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fl. Introduction

In a previous paper (Holmes and Marsden [1981b]) we developed a method

for proving the existence of Smale horseshoes in two degree of freedom

Hamiltonian and nearly Hamiltonian systems. This paper extends those methods

to systems with three or more degrees of freedom. We start with an unper-

turbed system containing a homoclinic orbit and at least two families of

periodic orbits associated with action angle coordinates. We use KAM theory

to show that some of the resulting tori persist under small perturbations

and use a vector of Melnikov integrals to show that, under suitable hypotheses,

their stable and unstable manifolds intersect transversally. This transverse

intersection is ultimately responsible for Arnold diffusion on each energy

surface.

Our methods are a generalization of those of Arnold [1964] where "Arnold

diffusion" was first introduced. The applications are, however, somewhat

different and we believe, of more direct physical interest.

The main example treated in this paper is to a Hamiltonian system con-

sisting of a pendulum coupled to two oscillators (with amplitude-dependent

frequencies). The system is shown to have Arnold diffusion. Using the

techniques in our previous paper, one can also show that the Arnold diffusion

on a certain energy surface survives suitable positive and negative damping

perturbations.

We shall assume that our coordinates are given in canonical form. How-

ever, many interesting problems involving rigid body dynamics are best done

in a more general Lie group theoretic context. This situation is discussed

in Holmes and Marsden [1981c].

Acknowledgements. We thank Alan Weinstein for several helpful discussions and

Allan Kaufmanfor suggesting a stimulating physical example.
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§2. Transversal Intersection of Invariant Manifolds by Melnikov's Method

In this section we are concerned with perturbations of Hamiltonian

systems of the form

H (q,p,xy) = F(q,p) + G(x,y) , (2.1)

where (q,p,x,y) are canonical coordinates on a 2(n + 1) dimensional

I nsymplectic manifold P; q and p are real and x =-(x , .. , x

Y = (Yl' ""' Yn). We assume the coordinates are canonical, although, in

some examples such as the rigid body this requires modification (Holmes and

Marsden [1981c]). We shall also assume that action angle coordinates

(e1 , ... , en, Ill ...,I n) can be found in a certain region of phase space

such that (2.1) takes the form

0n
H°(q,p,e,I) = F(q,p) + Gi(I ) • (2.2)

We also assume that G(O,0, ..., 0) = 0 and that

3G.
a .(1 = > 0 for I > 0 (2.3)

The perturbed problem we consider has the form

H (q,p,O,I) = F(q,p) + G.(I.) + eHl(q,p,O,I) (2.4)!i=l 1 1

where H1  is 2T-periodic in 6,1 ... 1 n Now we recall how this n+l degree

of freedom system may be reduced to an n degree of freedom non-autonomous

system; the reader should refer to Holmes and Marsden [1981b] for details.

Choose one of the action coordinates, say In* Since Qn(In) > 0 for

In > 0, we can invert the equation

]n

-jI



H:(q,p,e,I) =h. (2.5)

to obtain

I L E(q,p, ei, ... , 56 n i I" 'n-i h) .(2.6)

If we write

LE= L0+ ELI+ Q(E2) (2.7)

then a simple computation shows that

L0(q,p, Ill ... ,I I ;- h)

n-i

G Gn(h - F(q p) I G.I) 0 (2.8)
,j=i

and

L 1( ,p,01, *** nn I ill. .n-i ;h)l h

H~1 * (q'n-i'..I L ;h)p11

'n-i h)(2.9)

Changing variables from t to 9n and writing ( 'for d ,Hamilton's

equations for HV£ become nd

1.' ' 3q
(2.10)

KI~' DL: n-i)

Using (2.7) - (2.9), equations (2.10) are in the form of a 21T-periodically

forced n degree of freedom Hamiltonian system. Notice that Lo is (formally)

completely integrable, having n constants of the motion given by

L 0(energy) and 11l , In-l~ (R1 z in-1)
or, alternatively,

L0and (G I(1 1) G. n-l ) - (hl , ... , h n1 )
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(This reflects the general fact that complete integrability is preserved by

the reduction process).

