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MELLIN TRANSFORM FOR BOEHMIANS
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Abstract

A suitable Boehmian space is constructed to extend the

distributional Mellin transform. Mellin transform of a Boehmian

is defined as a quotient of analytic functions. We prove that the

generalized Mellin transform has all its usual properties. We also

discuss the relation between the Mellin transform and the Laplace

transform in the context of Boehmians.

1. Introduction

J. Mikusiński and P. Mikusiński [8] introduced Boehmians as a gener-

alization of distributions by the motivation of regular operators [2]. An

abstract construction of Boehmian space was given in [9] with two no-

tions of convergence. Thereafter various Boehmian spaces have been de-

fined and also various integral transforms have been extended on them. See

[6, 10, 11, 13, 16, 18, 19, 21]. The main objective of introducing an integral

transform to the context of Boehmians is to find a Boehmian space which is

suitable for defining the integral transform and it is properly larger than the

space of distributions where the particular integral transform has been al-

ready discussed. If we construct Boehmian space by using distribution space

as the top space (which contains the numerator sequences) of a Boehmian

space, then obviously the Boehmian space contains the distribution space.

In certain cases, such Boehmian spaces are even generalizing some other

Boehmian spaces. For example, the Boehmian spaces introduced in [5, 6]
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are properly larger than L p-Boehmians [4] and tempered Boehmians [12]

respectively.

In [1, 20], Mellin transform has been discussed on tempered Boehmians

and Mellin transformable C∞-Boehmians respectively. In both papers, the

definitions of Mellin transform are erroneous and the Mellin transform on

M ′
a,b is not at all discussed. The details are given in the last section.

Since the distributional Mellin transform is defined on the space M ′
a,b,

we construct a suitable Boehmian space BM which properly contains M ′
a,b.

To discuss the operational properties of the Mellin transform, we also de-

fine various operations on the Boehmian space such as multiplication of a

Boehmian by a function of the form (log x)k, multiplication of a Boehmian by

a polynomial, derivative of a Boehmian, translation of a Boehmian, change

of scale of a Boehmian and change of variable of a Boehmian by the function

xρ.

We define the Mellin transform of a Boehmian as a quotient of analytic

functions, satisfying all the expected operational properties. We also provide

the identification between BM and the Laplace transformable Boehmian

space BL [13] and establish the relation between the Mellin transform and

the Laplace transform in the context of Boehmian spaces. Finally, we show

that BM is properly larger than M ′
a,b.

2. Preliminaries

Let Ma,b be the space of all smooth functions on I = (0,∞) satisfying

γk(φ) = sup{ζa,b(x)x
k+1|φ(k)(x)| : x ∈ I} <∞, k = 0, 1, 2, . . . (2.1)

where

ζa,b(x) =

{

x−a if 0 < x ≤ 1

x−b if 1 < x <∞

and a, b are fixed with 0 < a < b < ∞. The space Ma,b is a Fréchet

space with the sequence (γk)k∈N0
of semi-norms, where N0 is the set of all

non-negative integers. The dual space M ′
a,b of Ma,b is equipped with the

weak∗ topology. We say that fn → f as n → ∞ in M ′
a,b if 〈fn(x), φ(x)〉 −

〈f(x), φ(x)〉 → 0 as n→ ∞ for each φ ∈ Ma,b. A locally integrable function
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f on I, with f(x)/(xζa,b(x)) is integrable on I, can be identified as a member

of M ′
a,b by the map

φ 7→

∫ ∞

0
f(x)φ(x)dx (2.2)

For instance, every Schwartz testing function f ∈ D(I) can be identified as

a regular member of M ′
a,b. Mellin transform of f ∈ M ′

a,b is defined by

(Mf)(s) = 〈f(x), xs−1〉, ∀s ∈ Ωa,b (2.3)

where Ωa,b is the strip {s ∈ C : a < Re s < b}. It is well known that Mf

is an analytic function with a polynomial growth. See [24, p.108]. A Mellin

type convolution on M ′
a,b is defined by

〈(f ∨ g)(x), φ(x)〉 = 〈f(x), 〈g(y), φ(xy)〉〉,∀φ ∈ Ma,b. (2.4)

This convolution is a commutative binary operation on M ′
a,b. When f, g ∈

M ′
a,b are regular functions or f ∈ M ′

a,b and g ∈ D(I), f ∨ g is also regular

[24, p.118]. In deed,

(f ∨ g)(x) =







∫∞
0 f

(

x
y

)

g(y) 1y dy,∀x ∈ I if f and g are regular.
〈

f(y), 1yg
(

x
y

)〉

,∀x ∈ I if f ∈ M ′
a,b, g ∈ D(I).

(2.5)

Theorem 2.1. (Inversion) Let F (s) = Mf for s ∈ Ωf . Then, in the

sense of convergence in D ′(I),

f(x) = lim
r→∞

1

2πi

∫ σ+ir

σ−ir
F (s)x−sds,

where a < σ < b.

Definition 2.2. Let f ∈ M ′
a,b, k ∈ N0, α = u + iv ∈ C, r > 0 and

ρ ∈ R \ {0}. We define

(1) Lk : M ′
a,b → M ′

a,b by

〈(Lkf)(x), φ(x)〉 = 〈(log x)kf(x), φ(x)〉 = 〈f(x), (log x)kφ(x)〉, ∀φ ∈ Ma,b.

