results Padé[4,2] Large N results Numerical results

1 0.957933 0.778495 0.549684 0.946600

2 0.955556 0.94661 0.774842 0.94365

3 0.955111 0.933861 0.849895 0.94418

4 0.955729 0.938871 0.887421 0.94581

5 0.956919 0.944714 0.909937 0.9520

6 0.958397 0.949952 0.924947 0.9547

10 0.964792 0.964425 0.954968 0.96394

20 0.97623 0.979761 0.977484 0.97936

Table 1. The values of ε3, Padé approximants Padé[4,2], large N and numerical bootstrap re-

sults [95] for cT /cT free in d = 3 for the O(N) model.

N ε3 results Padé[3,2] Large N results Numerical results

2 0.925 0.863795 0.639747 0.9050(16)

3 0.92474 0.879552 0.759831 0.9065(27)

4 0.926215 0.893426 0.819873 -

5 0.928587 0.905072 0.855899 -

6 0.931383 0.914751 0.879916 -

10 0.942901 0.940299 0.927949 -

20 0.962525 0.96654 0.963975 0.9674(8)

Table 2. The values of ε3, Padé approximants Padé[3,2], large N and numerical bootstrap re-

sults [96] for cJ/cJ free in d = 3 for the O(N) model. (Only numerical results which were precisely

computed in [96] have been presented.) For N = 2 quantum Monte Carlo [93] results quote the

value 0.917 or 0.904 [94] depending on the extrapolation scheme used.

5.2 Large spin analysis

In [65] it is shown how the s, t and u channels simplify when we consider large spin in

the s-channel. Let us assume a weakly coupled theory, which means a CFT where we

have a certain suitable small parameter g, in terms of which the anomalous dimension can

be expanded. The large spin analysis predicts the behavior of large spin operators as an

expansion in a small parameter, at large `, which matches with the prediction of [51]. In

this section we will briefly review that analysis for O(N) models with large N . So we will

have g = 1/N , and demonstrate how it can correctly reproduce known results for large

spin dimensions in 4 < d < 6 dimension.

We will start with the correlator 〈φiφjφkφl〉. The external fields have the dimension,

∆ = ∆φ =
d− 2

2
+ γφ . (5.4)
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In the s-channel we have the large spin operators having dimensions of the form

∆i,` = d− 2 + `+ γi,` . (5.5)

Both γφ and γi` allow expansions in N−1 as γφ = δ
(1)
φ /N + O(N−2) and γi,` = δ

(1)
i,` /N +

O(N−2). From (2.23), we can use `� 1 to obtain,

c∆,`q
i,(2,s)
∆,` =

Pi2
2`+d− 5

2 e``−`(γi,` − 2γφ)

πΓ
(
d−2

2

)2 . (5.6)

In the above equation, PS = 1/N , PT = PA = 1/2.

To evaluate the t-channel, we will use the following approximation of Q2s+`
`,0 [65],

Q2s+`
`,0 (t)

`�s,t
=

2``−s−tΓ(s+ `)2Γ(−1 + s− t+ `)

Γ(−t)2Γ(−1 + 2s+ 2`)
. (5.7)

We use (2.25) to evaluate q
(t)
∆,`|`′ . Both t and ν contours are determined from the power of

` in the integrand. With the above approximation in the integrand, if we do the t integral

first, we will have poles at t = λ2−∆φ and t = λ̄2−∆φ. All other poles in t have residues

suppressed in ` or lie out of the contour. Similarly in the ν integral we will only have poles

at ν = ±(∆i − h) (signs depend on the pole of t considered before). Other ν poles have

residues suppressed in `, or are out of the contour. Writing ∆i = τi − `′, we arrive at,

c∆i,`q
(2,t)
∆i,`|`′=−

C∆i,`′Nτi+`′,`′2
− 1

2 +`−3`′+2∆φ−τie``−`−τiΓ
(
`′+ τi

2

)
Γ
(
`′+∆φ+ τi

2 −h
)2

Γ(`′+τi−1)
√
πΓ(1−h+`′+τi)Γ

(
2`′+τi−1

2

) .

(5.8)

The above formula gives the contributions from different O(N) sectors in the t-channel.

Since this is the t channel we have a sum over τi and `′. However one can see from the

large ` dependence, that only operators with small twists dominate the sum.

Here we assume the presence of a singlet scalar of dimension

∆S = τS = 2 +O(g) = 2 +
1

N
δ

(1)
S,0 +O(1/N2) (5.9)

in the spectrum. This operator is the lagrange multiplier field present in the large N critical

theory. It becomes significant in 4 < d < 6 dimensions because it is the leading operator

at large ` in the t-channel. Then the sum in the t-channel goes away and we use (5.9) to

expand (5.8). Finally using the contraint equations (2.39). (2.41) and (2.43), we get,

γi,` − 2γφ =
α0(N−1) + α1(N−1) log `+ α2(N−1)(log `)2 + · · ·

`2
. (5.10)

Here αp(N
−1) are given by,

αp(N
−1) =

C
(1)
S,0

N

2∑
q=0

(−1)p+q+1

2p!

(
δ

(1)
0

)p+q
(δ

(1)
0 − 2δ

(1)
φ )q

(
2

q

)
(d− 4)2−q

(
1

N

)p+q
(5.11)

+O

((
1

N

)p−2

(d− 4)3,

(
1

N

)p−1

(d− 4)2,

(
1

N

)p
(d− 4),

(
1

N

)p+1
)
.
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In general dimension the second line of (5.11) is not significant, and we can just take q = 0.