Assume now that the Hamiltonian F has a homoclinic orbit (q(t), p(t))

joining a saddle point (qopo) to itself. [The case of heteroclinic orbits

connecting different saddle points proceeds in the same way]. The Hamiltonian

system for L°  thus has an n-l parameter family of invariant n-l dimensional

tori T(hl , ... , h n l ) given by

Gj(Ij) = h constant (i.e. lj= G (

. 9.)6 + 6)j(O) (mod 2Tr), j = I, ... , n-i (2.11)
.3 .J.n .3

q =qo p = p0

Correspondingly, the system for F has an n parameter family of invariant

tori T(hl , ..., hn). Henceforth we write the (phase) constants of integra-

tion e.j(O) as 6 , j = 1, ... , n-1, n.

The torus T(h, .... I hn-l) is connected to itself by the n-dimensional

homoclinic manifold

Gj(Ij) = h. )
.3 . Jj'5

0
q q (6 - 0), p = p(e - 0)/

where the phase constant 80 associated with the 'reduced' degree of freedom

n
appears explicitly. This manifold consists of the coincident stable and un-

stable manifolds of the torus T(hl, ... , hn-1); i.e.

Ws  )) wu(T(hl,*.
(T(h l ...b h(n2. 2, ... hFnr ) )

given by (2.12). See Figure 1.
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hi, e. 2n-periodic,

n nl
~x

T(hI ,  ... , hn-I )

Figure 1

For e t 0 the system (2.10) possesses a Poincar6 map P from (a piece

of) (q,p, eV .... In- l , Il ..... In-l) space to itself where 8n goes

through an increment of 2n, starting at some fixed value en (which will be

suppressed in the nzttion). The tori T(hl, ... , hn- l) are invariant mani-

folds for P. In fact, these tori are isotropic submanifolds (i.e. the

canonical 2-form w vanishes on them), a fact we shall need later.

The program is to show that for e t 0 some of the tori persist and

that their stable and untable manifolds intersect transversely. To do this

we shall invoke the KAM theory and Melnikov's method. The result will then

be interpreted as Arnold diffusion.

Let us first discuss the invariant tori. The manifold obtained by setting

q = qo, p p is a 2n-2 dimensional normally hyperbolic invariant manifold,

00say Mo , for our Poincarg map P.. Thus, for e small, Mo  perturbs uni-

quely to an invariant manifold M for P. The KAM thoery now can be applied

to the family of invariant tori T(hl, ..., h n l) on M . If the hypotheses

of non-degeneracy and non-resonance hold (see Arnold [1978, Appendix 8]) then

the torus T(h1 , ..., hn-I) will perturb to an invariant torus T C(hi, ...,I

h ) for P , for E sufficiently small (depending upon the precise 'degree'
n-i
of nondegeneracy). Moreover, the proof shows that this torus is also isotropic
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Csee Moser [1973]). We note that the perturbed torus T hds the same fre-€

quencies 02j(h.) as the unperturbed torus and thus the perturbed phase angles

do not drift appreciably from the unperturbed ones. We use this fact below.

Although a set of positive measure or the perturbed tori persist near

the original ones, the resonant tori containing continuous families of

periodic motions generally break into finite sets of alternating elliptic

and hyperbolic periodic orbits with associated homoclinic motions, as in

Arnold [1978], p. 397. The boundaries of the elliptic islands are conven-

tionally drawn as homoclinic orbits of a flow: these actually belong to an

associated averaged (= canonically transformed) system. Restoration of the

terms omitted in averaging leads to the prediction that these islands will,

in turn, be surrounded by regions containing transverse homoclinic orbits,

(cf. Holmes [1980]) but these regions are smaller than any power of E,

since they can be removed by successive averaging operations. In fact such

'stochastic layers' are generally exponentially small in e and attempts to

compute them by the Melnikov method necessitate a careful examination of

errors. This will be the subject of a further publication; cf. Sanders [1980].