(2) Pα : M ′
a,b → M ′

a−u,b−u by

〈(Pαf)(x), ψ(x)〉 = 〈xαf(x), ψ(x)〉 = 〈f(x), xαψ(x)〉, ∀ψ ∈ Ma−u,b−u.
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(3) Dk : M ′
a,b → M ′

a+k,b+k by

〈(Dkf)(x), χ(x)〉 = 〈f (k)(x), χ(x)〉

= (−1)k〈f(x), (Dk
xχ)(x)〉, ∀χ ∈ Ma+k,b+k.

(4) (DP1)
k : M ′

a,b → M ′
a,b by

〈((DP1)
kf)(x), φ(x)〉 = 〈(Dxx)

kf(x), φ(x)〉

= (−1)k〈f(x), ((xDx)
kφ)(x)〉, ∀φ ∈ Ma,b.

(5) (P1D)k : M ′
a,b → M ′

a,b by

〈((P1D)kf)(x), φ(x)〉 = 〈(xDx)
kf(x), φ(x)〉

= (−1)k〈f(x), ((Dxx)
kφ)(x)〉, ∀φ ∈ Ma,b.

(6) (DkP k
1 ) : M ′

a,b → M ′
a,b by

〈((DkP k
1 )f)(x), φ(x)〉 = 〈(Dk

xx
k)f(x), φ(x)〉

= (−1)k〈f(x), ((xkDk
xφ)(x)〉, ∀φ ∈ Ma,b.

(7) (P k
1D

k) : M ′
a,b → M ′

a,b by

〈((P k
1D

k)f)(x), φ(x)〉 = 〈(xkDk
x)f(x), φ(x)〉

= (−1)k〈f(x), ((Dk
xx

k)φ)(x)〉, ∀φ ∈ Ma,b.

(8) Mr : M ′
a,b → M ′

a,b by

〈(Mrf)(x), φ(x)〉 = 〈f(rx), φ(x)〉 = 〈f(x), r−1φ(r−1x)〉, ∀φ ∈ Ma,b.

(9) Eρ : M ′
a,b → M ′

c,d by

〈(Eρf)(x), φ(x)〉=〈f(xρ), φ(x)〉=〈f(x), |ρ|−1x(1−ρ)/ρφ(x−ρ)〉, ∀φ∈Mc,d,

where c = ρa, d = ρb if ρ > 0, c = ρb, d = ρa if ρ < 0.

Theorem 2.3. Let f ∈ M ′
a,b, α = u + iv ∈ C, r > 0, k ∈ N0 and

ρ ∈ R \ {0} and F (s) be the Mellin transform of f . Then

(1) M(Lkf) = Dk
sF (s).

(2) M(Pαf) = F (s + α).

(3) M(Dkf) = (−1)k(s − k)(s − k + 1) · · · (s− 1)F (s − k).

(4) M((DP1)
kf) = (−1)k(s− 1)kF (s).

(5) M((P1D)kf) = (−1)kskF (s).

(6) M(DkP k
1 f) = (−1)k(s− k)(s − k + 1) · · · (s− 1)F (s).

(7) M(P k
1D

kf) = (−1)ks(s+ 1) · · · (s+ k − 1)F (s).

(8) M(Mrf) = r−sF (s).

(9) M(Eρf) = |ρ|−1F (ρ−1s).

Remark 2.4. In the literature, the continuity of the distributional

Mellin transform is not discussed.



2009] MELLIN TRANSFORM FOR BOEHMIANS 79

By introducing a topology on the range of Mellin transform as

U is open in M(M ′
a,b) if M

−1(U) is open in M ′
a,b,

we can get that the Mellin transform becomes a homeomorphism between

M ′
a,b and M(M ′

a,b). A similar technique is followed in the context of Hilbert

transform on the Schwartz testing function space D . See [14, p.114].

The Mellin transform is closely related with the Laplace transform as

follows:

Let La,b be the space of all smooth functions φ on (−∞,∞) with

γk(φ) = sup
−∞<t<∞

|κa,b(t)D
kφ| <∞, k = 0, 1, 2 . . .

where

κa,b =

{

eat 0 ≤ t <∞

ebt −∞ < t < 0

and its dual is denoted by L ′
a,b.

The distributional Laplace transform on L ′
a,b is defined by

(Lf)(s) = 〈f(t), e−st〉, s ∈ Ωa,b.

The convolution on L ′
a,b is defined as follows.

Definition 2.5. For g1, g2 ∈ L ′
a,b,

〈(g1 ∗ g2)(t), φ(t)〉 = 〈g1(t), 〈g2(τ), φ(t+ τ)〉〉, φ ∈ La,b.

A locally integrable function g such that g/κa,b is absolutely integrable

on (−∞,∞) can be identified as a regular member of L ′
a,b. When g1 and g2

are regular functions then g1 ∗ g2 also is regular, which is given by

x 7→

∫ ∞

−∞
g1(x− y)g2(y) dy, ∀x ∈ (−∞,∞).

The following theorems are proved in [24, §4.2 and §4.3].

Theorem 2.6. The mapping

θ(x) 7→ e−tθ(e−t) = φ(t)
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is a continuous isomorphism J from Ma,b onto La,b. The inverse mapping

is given by

φ(t) 7→ x−1φ(− log x) = θ(x).

Theorem 2.7. If

〈f(e−t), φ(t)〉 = 〈f(x), (J −1φ)(x)〉, ∀φ ∈ La,b

and

〈g(− log x), θ(x)〉 = 〈g(t), (J θ)(t)〉, ∀θ ∈ Ma,b

then the mapping f(x) 7→ f(e−t) is an isomorphism I from M ′
a,b onto L ′

a,b.

The inverse mapping is given by g(t) 7→ g(− log x).