For large N critical model we have,

C
(1)
S,0 =

2Γ(2h− 2) sin(π h)

π (h− 2) Γ(h− 1)2
. (5.12)

Plugging this in, we get the correct 1/`2 dependence for the large spin currents in all the

sectors as given in [48] for p = 0,

α0 =
2hΓ(2h− 1) sin(π h)

Nπ (h− 2) Γ(h+ 1)
. (5.13)

One can also compute the leading log ` term, given by,

α1 =
1

N2

2−1+4h (h− 2)(2h− 1)Γ2
(
h− 1

2

)
sin2(hπ)

hπ3Γ2(h− 1)
. (5.14)

This matches with the expected log term at O(1/N2) [52].

6 Cubic anisotropy

The φ4 interaction of (3.1) can be extended to the case of cubic anisotropy, whose lagrangian

can be written as,

S =

∫
ddx

[
(∂φi)

2

2
+ gijklφiφjφkφl

]
, (6.1)

where

gijkl =
g1

3
(δijδkl + δilδjk + δikδjl) + g2δijkl . (6.2)

Here we have introduced the generalized δijkl-function. It is defined by

δijkl =

{
1, when i = j = k = l,

0, otherwise .
(6.3)

Also δijklδkl = δij . The interaction term then looks like g1(φiφi)
2 + g2

∑
i φ

4
i . This action

breaks the O(N) symmetry. The symmetries respected by this system are: φi ↔ −φi and

φi ↔ φj .

We will now study our bootstrap conditions to understand what happens in the cubic

anisotropy case without referring to the lagrangian. Since O(N) symmety is absent, we can-

not use the form (2.3). To get the operator content let us look at the two point OPE φi×φj .

φi × φj ⊃ {1, S, T(ij), Vij , A[ij]} . (6.4)

Here schematically S ≡ φi∂`φi denotes singlet operators, Tij ≡ φ(i∂
`φj) − δijklφk∂`φl is a

symmetric operator with no diagonal element, Vij = δijklφk∂
`φl −

δij
N φk∂

`φk is a traceless

diagonal operator (i.e. 0 when i 6= j) and A[ij] = φ[i∂
`φj] denotes the antisymmetric

operator. The traceless symmetric operator of the O(N) case has now broken up into the

two pieces T and V which are different multiplets that do not mix with each other. In
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free theory, the two-point function of one operator with another in a different multiplet is

0, and we will take the same operator basis for the interacting theory.

Now let us take 〈φi1φi2φi3φi4〉 = (x2
12x

2
34)−∆φA(u, v). We will use the above OPE to

write the conformal blocks and the associated irreducible tensor structures. We have,

A(u,v)=
∑
S+

C∆,`(δi1i2δi3i4)g∆,`(u,v)

+
∑
T+

C∆,`(δi1i3δi2i4 +δi1i4δi2i3−2δi1i2,i3i4)g∆,`(u,v)+
∑
V +

C∆,`

(
δi1,i2,i3,i4−

1

N
δi1i2δi3i4

)
g∆,`(u,v)

+
∑
A−

C∆,`(δi1i4δi2i3−δi1i3δi2i4)g∆,`(u,v) (6.5)

where + and − are to indicate even and odd spins respectively and the C∆,` appearing in

a sector corresponds to operators in that sector.

The corresponding Witten diagram expansion can be written as,∑
∆,`

c∆,`W
(s)
∆,`(u,v)=

∫
dsdt

(2πi)2
usvtΓ(−t)2Γ(s+t)2Γ(∆φ−s)2

(
(δi1i2δi3i4)MS,(s)(s,t)

+(δi1i3δi2i4 +δi1i4δi2i3−2δi1i2,i3i4)MT,(s)(s,t)+

(
δi1,i2,i3,i4−

1

N
δi1i2δi3i4

)
MV,(s)

+(δi1i4δi2i3−δi1i3δi2i4)MA,(s)(s,t)

)
. (6.6)

As before, the M i,(s) are given by (2.10). The t channel is obtained by changing s→ t+∆φ,

t→ s−∆φ and 2↔ 4. The u channel is obtained by changing s→ ∆φ− s− t, and 2↔ 3.

The rest of the analysis is similar to the O(N) case. We sum over all the channels and

rearrange them according to the tensor structures appearing in the s-channel (6.6). Now

we expand the Mellin amplitudes in terms of the continuous Hahn polynomials as in (2.20).

Then corresponding to δi1i2δi3i4 we get the equations,∑
∆

[
2
∑
`′

cV∆,`′q
V,(1,t)
∆,`|`′ (N−1)+N

[
2
∑
`′

cS∆,`′q
S,(1,t)
∆,`|`′ +2q

(1,t)
∆=0,`|`′=0+2

∑
`′

cT∆,`′q
T,(1,t)
∆,`|`′ (N−1)

+cS∆,`q
S,(1,s)
∆,` N

]]
=0∑

∆

[
2
∑
`′

cV∆,`′q
V,(2,t)
∆,`|`′ (N−1)+N

[
2
∑
`′

cS∆,`′q
S,(2,t)
∆,`|`′ +2

∑
`′

cT∆,`′q
T,(2,t)
∆,`|`′ (N−1)

+cS∆,`q
S,(2,s)
∆,` N

]]
=0. (6.7)