In the case of two degrees of freedom for which the unperturbed reduced

system has a hyperbolic saddle point xo = (qopo), solutions of the per-

turbed system lying in the perturbed stable and unstable manifolds of the

perturbed saddle point x of the map P can be expanded in power series

which converge uniformly in the intervals indicated:

S_ 2

: - e°) + x (eo) + 0(E) o

W u :iu = i(6 - e 0  +~ cxu(eeo) + 0(2),2 6 E (-,60],

pW u

CE
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where x(q - e°) J( e°) is the unperturbed homoclinic orbit. (Recall

(e e') J
that the periodic variable 0 has replaced time.) For details, see Holmes

[1980], Sanders [1980] or Greenspan and Holmes [1981]. (Basically (2.13)

follows from the fact that the perturbed solutions lie in manifolds of solu-

tions forward or backward asymptotic to the perturbed saddle points. ) Similarly,

solutions ly.ing in the perturbed invariant manifolds WS(T ), Wu(TE) of a per-

turbed torus T can be expanded in convergent power series in c in such

intervals, since the perturbed actions are e close and the perturbed angles

do not drift but remain close to the unperturbed angles on the tori. This

result will be used implicitly in what follows.

The perturbed invariant manifolds WS(T ) and wu(T ) of the torus
er

T for the map P are n-dimensional manifolds lying C close to the un-

perturbed homoclinic manifold given by (2.12). i.e.

F = h, I. Z ~ j = 1, ... , n-l (2.14)

where h is the energy of the homoclinic orbit for F. Now we are ready to

give a criterion for the transversal intersection of WS(T ) and Wu(T ). In

order for the results to be applicable, it is useful to present the hypotheses

in terms of data given for the original, rather than the reduced system.

We consider a Hamiltonian system with n+l (> 3) degrees of freedom

of the form

n
H£.(q,p, a1 l ... , e n, Il, ... , I F(q,p) + Gi(I)ni=l i

+ H1 (q,p, e I , ... , ' n, Ill ... , In). (2.15)

Introduce the following assumptions and terminology
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j (Hi) F contains a homoclinic orbit (q(t), p(t)) connecting

a saddle point (qo,p0 ) to itself. Let T be the energy

of this orbit.

(H2) j(Ij) G(I.) > 0 for j = 1, ... , n.

Let h > h and let the unperturbed homoclinic manifold be filled with

an n-parameter family of orbits given by (q,p, e1, ..., e , I, ...,I n)=

( (t),p(t), al1(I1 )t + 0l, ... , n(I)t + e0° ' 19 ... 1n) Pick one such

orbit and let {F,H l} denote the (q,p) Poisson bracket of F(q,p) and

H (q,p, el , ... , en I....., I n) evaluated on this orbit. Similarly, let

{Ik ,H} -aHl/ae k , k 1, ... , n-l be evaluated on this orbit. Define

the Melnikov Vector M = (M 1  ... , M n, M n ) by

M ' h, h i H}
,k(l., n h, .1  , 2 n-1) = J f'k' dt, k 1, ... ,n-I

0 0 {, 1}
o ' e n h, hit h2 , ... 9 ) {F,H I dt. (2.16)

n-1
(We note that hn = h - F - j hj; I and h do not explicitly enter*" j=l n n

the calcualtions, since In is eliminated by the reduction process; we also

note that these integrals need not be absolutely convergent, but we do require

conditional convergence.)

(H3) Assume that the constants G.(I.) = h., j = 1, ... , n are

4 chosen so that the unperturbed frequencies 21l(I), ..., Ql(In) satisfy

the non-degeneracy conditions (i.e '.(I,) 0 0, j = 1, . n-i) and the

non-resonance conditions mentioned above (cf. Arnold [1978], Appendix 8).
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(H4) Assume that the multiply 2T periodic Melnikov vector M :IRn - IRn

(which is independent of E) has at least one transversal zero; i.e. there

is a point (80, ..., 0) for which

I nM(60, ... e) = o

but det[DM(eo, ... , e0)] t 0
I n

where DM is the n x n matrix of partial derivatives of MI9 ... , Mn with
n

respect to e ... , , the initial phases of the orbit.

Here is our main theoretical result.

2.1 Theorem. If conditions (HIl) -(H4) hold for the system (2.15), then, for

e sufficiently small, theperturbed stable and unstable manifolds wS(T

and WU(T ) of the perturbed torus T intersect transversely. (See Figure 2.)

wU(TT E r) W" T

W (T

Figure 2. The stable and unstable manifolds of the invariant torus TC
for the Poincard map in the reduced space for a system with
three degrees of freedom. This figure occurs in (q,p,e1 ,I1 )
sgace (one dimension (11) is suppressed), in a
62 - fixed cross-section for fixed total energy h.