Theorem 2.8. If f ∈ M ′
a,b then Mf = L(If), where L is the Laplace

transform on L ′
a,b.

For more details on the distributional Mellin transform we refer the

reader to [3, 23], [24, Chapter 4], [15, Chapter 7].

3. Auxiliary Results

First we recall the abstract construction of a Boehmian space. To con-

struct a Boehmian space we need G,S, ⋆ and ∆ where G is a topological

vector space, S is a subset of G and ⋆ : G× S → G satisfying the following

conditions.

Let α, β ∈ G and ζ, ξ ∈ S be arbitrary.

1. ζ ⋆ ξ = ξ ⋆ ζ ∈ S; 2. (α⋆ζ) ⋆ ξ = α⋆ (ζ ⋆ ξ); 3. (α+β) ⋆ ζ = α⋆ζ +β ⋆ ζ;

4. If αn → α asn→ ∞ in G and ξ ∈ S then αn ⋆ ξ → α ⋆ ξ as n→ ∞,

and ∆ is a collection of sequences from S satisfying

(a) If (ξn), (ζn) ∈ ∆ then (ξn ⋆ ζn) ∈ ∆.

(b) If α ∈ G and (ξn) ∈ ∆ then α ⋆ ξn → α in G as n→ ∞.

Let A denote the collection of all pairs of sequences ((αn), (ξn)) where

αn ∈ G, ∀n ∈ N and (ξn) ∈ ∆ satisfying the property

αn ⋆ ξm = αm ⋆ ξn, ∀ m,n ∈ N. (3.1)
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Each element of A is called a quotient and is denoted by αn/ξn. Define a

relation ∼ on A by

αn/ξn ∼ βn/ζn if αn ⋆ ζm = βm ⋆ ξn, ∀ m,n ∈ N. (3.2)

It is easy to verify that ∼ is an equivalence relation on A and hence it

decomposes A into disjoint equivalence classes. Each equivalence class is

called a Boehmian and is denoted by [αn/ξn]. The collection of all Boehmians

is denoted by B = B(G,S, ⋆,∆). Every element α of G is identified uniquely

as a member of B by [(α ⋆ ξn)/ξn] where (ξn) ∈ ∆ is arbitrary.

B is a vector space with addition and scalar multiplication defined as

follows.

• [αn/ξn] + [βn/ζn] = [(αn ⋆ ζn + βn ⋆ ξn)/(ξn ⋆ ζn)].

• c [αn/ξn] = [(cαn)/ξn].

The operation ⋆ can be extended to B × S by the following definition.

Definition 3.1. If x = [αn/ξn] ∈ B, and ζ ∈ S then x ⋆ ζ =

[(αn ⋆ ζ)/ξn] .

Now we recall the δ-convergence on B.

Definition 3.2. [δ-Convergence] We say that Xn
δ
→ X as n → ∞ in

B if there exists a delta sequence (ξn) such that Xn ⋆ ξk ∈ G, ∀n, k ∈ N,

X ⋆ ξk ∈ G,∀k ∈ N and for each k ∈ N,

Xn ⋆ ξk → X ⋆ ξk as n→ ∞ in G.

The following lemma states an equivalent statement for δ-convergence.

Lemma 3.3. Xn
δ
→X as n→∞ if and only if there exist αn,k, αk ∈G

and (ξk) ∈ ∆ such that Xn = [αn,k/ξk], X = [αk/ξk] and for each k ∈ N,

αn,k → αk as n→ ∞ in G.
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Now we state and prove some auxiliary results to construct the Boehmian

space BM = (M ′
a,b,D(I),∨,∆1). The following lemma is proved in [24,

p.119].

Lemma 3.4. If f, g ∈ M ′
a,b then M(f∨g)(s) = (Mf)(s)·(Mg)(s), ∀s ∈

Ωa,b.

Lemma 3.5. If f, g ∈ M ′
a,b, η, θ ∈ D(I) and α ∈ C then

(1) (f + g) ∨ η = (f ∨ η) + (g ∨ η).

(2) (αf) ∨ η = α(f ∨ η).

(3) f ∨ g = g ∨ f .

(4) f ∨ (η ∨ θ) = (f ∨ η) ∨ θ.

(5) η ∨ θ ∈ D(I).

Proof. The conclusions (1) and (2) are straight forward. The commu-

tativity and associativity of ∨ are consequences of the Lemma 3.4 and the

fact that Mellin transform on M ′
a,b is an injection [23, Theorem 14]. Hence

we prove only (5). It is easy to verify that the map I : D(I) → D(R) given
by θ(t) 7→ θ(e−t) is a bijection. We also note that

I(η ∨ θ)(t) = (η ∨ θ)(e−t)

=

∫ ∞

0
η

(

e−t

y

)

θ(y)
1

y
dy

=

∫ ∞

−∞
η(eu−t)θ(e−u)du by putting y = e−u

=

∫ ∞

−∞
(Iη)(t− u)(Iθ)(u) du

= ((Iη) ∗ (Iθ))(t),

Since (Iη) ∗ (Iθ) ∈ D(R), we get that η ∨ θ ∈ D(I). �

Lemma 3.6. If fn → f as n→ ∞ in M ′
a,b and η ∈ D(I) then fn∨η →

f ∨ η as n→ ∞ in M ′
a,b.