Corresponding to δi1i3δi2i4 + δi1i4δi2i3 − 2δi1i2i3i4 we get the equations,∑
∆

[
cT∆,`q

T,(1,s)
∆,` +

∑
`′

cS∆,`′q
S,(1,t)
∆,`|`′ +

∑
`′

cT∆,`′q
T,(1,t)
∆,`|`′ + q

(1,t)
∆=0,`|`′=0 −

1

N

∑
`′

cV∆,`′q
V,(1,t)
∆,`|`′

]
= 0

∑
∆

[
cT∆,`q

T,(2,s)
∆,` +

∑
`′

cS∆,`′q
S,(2,t)
∆,`|`′ +

∑
`′

cT∆,`′q
T,(2,t)
∆,`|`′ −

1

N

∑
`′

cV∆,`′q
V,(2,t)
∆,`|`′

]
= 0

(6.8)
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The part δi1i2i3i4 − δi1i2δi3i4/N gives,

∑
∆

[
cV∆,`q

V,(1,s)
∆,` +2

∑
`′

[∑
`′

cS∆,`′q
S,(1,t)

∆,`|`′ −
∑
`′

cT∆,`′q
T,(1,t)

∆,`|`′ +q
(1,t)

∆=0,`|`′=0+
∑
`′

cV∆,`′q
V,(1,t)

∆,`|`′

(
1− 1

N

)]]
=0

∑
∆

[
cV∆,`q

V,(2,s)
∆,` +2

[∑
`′

cS∆,`′q
S,(2,t)

∆,`|`′ −
∑
`′

cT∆,`′q
T,(2,t)

∆,`|`′ +
∑
`′

cV∆,`′q
V,(2,t)

∆,`|`′

(
1− 1

N

)]]
=0.

(6.9)

Finally we have the antisymmetric δi1i4δi2i3 − δi1i3δi2i4 sector equations, which are

∑
∆

[
cA∆,`q

A,(1,s)
∆,` +

∑
`′

cS∆,`′q
S,(1,t)
∆,`|`′ −

∑
`′

cT∆,`′q
T,(1,t)
∆,`|`′ + q

(1,t)
∆=0,`|`′=0 −

1

N

∑
`′

cV∆,`′q
V,(1,t)
∆,`|`′

]
= 0

∑
∆

[
cA∆,`q

A,(2,s)
∆,` +

∑
`′

cS∆,`′q
S,(2,t)
∆,`|`′ −

∑
`′

cT∆,`′q
T,(2,t)
∆,`|`′ −

1

N

∑
`′

cV∆,`′q
V,(2,t)
∆,`|`′

]
= 0

(6.10)

In writing the above equations we have used the relation (2.31).

6.1 Solutions

In this subsection we will solve the above equations to find the anomalous dimensions and

OPE coefficients of the operators in the spectrum. Once again, we will use the conservation

of stress tensor (i.e. ∆`=2 = 4− ε) as the input. This will give the dimension of φ. Let us

write it as,

∆φ = 1 + δ
(1)
φ ε+ δ

(2)
φ ε2 + δ

(3)
φ ε3 +O(ε4) (6.11)

To determine ∆φ we will have to solve the above equations simultaneously order by order

in ε. This will require the crossed channels too. For the same reason as described in 3.2.2

only the scalar operators of lowest dimension will contribute to the t-channel till the O(ε3)

order. So, in order to solve ∆φ till O(ε3) we also have to know the dimensions and OPE

coefficients of the ` = 0 operators and OPE coefficient of the spin 2 operator.,

∆i,0 = 2 + δ
(1)
i,0 ε+ δ

(2)
i,0 ε

2 +O(ε3) ,

Ci,0 = C
(0)
i,0 + C

(1)
i,0 ε+ C

(2)
i,0 ε

2 +O(ε3) ,

C2h,`=2 ≡ CS,2 = C
(0)
S,2 + C

(1)
S,2ε+ C

(2)
S,2ε

2 + C
(3)
S,2ε

3 +O(ε4) (6.12)

where i = S, T, V . There is no spin 0 antisymmetric operator. Now using this parametrisa-

tion we solve the equations (6.7) for ` = 2 and (6.7), (6.8) and (6.9) for ` = 0 simultaneously.

This gives,

∆φ = 1− ε

2
+

(N − 1)(2 +N)ε2

108N2
+

(N − 1)
(
1728N − 222N2 + 109N3 − 1696

)
ε3

11664N4
. (6.13)
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The spin 0 dimensions and OPE coefficients are given by,

∆S,0 = 2− 2 +N

3N
ε− (N − 1)(424 +N(−326 + 19N))

162N3
ε2 , (6.14)

CS,0 =
2

N
− 4(N − 1)

3N2
ε+

4
(
N − 1)(106− 89N +N2

)
81N4

ε2 , (6.15)

∆T,0 = 2 +
2− 3N

3N
ε+
−424 +N(530 +N(−127 + 3N))

162N3
ε2 , (6.16)

CT,0 = 1− 2

3N
ε+

2(N − 1)(19N − 106)

81N3
ε2 , (6.17)

∆V,0 = 2− 2(1 +N)

3N
ε+

424 +N(−538 +N(131 + 19N))

162N3
ε2 , (6.18)

CV,0 = 2− 2(−2 +N)

3N
ε− 2(N − 2)(N − 1)(106 + 17N)

81N3
ε2 . (6.19)

and the spin 2 OPE coefficient which is given by,

CS,2=
2

3N
− 11

18N
ε+

(−22+N(11+74N))

486N3
ε2+

18656+N(−37664+N(22206+N(−4019+902N)))

52488N5
ε3.

(6.20)

The quantities ∆φ and ∆S,0 are known in literature [87], and our results agree with them.