MINIM"
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Remark. The conclusions imply that the perturbed system has no analytic

integrals other than the total energy H6 and, for n + 1 > 3, that Arnold

diffusion occurs. This is discussed in the next section.

Proof. First we notice that the brackets of the original functions project

to corresponding brackets of the reduced system:

{L0, L 1} : {F,H 1 (2.17)
[,n (I n)]

and k }- H--T-j Ik }, k ,..., n -l (2.18)
n n

(see Holmes and Marsden [1981b], Prop. 3.1).

We next wish to relate these brackets to a vector measuring the distance

between the perturbed stable and unstable manifolds.

Consider the suspended system in (q,p,61 , ... , en- l , Il l ... , In)

space. Pick a transversal, E e to the unperturbed homoclinic manifold

WS (T) = Wu(T) in (q,p, 6l, ..., In- l I l, ..., In-l) space at the point

0 0 T0(-(0), -(O), 81l ... I ° I , n.. II ) and at "time" en. Now for C

sufficiently small, WS(T ) and wU(T ) intersect E in unique points

in (q,p, 01, ... , 8n-l' i 1 .... I n-l) space, which we denote

xs(e 0, 80) and xu (80, 80)e n E n

The unique trajectories in (q,p, 81l .... I en.l I , 9.... . . 1n-i en) space

with these points as initial conditions and "time" On will be denoted

xS(80, on) and xu(o ° , en)

n nS
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As in Holmes and Marsden [1981a], a measure of the distance between these

vectors and the tangent to WS(T) = WU(T) in the "en direction", i.e.

the direction of X L the Hamiltonian vectorfield of the unperturbed dyna-

mics, is provided by the symplectic form. Let

A (6 ,60) = : o x s - xu) def A + _ A-,n + O(F2)

s,n n n Lo C E,n En

Now as 6~ -~ +00, x5 _T and as en -0 -0, xU - Te, so as in Holmes andNo a n  E C xs  ada n  ,

Marsden [1981a] Lemma 5, we obtain

eo o  M 0Mn0 ..., e°  60)

An(60) = A (60,e ) = I n-l' n + 2 (2.19)
Enn(in)]2 + 0(n ).00d]

Note that the integrals (2.16) are well defined since one integrates forward

along tne stable manifold and backward along the unstable manifold (cf. eq.

(2.13)).

A crucial feature of this calculation is the fact that A+ (ene 0) 0 0
e 'n n n

as en + since w vanishes identically on T. This holds as follows.

The invariant tori are isotropic and A+,n (en,  = W(Xo, exs) where X

and x1  are evaluated on the unperturbed homoclinic manifold and x1  is
the solution of the first variation equation. Since X is tangent to T,

L

xI  necessarily approaches a tangent to T, so as T is isotropic,
1
A + 0. We note that in this context the perturbed torus T may movee,ne

(by 0(e)) and need not remain fixed as in the special case treated by Arnold

[1964) or as in Melnikov's [1963] paper (cf. Holmes [1980]).

Thus, M (6 ....... 0 , 80) measures the leading nontrivial componentn 1 0n- n
of the distance between WS(T ) and Wu(T ) (up to a constant) in a direc-

tion transverse to the "dynamic" variable en . Likewise, Mi(i -, ...,

n-l) measures the distance between WS(T ) and WU(T ) in the direction

mI
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transverse to the generator of the ei variable. The theorem now follows

from these facts. N

Remarks 1. One can of course permute which of the action angle variables

is used for the reduction procedure. The remaining oscillators must satisfy

the KAM non-resonance and non-degeneracy conditions.

2. J. Gruendler [1981] has treated the 2n dimensional, periodi-

cally forced case in which one also has an n-parameter family of unperturbed

homoclinic orbits but in which they are homoclinic orbits to a hyperbolic

saddle point x and dim WS(x) = dim Wu(x) = n. Again one obtains a gen-

eralized n-vector of Melnikov functions each depending upon n arguments,

one of which is the section 'time' (e6) and the remaining n-l of which

serve to parametrize the family of orbits. The manifolds WS(x) and Wu(x)

are both necessarily isotropic, so one can proceed in a way analogous to

that here. However no KAM theory is needed and ordinary horseshoes rather

than Arnold diffusion occur. Gruendler applies applies the theory to the

case of a periodically forced spherical pendulum.