Proof. Let φ ∈ Ma,b be arbitrary. Now

〈(fn ∨ η)(x), φ(x)〉 − 〈(f ∨ η)(x), φ(x)〉

= 〈fn(x), 〈η(y), φ(xy)〉〉 − 〈f(x), 〈η(y), φ(xy)〉〉
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= 〈(fn − f)(x), 〈η(y), φ(xy)〉〉 → 0 as n→ ∞,

since the function x 7→ 〈η(y), φ(xy)〉 is a member of Ma,b. �

Definition 3.7. A sequence (ηn) from D(I) is said to be a δ1-sequence

if it satisfies the following conditions:

(i)
∫∞
0 ηn(x)dx = 1, ∀ ∈ N.

(ii)
∫∞
0 |ηn(x)|dx ≤ J, ∀ ∈ N for some J > 0.

(iii) Support of ηn ⊂ (αn, βn), ∀n ∈ N where αn → 1 and βn → 1 as n→ ∞.

We denote the collection of all δ1-sequences as ∆1.

Lemma 3.8. If f ∈ M ′
a,b and (ηn) ∈ ∆1 then f ∨ ηn → f as n→ ∞ in

M ′
a,b.

Proof. Let φ ∈ Ma,b be arbitrary. Since

〈(f ∨ ηn)(x), φ(x)〉 − 〈f(x), φ(x)〉 = 〈f(x), 〈ηn(y), φ(xy)〉〉 − 〈f(x), φ(x)〉,

to prove this lemma we shall show that

〈ηn(y), φ(xy)〉 → φ(x) in Ma,b as n→ ∞. (3.3)

Let ψn(x) = 〈ηn(y), φ(xy)〉. First we claim that

ψ(k)
n (x) = 〈ηn(y), y

kφ(k)(xy)〉,∀k ∈ N. (3.4)

We choose ǫ > 0 and J > 0 such that support of ηn ⊂ (ǫ, J). Now for a

small r > 0 and h ∈ (−r, r),

ψn(x+ h)− ψn(x)

h
=

∫ J

ǫ
ηn(y)

φ((x + h)y) − φ(xy)

h
dy. (3.5)

We know that for each y ∈ (ǫ, J), ηn(y)
φ((x+h)y)−φ(xy)

h → ηn(y)yφ
′(xy) as

h→ 0. Using mean-value theorem, we get that

∣

∣

∣

∣

φ((x+ h)y)− φ(xy)

h

∣

∣

∣

∣

|ηn(y)| ≤ |y||φ′(t)||ηn(y)| (3.6)
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where t lies between (x + h)y and xy. As x is fixed, y varies in a compact

set, and h ∈ (−r, r), t varies at the most in a compact set B. Hence the

expression on the right hand side of the inequality (3.6) is dominated by the

constant

J sup{|φ′(t) : t ∈ B} sup{|ηn(y) : ǫ ≤ y ≤ J}

Thus by dominated convergence theorem we get that

∫ J

ǫ
ηn(y)

φ((x+ h)y)− φ(xy)

h
dy →

∫ J

ǫ
ηn(y)yφ

′(xy)dy as h→ 0.

Hence our claim holds for k = 1 and by induction it holds for each k ∈ N.

Now by the property (i) of (ηn), we get for x ∈ I,

ζa,b(x)x
k+1|(ψn − φ)(k)(x)|

= ζa,b(x)x
k+1

∣

∣

∣

∣

∫ ∞

0
ηn(y)y

kφ(k)(xy)dy −

∫ ∞

0
ηn(y)φ

(k)(x)dy

∣

∣

∣

∣

≤ ζa,b(x)x
k+1

∫ ∞

0

∣

∣

∣
ηn(y)

(

ykφ(k)(xy)− φ(k)(x)
)∣

∣

∣
dy

≤ I1 + I2

where I1 = ζa,b(x)x
k+1

∫∞
0

∣

∣ηn(y)y
k
(

φ(k)(xy)− φ(k)(x)
)∣

∣ dy and

I2 = ζa,b(x)x
k+1

∫∞
0

∣

∣ηn(y)
(

yk−1
)

φ(k)(x)
∣

∣ dy. Let support of ηn ⊂ (αn, βn),

where αn → 1, βn → 1 as n → ∞. It is easy to verify that if αn ≤ y ≤ βn

and if Jn,k=max{|αk
n − 1|, |βkn − 1|}, then

|yk − 1| ≤ Jn,k for all n ∈ N, k ∈ N0 and Jn,k → 0 as n→ ∞. (3.7)

Choose m ∈ N such that Jn,1 < 1, ∀n ≥ m. Now for n ≥ m, using mean

value theorem we get

I1 =

∫ βn

αn

ζa,b(x)x
k+1

∣

∣

∣
ηn(y)y

k
(

φ(k)(xy)− φ(k)(x)
)∣

∣

∣
dy

≤

∫ βn

αn

ζa,b(x)x
k+2|y−1|yk|ηn(y)φ

(k+1)(x+ t(xy − x))|dy for some t∈(0, 1)

≤

∫ βn

αn

ζa,b(x)|y−1|yk|ηn(y)|γk+1(φ)
[

(1+t(y−1))(k+2)ζa,b(x(1+t(y−1)))
]−1
dy
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Since |y−1| ≤ Jn,1, y
k ≤ βkn and (1+ t(y−1))−(k+2) ≤ (1−Jn,1)

−(k+2),∀n ≥

m, the last integral is dominated by

βknJn,1(1− Jn,1)
−(k+2)γk+1(φ)

∫ βn

αn

|ηn(y)|ζa,b(x) [ζa,b(x(1 + t(y − 1)))]−1 dy

(3.8)

Using the inequality

ζa,b(x) [ζa,b(x(1+t(y−1)))]−1≤

{

(1 + Jn,1)
a if 0 < x(1+t(y−1)) ≤ 1, x∈I

(1 + Jn,1)
b if x(1 + t(y − 1)) > 1, x ∈ I,

and the property (ii) of (ηn) ∈ ∆1, the expression (3.8) is dominated by

βknJn,1(1 − Jn,1)
−(k+2)γk+1(φ)J(1 + Jn,1)

b.