Now let us turn our attention to higher spin operators. Using the information obtained

above we can determine their anomalous dimensions and OPE coefficients order by order

in ε. Let us denote them as ∆i,` and Ci,`. Here i stands for S, T, V,A. Now we solve (6.7)–

(6.10) and use (6.13)–(6.19) order by order, to determine the above unknowns. For i =

S, T, V we have only even spins, and for i = A we have only odd spins. We obtain,

∆S,`=2−ε+`+ (N+2)(N−1)(N−2)(N+3)

54N2`(1+`)
ε2+

(N−1)

5832N4`2(1+`)2
((`−2)`(1+`)(3+`)×

×(1728N−1696)−6N2(`(`(37`(2+`)−491)−384)+36)+N3(`(`(109`(2+`)+373)

−168)−108) +216N2(N+2)`(1+`)(H`−1−3H`)
)
ε3 (6.21)

∆T,`=2−ε+`+ (12−18N+(−1+N)(2+N)`(1+`))

54N2`(1+`)
ε2+

1

5832N4`2(1+`)2

(
109N4`2(1+`)2

+1696(−2+`)`(1+`)(3+`)−32N(1+`)(−108+`(−636+107`(1+`)))+N3(540+`(2952

+`(3053−331`(2+`))))−6N2(540+`(2656+`(1899−325`(2+`))))+216N`(1+`)×
×
((

16−18N+7N2
)
H−1+`+3(2−3N)NH`

))
ε3 (6.22)

∆V,`=2−ε+`+
(
−2
(
`+`2−6

)
+N2

(
`+`2−6

)
+N

(
6+`+`2

))
54N2`(1+`)

ε2+
1

5832N4`2(1+`)2

×
(
1696(`−2)`(1+`)(3+`)−32N`(1+`)(107`(1+`)−324)+6N2(−108+`(1+`)(−112

+325`(1+`)))+N4(−108+`(−168+`(373+109`(2+`))))+N3(540−`(648+`(1843

+331`(2+`))))+216N2`(1+`)
((
N+N2−6

)
H`−1−3(−2+N)(1+N)H`

))
ε3 (6.23)

∆A,`=2−ε+`+ (−18(N−2)+(N−1)(2+N)`(1+`))

54N2`(1+`)
ε2+

1

5832N4`2(1+`)2

×
(
109N4`2(1+`)2+1696`(1+`)

(
−18+`+`2

)
−6N2(324+`(1+`)(3696−325`(1+`)))

−32N(1+`)(−54+`(−1440+107`(1+`)))+N3(540+`(2952+`(3053−331`(2+`))))

+216(−2+N)N`(1+`)((7N−4)H`−1−9NH`)
)
ε3 . (6.24)
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`=2 `=4 `=6 `=8 `=10

N=2 11
324

2039
64800

30893
873180

1666423
42456960

1133429981
26592073200

N=3 55
1458

2039
58320

30893
785862

1666423
38211264

1133429981
23932865880

N=10 11
300

2039
60000

30893
808500

1666423
39312000

1133429981
24622290000

Table 3. c
(2)
S,` as given in (6.5).

`=2 `=4 `=6 `=8 `=10

N=2 955
17496

33071
699840

3665024719
72613648800

45230019647
834534005760

16447155548067179
285712467504710400

N=3 40379
708588

6959771
141717600

30739672087
588170555280

1892198482723
33798627233280

686900153698555567
11571354933940771200

N=10 2291
45000

130753
3000000

1723185619
37352700000

317067803821
6439305600000

38269562772181723
734857169508000000

Table 4. c
(3)
S,` as given in (6.5).

`=2 `=4 `=6 `=8 `=10

N=2 11
324

2039
64800

30893
873180

1666423
42456960

1133429981
26592073200

N=3 187
5832

136421
4082400

57793
1496880

36326611
840647808

293100163357
6222545128800

N=10 187
8100

114437
3780000

170857
4677750

483771131
11675664000

130842828107
2880807930000

Table 5. c
(2)
T,` as in (6.5).

Note that the anomalous dimension of spin-1 current does not vanish. This is expected

since the rotational symmetry of O(N) is no longer present, implying Jµ is not conserved.

Now let us come to the OPE coefficients. We write them as,

Ci,`

C free
i,`

= 1 + c
(2)
i,` ε

2 + c
(3)
i,` ε

3 . (6.25)

Here we define the free field OPE coefficients by C free
S,` = C free

O(1),`/N , C free
T,` = C free

O(1),`/2,

C free
V,` = C free

O(1),` and C free
A,` = C free

O(1),`/2 . Here C free
O(1),` is the free field OPE coefficient for any

spin in the O(1) theory, given by,

C free
O(1),` =

2Γ (`+ h− 1)2 Γ (`+ 2h− 3)

`!Γ (h− 1)2 Γ (2h+ 2`− 3)
. (6.26)

The quantities c
(2)
i,` and c

(3)
i,` have been obtained in a closed form for general N and `.

However the expression is too big to present here. So we give their values for specific N -s

and `-s. The general form can be made available on request.
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`=2 `=4 `=6 `=8 `=10

N=2 955
17496

33071
699840

3665024719
72613648800

45230019647
834534005760

16447155548067179
285712467504710400

N=3 64489
1417176

1263227303
27776649600

11300769391
224064973440

320561250041821
5842334136038400

2292070375098731839349
39111179676719806656000

N=10 29837
1215000

420441947
11907000000

27216198529
648336150000

140366883740173
3005315913600000

506565599576907257701
10059459793395012000000

Table 6. c
(3)
T,` as in (6.5).