3. The theorem can be somewhat generalized. For example, many inte -

grablesystems do not decompose precisely as assumed in the form F(q,p) +

G GI.) and one sometimes finds that the unperturbed 'frequencies',
j1 aG.

also depend upon (q,p). If this occurs, and az(Ijq,p) is not constant

on the unperturbed manifold, then it must be incorporated into the Poisson

brackets (cf. eq. (2.17)-(2.18)). This situation will be dealt with in

Holmes and Marsden [1981c].

20
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4. Alan Weinstein has pointed out that even without hypothesis (H4),

the stable and unstable manifolds of the perturbed torus T must inter-

sect. This comes about as follows. As in the standard Melnikov Analysis

(Holmes and Marsden [1981a] pick a 2n-dimensional cross section E n' The

stable and unstable manifolds of T for the associated Poincard map,

. 4 and Wu(T are Lagrangian submanifolds of E which are coincident

n
at e = 0. Lagrangian intersection theory (Arnold [1965] and Weinstein [1973])

shows that tte perturbed manifolds must intersect. This observation gener-

alizes one of McGehee and Meyer [1974]. It follows that the hypothesis (H4)

Iholds for generic perturbation terms H1. However condition (H4) allows one

to check transversality in specific cases.

5. In contrast to our results, Easton and McGehee [19791 use

Moser's r19781 fixed point theorem to show that some homoclinic orbits in a. rodeis-e*

survive under special perturbations. Alan Weinstein points out that, similarly

at least two homoclinic orbits survive perturbations of the spherical

pendulum's S1  family of homoclinic orbits.

..... .. H I..
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§3. Non-integrability and Arnold Diffusion

If the stable and unstable manifolds WS(A), Wu(A) of a hyperbolic

invariant set A intersect transversely then it follows fronr the lambda

lemma (Palis [1969], Newhouse L1980]) that Ws(A) accumulates on itself

and Wu(A) accumulates on itself. A similar result holds for the invariant

tori in the present case (cf. Arnold L1964], Theorem 1); more precisely, if

Al c wU(T ) is an n dimensional neighborhood of a transverse homoclinic

point x EWU(T)AWS(T ), and A2 C Wu(T ) is any open disc then there

are points of n Pn (Al) lying arbitrarily close to A2. Such a
ni E

torus T is said to be a transition torus. The torus is said to lie in
1 T2  Tk  i h ntbenI

a transition chain of transition tori TE, , . T"' if the unstable mani-

fold WU(T J ) of the jth torus transversely intersects the stable manifold

of the (j + 1)st. This holds in our case, since, by KAM theory, the set

of 'sufficiently irrational' tori preserved when e t 0 has measure

i(e) - 1 as E - 0 (it is, in fact, a Cantor set). Thus, for sufficiently

small E one can find tori T T j+l which are, along with their stable•~~~~~ ~~ Eml :n a fn oiTT

and unstable manifolds, arbitrarily Cr close away from the torus ,zr,4

"wt'r;&have large "oscillations" near the torus as in Holmes and Marsden

A 1981b], Fig. B.I. It follows that if Wu(TJ) intersects WS(TJ) trans-

versely it must also intersect WS(T transversely. Applying the same

argument to Tj+l Tj+2, ... one constructs a transition chain. Orbits

lying in Wu(TJ) therefore accumulate on Wu(Tk) for k > j and these

orbits and nearby ones provide a mechanism by which solutions can "diffuse"

from the neighborhood of the torus to any other in the transition chain.

(cf. Arnold [1964], Theorem 2). An argument analogous to that above shows

that wUT intersects wS(T J ) and thus that diffusion can take place



15

in both directions along the chain. Note, however, that the length of the

chain is generally governed by the perturbation strength e, since as e

increases the set of perturbed tori generally diminishes.