Since Jn,1 → 0 as n→ ∞ we get that I1 → 0 as n→ ∞.

Next we consider

I2 ≤ γk(φ)

∫ βn

αn

|ηn(y)||y
k − 1|dy

≤ Jn,kγk(φ)

∫ ∞

0
|ηn(y)|dy → 0 as n→ ∞.

Hence the lemma follows. �

Remark 3.9. It is interesting to note that the distribution δ1 is the

identity for this Mellin type convolution ∨, where δ1 is defined by 〈δ1, φ〉 =

φ(1), ∀φ ∈ D(I). This fact and the previous lemma motivate us to call the

members of ∆1 as δ1-sequences.

Thus the Boehmian space BM = B(M ′
a,b,D(I),∨,∆1) is constructed.

At this juncture, we point out the reason for using a distribution space asG of

BM. Since our objective is to find a Boehmian space, containing M ′
a,b, each

member f ∈ M ′
a,b would be identified by the representative f∨ηn

ηn
for some

(ηn) ∈ ∆1. Therefore the required G should be containing f ∨ η, ∀f ∈ M ′
a,b

and ∀η ∈ D(I). Though it is known that f ∨ η is a function, so far it is not

discussed what type of function is this. Therefore we prefer to use M ′
a,b as

G of the required Boehmian space. The advantage of using a function space
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as G of a Boehmian space is that every Boehmian can be approximated

by functions. This can also be achieved in a Boehmian space with G as a

distribution space, since each Boehmian is approximated by distributions

and each distribution is approximated by functions. In the literature, many

Boehmian spaces have been constructed by using distribution spaces and

it is well established that they are more comfortable for studying various

integral transforms. See [5, 6, 7, 17, 18, 19].

4. Generalized Mellin Transform

First we construct a quotient field of certain analytic functions. Let

Ha,b be the space of all analytic functions on the strip Ωa,b consisting of

the images of f ∈ M ′
a,b. We know that Ha,b is a commutative ring with

identity with respect to point-wise addition and point-wise multiplication.

It is interesting note that it is an integral domain.

Indeed, if f · g = 0 on Ωa,b and if

Z(f) = {s ∈ Ωa,b : f(s) = 0} and Z(g) = {s ∈ Ωa,b : g(s) = 0}

then

Ωa,b = Z(f) ∪ Z(g).

Since Ωa,b has limit points at least one of Z(f) and Z(g) has limit points.

Hence by analytic continuation we get that at least one of f and g is iden-

tically zero.

Thus we can construct the quotient field Fa,b of Ha,b and every element

of Fa,b is denoted by f
g or f(s)

g(s) .

By defining the scalar multiplication by αf
g = αf

g we can make Fa,b as

an algebra.

Definition 4.1. Let F = f(s)
g(s) ∈ Ha,b, α = u+ iv ∈ C, r > 0, ρ 6= 0 and

q(s) is a polynomial. We define

(1) F ′ = f ′·g−f ·g′

g·g ∈ Ha,b.

(2) ταF = f(s−α)
g(s−α) ∈ Ha−u,b−u.

(3) q(s)F = q(s)f(s)
g(s) ∈ Ha,b.



2009] MELLIN TRANSFORM FOR BOEHMIANS 87

(4) r−sF = r−sf(s)
g(s) ∈ Ha,b.

(5) SρF = f(ρ−1s)
g(ρ−1s)

∈ Hc,d, where c = ρa, d = ρb if ρ > 0, c = ρb, d = ρa if

ρ < 0.

It is easy to verify that the above definitions are well defined in Ha,b.

We introduce a notion of convergence as follows.

Definition 4.2. We say that a sequence (Fn) converges to F in Fa,b if

there exists fn, ∀n ∈ N and g ∈ Fa,b such that Fn = fn
g , F = f

g and

fn → f as n→ ∞ in Ha,b.

Now we are ready to define the generalized Mellin transform.

Definition 4.3. The generalized Mellin transform M : BM → Fa,b is

defined by

M ([fn/ηn]) =
Mfn
Mηn

for any n ∈ N. (4.1)

Remark 4.4. It is easy to verify that Mηn → 1 as n → ∞ uniformly

on compact subsets of Ωa,b. Hence in view of defining Laplace transform of

a Boehmian in [13], Mfn
Mηn

can also be viewed as lim
n→∞

Mfn, where this limit

is obtained by uniform convergence on each compact subset of Ωa,b.

By routine procedure, it can be verified that the generalized Mellin

transform is well defined, consistent with the distributional Mellin transform

on M ′
a,b, linear and one-to one.

Lemma 4.5. Let f, g ∈ M ′
a,b, α = u + iv ∈ C, k ∈ N0, r > 0 and

ρ ∈ R \ {0}.

(1) L(f ∨ g) = (Lf) ∨ g + f ∨ (Lg).

(2) Pα(f ∨ g) = (Pαf) ∨ (Pαg).

(3) Dk(f ∨ g) = (Dkf) ∨ (P k
−1g).

(4) (DP1)
k(f ∨ g) = ((DP1)

kf) ∨ g.

(5) (P1D)k(f ∨ g) = ((P1D)kf) ∨ g.
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(6) (DkP k
1 )(f ∨ g) = ((DkP k

1 )f) ∨ g.