`=2 `=4 `=6 `=8 `=10

N=2 11
648

1217
45360

49807
1496880

1481069
38918880

526157011
12570798240

N=3 77
2916

4066
127575

54163
1428840

8997979
210161952

145754265827
3111272564400

N=10 539
16200

15619
472500

9898997
261954000

246069253
5837832000

24030761429
523783260000

Table 7. c
(2)
V,` as in (6.5).

`=2 `=4 `=6 `=8 `=10

N=2 223
8748

13146719
342921600

5729638637
124480540800

866670614587
16829769116160

97858846018004947
1755832982119856640

N=3 29213
708588

121937213
2777664960

53003131961
1069401009600

17350445830481
319502648064600

1138230092181377071783
19555589838359903328000

N=10 7624
151875

1024214479
23814000000

1660750757513
36306824400000

257502902121943
5259302848800000

94869301081115147749
1828992689708184000000

Table 8. c
(3)
V,` as in (6.5).

`=1 `=3 `=5 `=7 `=9

N=2 1
108

73
3240

4127
136080

696991
19459440

26499493
661620960

N=3 7
243

101
3645

212491
6123600

24712403
612972360

444787193
9924314400

N=10 7
300

709
27000

189809
5670000

14778019
378378000

3596205413
82702620000

Table 9. c
(2)
A,` as in (6.5).

`=1 `=3 `=5 `=7 `=9

N=2 163
11664

28807
874800

43789397
1028764800

1029950903453
21037211395200

261349538475643
4863803274570240

N = =3 43633
944784

21601949
566870400

18974539573
416649744000

4899887619317521
95424790888627200

550521620277178021
9849201631004736000

N=10 1759
90000

1483133
48600000

925929479
23814000000

121213773268411
2727045921600000

738499703203970219
15199385233032000000

Table 10. c
(3)
A,` as in (6.5).
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To the best of our knowledge, almost none of these results have been computed before.

So apart from ∆φ and ∆S,0 all results presented in this section are new. The new ones

also pass some consistency checks like giving free theory results at N = 1 and Ising model

results for N = 2 [87].

7 Discussion

We have analyzed the Mellin space analytic bootstrap techniques to conformal field theories

with O(N) symmetry. Consistency with the OPE imposes non trivial constraints on the

dimensions and the OPE coefficients of the operators appearing in the singlet, symmetric

traceless and antisymmetric representations of O(N). By considering the leading spurious

pole s = ∆φ, we looked at the ε-expansion and the large-N expansion and demonstrated

that the consistency conditions lead to known results as well as new results for OPE

coefficients. We also studied the case with cubic anisotropy and obtained new results. We

list below some future directions.

• It will be interesting to compare the new O(ε3) results we have for the OPE coefficients

with what arises from numerical boostrap. In [64, 65] we compared the Ising case

with the spin-4 OPE result in [99] and found impressive agreement.

• It will be desirable to develop and algorithm to compute systematically subleading

corrections. We have not used all the equations. There are spurious poles of the form

s = ∆φ + n and we just considered n = 0. With a judicious choice, it should be

possible to extract a lot more information from these equations. By exploiting these

equations it should be possible [100] to extract more information about subleading

terms as well as about other higher order operators in the spectrum for which some

information is known [101–103]. It should also be possible to consider CFTs in higher

dimensions as in [104–106].

• It will be important to develop numerical algorithms to solve these equations. As

pointed out in [65], it may be easier to consider expanding these equations around

some t = t0 rather than in terms of the continuous Hahn polynomials. We go from

one set to the other by taking an infinite linear combination. Hence, it is not apriori

guaranteed that convergence (as a sum over the spectrum) in one case will lead to

convergence in the other. It appears to us that expanding around a special point

in t may be more suited for numerics. While the issue about convergence as a sum

over the spectrum is solved in the conventional approach to numerics [107, 108], this

question still needs to be resolved in our approach.

• It will be interesting to understand whether this approach can be extended to log-

arithmic conformal field theories [109]. For N = 0,−2,−4, a logarithmic behavior

arises in the correlation function. It is desirable to extend our analysis to physical

systems exhibiting logarithmic behavior in appropriate limits.
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• To make contact with AdS/CFT it will be interesting to understand the large-N

systematics in more detail. Our progress in this paper was quite modest but that

was because we concentrated on the leading spurious pole. However, our methods

should be useful for future studies along similar lines and also for extending them to

supersymmetric theories [110–112].
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A Essential formulas

A.1 The normalization

When we expand the correlator 〈φφφφ〉 in terms of Witten diagrams, we write the constant

coefficients as c∆,`. These constants are related to the OPE coefficients C∆,` through a

normalization N∆,` which is given by,

c∆,`=C∆,`N∆,`=C∆,`
(−2)`(`+∆−1)Γ(1−h+∆)Γ2(`+∆−1)

Γ(∆−1)Γ4
(
`+∆

2

) Γ−1

(
`−∆+∆1+∆2

2

)
(A.1)

×Γ−1

(
∆+∆1+∆2−2h+`

2

)
Γ−1

(
`−∆+∆3+∆4

2

)
Γ−1

(
∆+∆3+∆4−2h+`

2

)
.

As explained in [65] this is obtained by computing the leading power law u(∆−`)/2(1− v)`

from the Witten diagram and comparing with the conformal blocks.