The mechanism outlined above, which we attempt to portray in Figure 3,

is the basis for Arnold diffusion. Clearly it can only occur in systems

with three or more degrees of freedom (n > 2), since the unperturbed 2n

dimensional reduced Poincard map must admit continuous families of tori

connected by smooth homoclinic manifolds,and this cannot occur in two

dimensions. For more information, numerical examples and physical insights,

see Chirikov [1979] and Lieberman L1980]. The main physical consequence of

diffusion is that (given sufficient time) energy can be transferred back

and forth in relatively large amounts between distinct physical components

or vibration modes of the system. Moreover this transfer of energy will

typically take place in an irregular manner, in contrast to the regular

quasi periodic energy transfer occuring between modes in linear or other

integrable systems.

Thus, in contrast to the two degree of freedom case, in which the

sufficiently irrational invariant tori, preserved for small perturbations,

serve as boundaries to regions of homoclinic (chaotic)motions in the three

dimensional total energy manifold, in systems with three or more degrees of

freedom the solutions can diffuse from torus to torus along transition chains;

the n-tori which are preserved do not bound regions of 2n + 1 space for

n > 2. In our case, since two way transition chains can be chosen, we can

find periodic motions of arbitrarily high period close to such chains, just

as in the standard two dimensional horseshoe example. The density of the

set of such motions and the dense orbit accompanying them guarantees non-
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WU(Tj+l) (T 
Tj~l

CC

I Wu(TJ:

Figure 3. Intersections of manifolds and Arnold diffusion
in a three degree of freedom system. The Poincard
section 62 = 2 is shown on the energy surface He = h.

1 .-

existence of any additional analytic integrals other than the total energy

He. (In fact one sees that such dense orbits exist within neighborhoods of any

transverse homoclinic orbits connecting a torus to itself, without invoking

the idea of diffusion.)

The presence of a small amount of noise in a system is believed to

"stabilize" in some sense the occurrence of Arnold diffusion, in the same

way that noise often "stabilizes" or "makes visible" horseshoes (cf. Holmes

and Marsden L1981b]).
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§4. An Example: the simple pendulum coupled to two oscillators

We illustrate the theory developed above with a generalization of

our earlier two degree of freedom pendulum-oscillator model (Holmes and

Marsden L1981b]). Consider a simple pendulum linearly coupled to two

nonlinear oscillators. For simplicity we assume that the oscillators are

identical (this is not important) and that their Hamiltonians can be ex-

pressed as G((x2 + yI2) or, equivalently, in action angle coordinates

as

G(1i), i = 1,2 , (4.1)

with Q(Ii) =T i (1i )'  0 for I i > 0 , (4.2a)

S2G

and 2'(1 i ) (I i ) # 0 , (4.2b)
1

(cf. eqns. (2.3) and condition (H2) of Section 2). Elimisiation of either 1 ,

or 12 by reduction is then possible. For definiteness, we shall assume

that 12 is removed. Our assumption of the form G((x. + y)/2)is merely
2 ~1

for computational convenience, since more 'realistic' anharmonic oscilla-

tors lead to Hamiltonians G(.i) expressed in terms of, for example, elliptic

functions (cf. Greenspan and Holmes [1981]).

The system to be studied has the Hamiltonian

H= p2/2 - cos q + G(II) + G(I) + . [( - T sin I - + -2

11 2 1 2

(4.3)

The unperturbed orbits in the homoclinic manifold are given by

(Up, le 2, 1191 2) (±2 arctan(sinh t), ±2 sech t, l1 )t + e
a(t 2)t + 80 , i' ,2 t 44
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where h > 1 is the total energy and 1i 1 the energy of the homoclinic

orbit and G 1(z I) = his G 2 (2) = h - 1 h h1. Assumptions H(l) and H(2)

of Theorem 3.1 are therefore satisfied and, in view of (4.2a,b) we can pick

h. and h I so that the nonresonance conditions necessary for application

of the KAM theorem are met. To check the final assumption we compute the

Poisson brackets {11,H I} and {F,H 1}. From (4.3) we have

.4 ISH 11  L - sin e q) YTcos

and

IFH1  2. DHI aF WH iqfFH q -3- T inq- p[- (V2-Y7 si n e1  q1)

(VI2 si 2 - q)] (4.5)

p[Vr2Ii sin el + vr2IF sin 6 - 2q]