(7) (P k
1D

k)(f ∨ g) = ((P k
1D

k)f) ∨ g.

(8) Mr(f ∨ g) = (Mrf) ∨ g.

(9) Eρ(f ∨ g) = |ρ|(Eρf) ∨ (Eρg).

Proof. We prove the first result. Simialrly the other results can be

proved. Let φ ∈ Ma,b be arbitrary.

〈(L(f ∨ g))(x), φ(x)〉 = 〈(f ∨ g)(x), log xφ(x)〉

= 〈f(x), 〈g(y), log(xy)φ(xy)〉

= 〈f(x), 〈g(y), (log x+ log y)φ(xy)〉

= 〈f(x), log x〈g(y), φ(xy)〉〉 + 〈f(x), 〈g(y), log yφ(xy)〉〉

= 〈(Lf)(x), 〈g(y), φ(xy)〉〉 + 〈f(x), 〈(Lg)(y), φ(xy)〉〉

= 〈((Lf) ∨ g)(x), φ(x)〉 + 〈(f ∨ (Lg))(x), φ(x)〉

Hence the Lemma follows. �

Definition 4.6. Let X = [fn/ηn] , Y = [gn/θn] ∈ BM, k ∈ N0, α =

u+ iv ∈ C, r > 0 and ρ ∈ R \ {0}. We define

(1) LX = [(Lfn ∨ ηn − fn ∨ Lηn)/(ηn ∨ ηn)] ∈ BM.

(2) PαX=[(λnPαfn)/(λnPαηn)] ∈ Ba−u,b−u, where λn=(
∫∞
0 xαηn(x)dx)

−1.

(3) DX = [(νn(Dfn))/(νn(P−1ηn))] ∈ Ba+1,b+1, where νn =
( ∫∞

0 x−1ηn(x)

dx
)−1

.

(4) (DP1)
kX =

[

((DP1)
kfn)/ηn

]

∈ BM.

(5) (P1D)kX =
[

((P1D)kfn)/ηn
]

∈ BM.

(6) (DkP k
1 )X =

[

((DkP k
1 )fn)/ηn

]

∈ BM.

(7) (P k
1D

k)X =
[

((P k
1D

k)fn)/ηn
]

∈ BM.

(8) MrX = [(Mrfn)/ηn] ∈ BM.

(9) EρX =
[

(|ρ|−1µnEρfn)/(µnEρηn)
]

∈ Bc,d where µn =
(∫∞

0 ηn(x
ρ)dx

)−1

and c = ρa, d = ρb if ρ > 0, c = ρb, d = ρa if ρ < 0.

(10) X ∨ Y = [(fn ∨ gn)/(ηn ∨ θn)].

For k > 1, LkX and DkX can be defined recursively by LkX = L(Lk−1X)

and DkX = D(Dk−1X) respectively.
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Remark 4.7. Because ηn → δ1 as n → ∞, there exists m ∈ N such

that
∫∞
0 xαηn(x)dx,

∫∞
0 ηn(x

ρ)dx and
∫∞
0 x−1ηn(x)dx are not equal to zero

for all n ≥ m. Since fn
ηn

∼ fm+n

ηm+n
with out loss of generality we assume that

λn, µn and νn exist for all n ∈ N.

It can be verified that the above operations are well defined, using the

Lemma 4.5. Indeed we prove the first operation is well defined.

For any m,n ∈ N,

Lfn ∨ ηn − fn ∨ Lηn ∨ ηm ∨ ηm

= Lfn ∨ ηn ∨ ηm ∨ ηm − un ∨ Lηn ∨ ηm ∨ ηm

= Lfn ∨ ηm ∨ ηn ∨ ηm − un ∨ ηm ∨ Lηn ∨ ηm.

= L(fn ∨ ηm) ∨ ηn ∨ ηm − fn ∨ Lηm ∨ ηn ∨ ηm − fn ∨ ηm ∨ Lηn ∨ ηm

= L(fm ∨ ηn) ∨ ηn ∨ ηm − fm ∨ ηn ∨ Lηm ∨ ηn − fm ∨ ηn ∨ Lηn ∨ ηm

= L(fm ∨ ηn) ∨ ηn ∨ ηm − fm ∨ Lηn ∨ ηn ∨ ηm − fm ∨ Lηm ∨ ηn ∨ ηn

= Lfm ∨ ηn ∨ ηn ∨ ηm − fm ∨ Lηm ∨ ηn ∨ ηn

= (Lfm ∨ ηm − fm ∨ Lηm) ∨ ηn ∨ ηn.

Hence (Lfn ∨ ηn − fn ∨ Lηn)/(ηn ∨ ηn) is a quotient.

To prove these definitions are independent of the choice of the represen-

tative let fn/ηn ∼ hn/ξn. Then we have fn ∨ ξm = hm ∨ ηn,∀m,n ∈ N.

In the proof of (Lfn∨ηn−fn∨Lηn)/(ηn∨ηn) is a quotient, by replacing

fm by hm and ηm by ξm respectively, we get that

(Lfn ∨ ηn − fn ∨ Lηn)/(ηn ∨ ηn) ∼ (Lhn ∨ ξn − hn ∨ Lξn)/(ξn ∨ ξn), (4.2)

and hence LX is well defined.

Using Lemma 4.5, we get that, if T is any one of the operations in

Definition 4.6, f ∈ M ′
a,b and X is a Boehmian representing f in BM then

Tf = TX. Hence it follows that these definitions are consistent with the

definitions on M ′
a,b.