A.2 Mack polynomials

The Mack polynomials P
(s)
ν,` (s, t), for identical external scalars, are given by [66, 70, 72]

P
(s)
ν,` (s, t) =

∑̃Γ2(λ1)Γ2(λ̄1)(λ2 − s)k(λ̄2 − s)k(s+ t)β(s+ t)α(−t)m−α(−t)`−2k−m−β∏
i Γ(li)

,

where
∑̃
≡ `!

2`(h−1)`

[ `
2

]∑
k=0

`−2k∑
m=0

m∑
α=0

`−2k−m∑
β=0

(−1)`−k−α−βΓ(`−k+h−1)

Γ(h− 1)k!(`− 2k)!

(
`−2k

m

)(
m

α

)

×
(
`− 2k −m

β

)
. (A.2)
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The other notations are given by,

λ1=
h+ν+`

2
, λ̄1=

h−ν+`

2
, λ2=

h+ν−`
2

and λ̄2=
h−ν−`

2
, (A.3)

l1=λ2+`−k−m+α−β, l2=λ2+k+m−α+β, l3=λ̄2+k+m, l4=λ̄2+`−k−m. (A.4)

A.3 Continuous Hahn polynomials

We briefly summarize the key properties of the continuous Hahn polynomials. More details

can be found in [65]. It is given by,

Q2s+`
`,0 (t) =

2`(s)2
`

(2s+ `− 1)`
3F2

[−`, 2s+ `− 1, s+ t

s , s
; 1

]
. (A.5)

These polynomials have the orthogonality property [78],

1

2πi

∫ i∞

−i∞
dt Γ(s+ t)2Γ(−t)2Q2s+`

`,0 (t)Q2s+`′

`′,0 (t) = (−1)`κ`(s)δ`,`′ , (A.6)

where,

κ`(s) =
4``!

(2s+ `− 1)2
`

Γ4(`+ s)

(2s+ 2`− 1)Γ(2s+ `− 1)
. (A.7)

Further we have the identity,

Q2s+`
`,0 (t) = (−1)`Q2s+`

`,0 (−s− t) . (A.8)

Now one can use this identity (A.8) on the t-channel expression (2.25) and u-channel

expression (2.26), with which the two expressions become equal under the exchange t ↔
−s− t. Hence we get the equality (2.31).

A.4 t-channel integral

The most general form of q
(t)
∆,`|`′(s) in the t-channel for an exchange of operator with spin

`′, is given by,

q
(t)
∆,`|`′(s)=κ`(s)

−1
∑̀
q=0

∑̃∫
dνc∆,`′µ

(t)
∆,`′(ν)Γ2(λ1)Γ2(λ̄1)(∆φ−s)m−α(∆φ−s)`′−2k−m−β

× 1∏
iΓ(li)

2`((s)`)
2

(2s+`−1)`

× (−`)q(2s+`−1)q
((s)q)2 q!

Γ(k+q+s+α+λ2−∆φ)Γ(k+q+s+α+λ̄2−∆φ)

Γ(q+2s+2k+α+β+λ2+λ̄2−2∆φ)
Γ(k+s+β−∆φ+λ2)

×Γ(k+s+β−∆φ+λ̄2)3F2

[
−q,−α,1−2k−q−2s−α−β+2∆φ−λ2−λ̄2

1−k−q−s−α−λ2+∆φ,1−k−q−s−α−λ̄2+∆φ

;1

]
. (A.9)

This general form is derived in [65].
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Figure 1. Feynman diagrams with λijkl parameter. The first diagram on left is a two loop diagram.

The second and third on the right are three loop diagrams. The colour indices are indicated at each

vertex. The blobs denote a composite operator (T or J) insertion.

B Obtaining the cT from symmetry

The central charge cT which is given by cT =
d2∆2

φ

(d−1)2C2h,2
can be obtained using symmetries

of the problem and known large N results — the argument for cT in this section is due to

Hugh Osborn. C2h,2 is related to the square of the three point function 〈φiφjT 〉. Here T

is the stress tensor singlet operator schematically given by φk∂µ∂νφk. To obtain the three

point function let us look at the general function 〈φi(x)φj(y)(φk∂µ∂νφr(z))〉. For the stress

tensor we will have to contract this with δkr first. Then we will contract the whole 3-point

function with itself.

Now assume a generalised interacting term given by 1
24λijklφiφjφkφl. The Feynman

diagrams relevant to 〈φiφj(φk∂µ∂νφr)〉 at the 2-loop and 3-loop orders are shown below in

figure 1. Other diagrams go to 0 upon the action of derivatives in φk∂µ∂νφr.

Let us rescale the interaction λijkl → 16π2λijkl. The general term from these two

processes can be written as

〈φiφj(φk∂µ∂νφr)〉 = O(1) + aλikmnλmnjr + bλikmnλmnpqλpqjr + cλinkmλrmpqλpqjn . (B.1)

The O(λ0) term can be anything of the form xδijδkl+yδikδjl+zδilδjk. Now the contracting

the above with δkr, we get the form,

〈φiφj(φk∂µ∂νφk)〉 = γ1δij + α1λikmnλjkmn + β1λikmnλmnpqλpqkj + β2λinkmλkmpqλpqjn .