Thus, using (4.4) we have

000

1U cos'G2.,1)t + 60) dt

and

M2( ,~h,h1 f + 2 sech t[42'17i-sin&(z 1,)t + e0) +

/2-z sin(sa(2,)t + 00) T4 arctan(sinh t)] dt. (4.6)
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Noting that the integrals of products of odd and even functions vanish

over the infinite domain and taking the positive branch of the homoclinic

manifold, these two functions become

M1 = 2v-2- I- arctan(sinh t) sin(a(f)t)dt-sin 61,

2 = 2v sech t cos(a(2)t dt.sin 80

+ 22~ . sech t cos(Q(z 2 )t) dt.sin e . (4.7)

For brevity we write

a(z1) = Wl , Q(92) = W2"

To evaluate the first conditionally convergent integral we choose, for

computational convenience, the limits as follows:

N1T/wI

lira arctan(sinh t) sin wlt dt

N I-N/w

A lim i arctan(sinh t)cos wit + 2-+ dt
N wl-NiT/cu 1  wl -NiT/cu 1 1 + sinh t

-1 T sech2t cos wlt dt

- 1 (w.-,00 c(~J(49
IIw-- -!1 rT 1 cosech -- - . (4 .9 )
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The final integral is obtained by the method of residues. Similarly, we

have

. sech t cos wt dt = 7Tj sech ; j 1,2, (4.10)

and thus

Mi = 2TirV 2 - cosech-TWijsin 60

2 = 2iTR 1 w1 sech -&-} sin 1 + /22 w2 sech sin e . (4.11)

One obtains a similar result (with an appropriate change of sign) on the

negative branch of the manifold.

We therefore find zeroes when 0 = kit, 0= Z7 for all integers Z, k

det D M - --- = ±8t 0.ae~ ae ae~ 3e1  L2 J oec s

e 0 X~r(4.12)82

Thus the final assumption is satisfied for suitable choices of h and h1

and we have

4.1 Theorem. For e sufficiently small the Hamiltonian system (4.3) has

a set of 2 dimensional invariant tori of positive measure each of whose un-

stable manifolds intersects its stable manifold transversely. Moreover, a

finite transition chain of such tori T1  TW can be chosen such that

WU(T) Tw ) and Wu(T j = 1, m-l. Thus, orbits
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can be found which pass from the neighborhood of any torus Tk to the

neighborhood of any other torus T in the chain. This situation obtains

on every energy level H6 = h > 1.

Remarks. 1. Arnold's [1964] example is similar to ours in some respects,

but he employed explicit external forcing, taking a t-periodic two degree

of freedom system Hc(q,p,e, I,t) rather than a three degree of-freedom

autonomous system. This perturbation was further chosen to vanish on the

tori, so that the perturbed tori lie in the same positions as the unperturbed

tori. As we remarked in Section 3, this is not necessary since the bracket

W(X oX 1) = {LO,Ll} vanishes on the unperturbed isotropic tori, and thus
L L

the integral of the Poisson bracket along the unperturbed orbits still pro-

vides a good measure of the separation of the perturbed manifolds.

2. Although the theoremasserts that diffusion occurs on every

energy level K > 1, the latitude available for choice of hI and hence for

satisfaction of the nonresonance conditions increases with h. Thus the 'suf-

ficiently small E' approaches zero as h 1.

.

-a

II
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§5. Conclusions

This paper and its companions (Holmes and Marsden [1981b], [1981c]),

address the general question of perturbations of integrable multidimensional

Hamiltonian systems. A particular area of interest is the development of

a method for investigating the integrability of the perturbed problem, and

for providing a qualitative description of orbits in phase space.

In the present paper we have combined a reduction technique with a vec-

torial version of Melnikov's [1963] method to establish the existence of

Arnold diffusion in Hamiltonian systems with at least three degrees of free-

dom. This in turn implies that the system is non integrable in the classical

sense: there are no analytic integrals other than the total energy. The

method is applied to the specific case of a pendulum coupled to two non-

linear oscillators. It is shown that the stable and unstable manifolds of

non-resonant tori that survive under a small perturbation intersect trans-

versely. We briefly discuss how this enables points in phase space to dif-

fuse.

3'.

:t

, I
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