The following two theorems are straight forward from the Lemma 4.5

and Theorem 2.3.
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Theorem 4.8. If X,Y ∈ BM, k ∈ N0, α = u + iv ∈ C, r > 0 and

ρ ∈ R \ {0} then

(1) M(LkX) = (MX)(k).

(2) M(PαX) = ταMX.

(3) M(DkX) = (−1)k(s− k)(s − k + 1) · · · (s− 1)τkMX.

(4) M((DP1)
kX) = (−1)k(s − 1)kMX.

(5) M((P1D)kX) = (−1)kskMX.

(6) M((DkP k
1 )X) = (−1)k(s− k)(s − k + 1) · · · (s − 1)MX.

(7) M((P k
1D

k)X) = (−1)ks(s+ 1) · · · (s+ k − 1)MX.

(8) M(MrX) = r−s
MX.

(9) M(EρX) = |ρ|−1SρMX.

(10) M(X ∨ Y ) = MX ·MY .

Theorem 4.9. Let X = [fn/ηn] , Y = [[gn/θn] ∈ BM, α = u+ iv ∈ C,
k ∈ N0, r > 0 and ρ ∈ R \ {0}.

(1) L(X ∨ Y ) = (LX) ∨ Y +X ∨ (LY ).

(2) Pα(X ∨ Y ) = (PαX) ∨ (PαY ).

(3) D(X ∨ Y ) = (DX) ∨ (P−1Y ).

(4) (DP1)
k(X ∨ Y ) = ((DP1)

kX) ∨ Y .

(5) (P1D)k(X ∨ Y ) = ((P1D)kX) ∨ Y .

(6) (DkP k
1 )(X ∨ Y ) = ((DkP k

1 )X) ∨ Y .

(7) (P k
1D

k)(X ∨ Y ) = ((P k
1D

k)X) ∨ Y .

(8) Mr(X ∨ Y ) = (MrX) ∨ Y .

(9) Eρ(X ∨ Y ) = |ρ|(EρX) ∨ (EρY ).

Theorem 4.10. The generalized Mellin transform M : BM → Fa,b is

continuous with respect to the δ-convergence.

Proof. LetXn
δ
→ X as n→ ∞ in BM. Then by Lemma 3.3, there exists

fn,k, fn ∈ M ′
a,b, ∀n, k ∈ N and (ηk) ∈ ∆1 such that Xn = [fn,k/ηk], X =

[fk/ηk] and for each k ∈ N,

fn,k → fk as n→ ∞ in M
′
a,b.
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Applying the continuity of the distributional Mellin transform, we get that

for each k ∈ N,

Mfn,k →Mfk as n→ ∞ in Ha,b.

But for any k ∈ N and for each n ∈ N, MXn =
Mfn,k

Mηk
and MX = Mfk

Mηk
.

Thus it follows that MXn → MX as n→ ∞ in Fa,b. �

Finding the range of this generalized Mellin transform, is an interesting

open question.

5. Mellin Transform And Laplace Transform

Two sided Laplace transform is defined and studied in the context of

Boehmians by P. Mikusiński, A. Morse and D. Nemzer [13]. For our conve-

nience, we slightly modify the definition of the Boehmian space BL intro-

duced in [13] as B(L ′
a,b,D(R), ∗,∆), where the operation ∗ : L ′

a,b×D(R) →
L ′

a,b is the convolution of a distribution and a function, defined by

〈(f ∗ φ)(t), ψ(t)〉 =

〈

f(t),

∫ ∞

−∞
ψ(t)φ(t + τ) dτ

〉

, ∀ψ ∈ La,b,

and ∆ is the collection of all sequences (δn) from D(R), satisfying

(1)
∫∞
−∞ δn(x)dx = 1, ∀n ∈ N,

(2)
∫∞
−∞ |δn(x)|dx ≤M for some M > 0 and all n ∈ N,

(3) s(δn) = inf{ǫ > 0 : supp δn ⊂ [−ǫ, ǫ]} → 0 as n→ ∞.

First we justify that this modification does not alter the original Boehmian

space BL. Obviously, the original Boehmian space is contained the altered

Boehmian space. If [gn/δn] ∈ B(L ′
a,b,D(R), ∗,∆) then

[gn/δn] = [(gn ∗ δn)/(δn ∗ δn)].

Here each gn ∗ δn is a regular function in L ′
a,b. Hence this change may just

increase the collection of representatives of a Boehmian and not the space

BL. Thus BL = B(L ′
a,b,D(R), ∗,∆).

Now we define the identification between the Boehmian spaces BM and

BL. For [fn/ηn] ∈ BM if we put I(fn) = gn and I(ηn) = δn, ∀n ∈ N then
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obviously, gn ∈ L ′
a,b and δn ∈ D(R), ∀n ∈ N. We claim that (σnδn) ∈ ∆,

where σn =
(

∫∞
0

ηn(x)
x dx

)−1
, ∀n ∈ N.

(1) For an arbitrary n ∈ N, by using the change of variable e−t = x,

σn
∫∞
−∞ δn(t)dt = σn

∫∞
−∞ ηn(e

−t)dt = σn
∫∞
0

ηn(x)
x dx = 1.

(2) Let support of ηn ⊂ (αn, βn), ∀n ∈ N, where (αn) and (βn) both converge

to 1. Now
∫∞
−∞ |σnδn(t)|dt = |σn|

∫∞
−∞ |ηn(e

−t)|dt

≤ |σn|
∫∞
0 |ηn(x)x |dx

= |σn|
∫ βn

αn
|ηn(x)x |dx

≤

(

sup
n∈N

|σn|
αn

)

∫∞
0 |ηn(x)|dx.