(B.2)

This contracted with itself should give us the OPE coefficient C2h,2. Hence we can correctly

guess the form,

cT /cT,scalar = N + αλijklλijkl + βλijklλklmnλmnij . (B.3)

Here cT,scalar is the central charge for N = 1 theory. The O(λ0) is just N which follows

from free theory. Now for the O(N) case we have,

λijkl = λ(δijδkl + δikδjl + δilδjk) . (B.4)
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Also at the fixed point in d = 4− ε we have,

λ =
ε

N + 8
+ 3

(3N + 14)

(N + 8)3
ε2 . (B.5)

This gives,

cT /cT,free = 1 +
3αε2 + βε3

N
. (B.6)

Now the large N expansion of cT /cT,free can be found in [97, 98], and it is given by,

cT /cT,free = 1− 5ε2

12
− 7ε3

36
. (B.7)

Using this we get, α = −5/36 and β = −7/36. So we obtain,

cT /cT free = 1− 5 (N + 2)

12 (N + 8)2
ε2 − (N + 2)(7N2 + 382N + 1708)

36 (N + 8)4
ε3 + O(ε4) , (B.8)

which exactly matches with our result (5.3).

Even though cT was obtained this way, it is not possible to do the same for cJ — in

terms of the OPE coefficients cJ/cJfree
= C free

A,1 /CA,1. This is because although cJ is known

up to the 1/N order, it has a more complicated structure in terms of the perturbative

parameter λijkl. So instead of (B.1) we have the form,

〈φiφjJ[kr]〉 = a0(δikδjl − δilδjk) + aλikmnλmnjr + bλikmnλmnpqλpqjr + cλinkmλrmpqλpqjn .

(B.9)

Here J[kr] is the spin 1 antisymmetric current. The first term in the r.h.s. above comes

from antisymmetrization. We get the OPE coefficient of J by contracting 〈φiφjJ[kr]〉 with

itself. This gives the form,

cJ/cJ,free = 1 + αλijklλijkl + βλijklλklmnλmnij + γλiiklλkmnpλlmnp . (B.10)

Since there are three undetermined coefficients α, β, γ to fix, we would not be able to do it

from the ε2 and ε3 terms of 1/N expansion alone.

C Obtaining the large N corrections

The correction to the 4-point function 〈φiφjφkφl〉 has been computed exactly at the 1/N

order [113]. It is can be written in a compact way as [51, 52],

〈φiφjφjφl〉 =
δijδkl

(x12x34)∆φ
+

δilδjk

(x14x23)∆φ
+

δikδjl

(x13x24)∆φ
+

δ
(1)
φ hΓ(h)

(h− 2)Γ2(h− 1)N

fijkl

(x2
13x

2
24)∆φ

(C.1)

where,

fijkl = δijδklD̄1,1,µ−1,µ−1(u, v) + δilδjkD̄µ−1,1,1,µ−1(u, v) + δikδjlD̄µ−1,1,µ−1,1(u, v) . (C.2)

The D̄ functions are defined in [70]. We can rearrange the 4-point function into singlet,

symmetric traceless and antisymmetric parts. With the overall factor of (x2
12x

2
34)−∆φ , the
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1/N correction coefficients of the latter two sectors are given by (upper sign for symmetric

traceless and lower for antisymmetric),∑
n,m

uh−1
hδ

(1)
φ

h−2

un(1−v)m

2n!m!

(
± (h−1)n(h−1)n+m(n+m)!

(h)2n+m
(−logu+ψ(n+1)−ψ(n+m+1)+2ψ(h+2n+m)

−ψ(h−1+n)−ψ(h−1+n+m))+
(h−1)n+m

2n!

(h)2n+m
(−logu+2ψ(h+2n+m)−2ψ(h−1+n+m))

)
±
δ

(1)
φ

2
uh−1 logu+

∑
m

[
uh−1(1−v)mδφ

(1) (−1)m

2

[(
1−h
m

)
logu+

m∑
q=1

((
1−h
q−1

)
(−1)m−q+1

m−q+1

)]]
(C.3)

The last line comes from the disconnected piece. The singlet sector coefficient is simply,

δ
(1)
φ hΓ(h)

(h− 2)Γ2(h− 1)
uh−1D̄1,1,µ−1,µ−1 . (C.4)

To read off the anomalous dimension and OPE coefficient corrections, we have to identify

the above with the conformal blocks. The conformal block in the small u limit reads,

g∆,`(u, v) = u(∆−`)/2(1− v)`2F1

(
∆− `

2
,

∆− `
2

,∆− `, 1− v
)
. (C.5)

Consider the corrections C∆,` = C
(0)
` +

C
(1)
`
N and ∆ = ∆(0) +

δ
(1)
`
N . We have ∆(0) = 2 for the

singlet scalar and ∆0 = 2h− 2 + ` for all other operators. Thus we get for general `,

C∆,`g∆,`(u, v) = C(0)g2h−2+`,`(u, v) +
uh−1(1− v)`

N

(
δ`
2

log u+C
(1)
`

)
+O(u, 1− v) . (C.6)

So the coefficient of uh−1(1 − v)` log u gives the anomalous dimension δ` directly. The

coefficient of the nonlog term uh−1(1−v)` is associated with the OPE coefficient correction.

However all the conformal blocks C∆,˜̀g∆,˜̀ with ˜̀ < ` give a contribution to the nonlog

term, which is of the form,∑
˜̀≤`

Γ(2h− 2)Γ2
(
h+ `− ˜̀− 1

)
(`− ˜̀)!Γ2(h− 1)Γ(2h+ `− ˜̀− 2)

× (C.7)

×
(
C

(1)
˜̀ + C

(0)
˜̀ δ˜̀

(
ψ(2h− 2) + ψ

(
h+ `− ˜̀− 1

)
− ψ

(
2h+ `− ˜̀− 2

)
− ψ(h− 1)

))
.

The above is then compared to the uh−1(1 − v)` log u and uh−1(1 − v)` terms from (C.3)

and (C.4) to read off the anomalous dimensions and OPE coefficients which match exactly

with our results (4.17)–(4.20).

D Higher spin OPE in ε-expansion

The OPE coefficients of the higher spin operators in d = 4− ε can be written as

C`

C free
`

= 1 + c
(2)
i,` ε

3 + c
(3)
i,` ε

3 + O(ε4) . (D.1)

Here as usual i indicates the singlet, traceless symmetric and antisymmetric sectors. In

the above formula c
(2)
S,`, c

(2)
T,` and c

(2)
A,` were given in (3.26), (3.27) and (3.28). Here we give

the O(ε3) orders for the first few spins.
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D.1 Singlet sector

c
(3)
S,`=4=

(2+N)(405848+N(89228+989N))

4800(8+N)4

c
(3)
S,`=6=

(2+N)(27035046944+N(5902407776+47767751N))

298821600(8+N)4

c
(3)
S,`=8=

(2+N)(1002110534752+N(217772423200+1327572517N))

10302888960(8+N)4

c
(3)
S,`=10=

(2+N)(121568105958318592+N(26332733153306704+123560820979315N))

1175771471212800(8+N)4
. (D.2)

D.2 Traceless symmetric

c
(3)
T,`=2=

42096+N(22504+N(2878+13N))

216(8+N)4

c
(3)
T,`=4=

59659656+N(38917600+N(5670765+34133N))

352800(8+N)4

c
(3)
T,`=6=

2919785069952+N(2004861573920+N(299681375684+1572151439N))

16136366400(8+N)4

c
(3)
T,`=8=

3637661241149760+N(2543976284881184+N(382765405683350+1644002316149N))

18699743462400(8+N)4

c
(3)
T,`=10=(1490290339762224000(8+N)4)−1(308175148604337630720+N(217302237938493487024

+N(32745609281101869405+113160657172438904N))). (D.3)

D.3 Antisymmetric

c
(3)
A,`=3=

(2+N)(229376+N(48672+295N))

3456(8+N)4

c
(3)
A,`=5=

(2+N)(77087104+N(16575112+96553N))

972000(8+N)4

c
(3)
A,`=7=

(2+N)(144671572069952+N(31180232920640+150688639187N))

1616027212800(8+N)4

c
(3)
A,`=9=

(2+N)(5447552685503360+N(1173953131219392+4579923671359N))

55828779552000(8+N)4
. (D.4)

The singlet O(ε3) OPE coefficients are found to obey the following general ` formula,

c
(3)
S,`=

(2+N)

8(8+N)4`3(1+`)3

[
−2N2(14+`2(−25+`(3+`(3+`)))

)
+16N(−28

+`(−27+`(32+7`(3+`(3+`)))))+32(−56+`(−63+`(58+17`(3+`(3+`)))))

−`(1+`)
(
16(8+N)2`(1+`)H2

−1+`+
(
−224(8+9`)+272`2(3+`(2+`))−N2(28+`2(−39

+`(2+`)))+8N(−56+(−1+`)`(54+7`(3+`))))H2`+2H−1+`

(
N2(22+`2(−19+`(2+`))

)
−16(−88+`(−63+17`(2+`(2+`))))−8N(−44+`(−27+`(20+7`(2+`))))−8(8+N)2`(1+`)H2`

)
+2(8+N)2`(1+`)

(
(8−3`(1+`))H

(2)
` +2

(
−6+`+`2

)
H

(2)
2`

))]
. (D.5)
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The traceless symmetric O(ε3) OPE coeficients are found to obey the following formula,

c
(3)
T,`=

1

8(8+N)4`2(1+`)3

(
−4(8+N)2`(1+`)2(−2(6+N)+(2+N)`(1+`))H

(2)
2`

−2(1+`)
(
2(6+N)(8+N)2+8

(
−4+N2)`−(1088+N(640+3N(34+N)))`2+2(2+N)

×(−272+(−56+N)N)`3+(2+N)(−272+(−56+N)N)`4−32(4+N)(8+N)`(1+`) H2`

)
H`

+(1+`)
(
4(6+N)(8+N)2+16(124+N(48+5N))`−(4+N)(408+N(122+7N))`2+

2(2+N)(−272+(−56+N)N)`3+(2+N)(−272+(−56+N)N)`4
)
H2`+2(8+N)`(1+`)2

×
(
−4(32+N(10+N))+3(2+N)(8+N)`+3(2+N)(8+N)`2

)
H

(2)
`

)
. (D.6)

The antisymmetric part is given by,

c
(3)
A,`=−

1

8(8+N)4`2(1+`)3
(2+N)

(
−(1+`)

(
4(8+N)2+16(26+7N)`−

(
368+72N+7N2)`2 (D.7)

+2
(
−272−56N+N2)`3+

(
−272−56N+N2)`4)H`+32(8+N)`(1+`)2H2

` +2(1+`)H`

×
(
2(8+N)2+40(2+N)`−

(
320+64N+3N2)`2+2

(
−272−56N+N2)`3+

(
−272−56N+N2)`4

−16(8+N)`(1+`)H`)−2
(
(8+N)`(1+`)2(−4(6+N)+3(8+N)`+3(8+N)`2

)
H

(2)
`

−2
(
24`2−64−16N−N2−168`−44N`−N2`+4N`2+2N2`2+(8+N)2`(1+`)2(`+`2−2

)
H

(2)
`

)))
.
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