Since (σn) and (αn) converge to 1,

(

sup
n∈N

|σn|
αn

)

is finite. Hence the second

property of a delta sequence is satisfied by (σnδn).

(3) The support of ηn ⊂ (αn, βn) implies that support of δn ⊂ (− log βn,

− log αn). Since αn → 1 and βn → 1 as n→ ∞, our claim follows.

Now for m,n ∈ N and for each φ ∈ La,b,

〈(I(fn ∨ ηm))(t), φ(t)〉 = 〈(fn ∨ ηm)(x), (J −1φ)(x)〉

= 〈(fn ∨ ηm)(x), x−1φ(− log x)〉

= 〈fn(x), 〈ηm(y), (xy)−1φ(− log(xy))〉

= 〈fn(x), x
−1〈ηm(y), y−1φ(− log x− log y))〉

= 〈(Ifn)(t), 〈ηm(y), y−1φ(t− log y))〉

= 〈(Ifn)(t), 〈(Iηm)(τ), φ(t + τ))〉

= 〈((Ifn) ∗ (Iηm))(t), φ(t)〉.

Hence ((Ifn), (Iηn)) is a quotient whenever (fn, ηn) is a quotient. Thus if

we denote I ([fn/ηn]) = [(Ifn)/(Iηn)] then I : BM → BL, and its inverse

is given by I −1([gn/δn]) = [(I−1gn)/(I
−1δn)]. We know that BL contains

an Boehmian Y which is no longer a member of D ′(R). Then I −1Y ∈ BM

is not representing any member of D ′(I) and hence, M ′
a,b $ BM.

Let L denote the Laplace transform on Boehmians in [13]. Using

Therorem 2.8 and Remark 4.4, the relation between L and M is given by,

for each [fn/ηn] ∈ BM,
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L(I [fn/ηn]) = L([(Ifn)/(Iηn)] = lim
n→∞

L(Ifn)

= lim
n→∞

Mfn = Mfn
Mηn

= M[fn/ηn].

6. Comparative Study

In [1], Mellin transform F̂ of a tempered Boehmian F = [fn/φn] is

defined by the limit of {f̂n} in D ′, where f̂n is the Mellin transform of fn.

According to [1, (1.3)], the Mellin transform of a function f(x) is defined by

M{f(x); s} = F{f(ex); is}, where F is the Fourier transform.

We recall that tempered Boehmians [11] are constructed by taking nu-

merator sequence from the space of slowly increasing functions. We shall

show that Mellin transform of a slowly increasing function is not always a

member of D ′ but a member of Z ′. For example, we consider f(x) = x2,

since it is a polynomial, obviously f(x) is a slowly increasing function. Then

f(ex) = ex
2

, which is a distribution and not an ultra distribution. See [22,

Problem 4]. As a consequence, Fourier transform of ex
2

is an ultra distribu-

tion and not a distribution. Therefore it is not possible to expect that (f̂n)

is a sequence in D ′, when [fn/φn] is a tempered Boehmian.

In the following theorem, the operational properties of Mellin transform

is discussed, in which the first property is not consistent with the corre-

sponding property of distributional Mellin transform. See Theorem 2.3(3).

Theorem 6.1. [[1]] Let F = [fn/φn] ∈ BI and G = [gn/γn] ∈ BS.

Then

(a) (∂/∂xmF )̂ = (−s)F̂ (is),

(b) Ĝ is an infinitely differentiable function,

(c) (F ∗G)̂ = F̂ Ĝ and

(d) F̂ φ̂n = f̂n for all n ∈ N .

Since the convolutions and the delta sequences used in BM and BI are

different, it is not possible to say one space is contained in the other. How-

ever, we can say that present work is a better extension of Mellin transform

on M ′
a,b to the context of Bohemians than that in [1], since in the latter,
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Mellin transform on M ′
a,b is not discussed and not all the properties of Mellin

transform are proved.

In [20], a C∞-Boehmian [fn/φn] (see [9]), is called Mellin transformable,

(1) if each fn is Mellin transformable,

(2) there exists a non-empty strip Ω ⊆ ∩n{s ∈ C : Re s < βfn}, where

βf = sup{s ∈ R :
∫∞
0 |f(t)|ts−1dt <∞}.

Here to define the Mellin transform, first it is claimed that if [fn/δn] is a

Mellin transformable Boehmian then (Mfn) converges to an analytic func-

tion uniformly on every compact subsets of a suitable region. In the proof

of this theorem, the following two unproven statements are used.

• M(f ∗ φ) = (Mf)(Mφ), where (f ∗ φ)(x) =
∫

f(x− y)φ(y) dy.

• M(φn) → 1 as n→ ∞ where (φn) is a sequence from D , with
∫

φn(x)dx

= 1, ∀n,
∫

|φn(x)|dx ≤ M,∀n, for some M > 0 and supp φn → 0 as

n→ ∞.

The first statement is not true, for the following reason. If f, g ∈ D(I), then

f ∨ g and f ∗ g both are defined, and obviously f ∨ g 6= f ∗ g. It is proved

that M(f ∨ g) = (Mf)(Mg) [24, p.119]. If M(f ∗ g) = (Mf)(Mg) were

true then we get M(f ∨ g) = M(f ∗ g). Using the injectivity of the Mellin

transform M , it follows that f ∗ g = f ∨ g, which is a contradiction. Hence

the existence of the Mellin transform in [20] is not justified.
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11. P. Mikusiński, The Fourier Transform of Tempered Boehmians, Fourier Analysis,

Lecture Notes in Pure and Appl. Math., Marcel Dekker, New York, (1994), 303-309.
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