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Melody Extraction from Polyphonic Music Signals

using Pitch Contour Characteristics
Justin Salamon* and Emilia Gómez

Abstract—We present a novel system for the automatic ex-
traction of the main melody from polyphonic music recordings.
Our approach is based on the creation and characterisation of
pitch contours, time continuous sequences of pitch candidates
grouped using auditory streaming cues. We define a set of contour
characteristics and show that by studying their distributions we
can devise rules to distinguish between melodic and non-melodic
contours. This leads to the development of new voicing detection,
octave error minimisation and melody selection techniques.

A comparative evaluation of the proposed approach shows
that it outperforms current state-of-the-art melody extraction
systems in terms of overall accuracy. Further evaluation of the
algorithm is provided in the form of a qualitative error analysis
and the study of the effect of key parameters and algorithmic
components on system performance. Finally, we conduct a glass
ceiling analysis to study the current limitations of the method,
and possible directions for future work are proposed.

Index Terms—Predominant Melody Estimation, Multi-pitch
Estimation, Music Information Retrieval, Audio Content Descrip-
tion, Pitch Contour.

I. INTRODUCTION

A. Definition and Motivation

G IVEN the audio recording of a piece of polyphonic

music, the task of melody extraction involves automati-

cally extracting a representation of the main melodic line. By

polyphonic we refer to music in which two or more notes can

sound simultaneously, be it different instruments (e.g. voice,

guitar and bass) or a single instrument capable of playing

more than one note at a time (e.g. the piano). To define the

extracted melody representation, we must first have a clear

definition of what the main melody actually is. As stated in

[1], the term melody is a musicological concept based on

the judgement of human listeners, and we can expect to find

different definitions for the melody in different contexts [2],

[3]. In order to have a clear framework to work within, the

Music Information Retrieval (MIR) community has adopted in

recent years the definition proposed by [1], “. . . the melody is

the single (monophonic) pitch sequence that a listener might

reproduce if asked to whistle or hum a piece of polyphonic

music, and that a listener would recognise as being the

‘essence’ of that music when heard in comparison”. We use

this definition for the purpose of this study and, as in previous

studies, select the evaluation material such that given the above

definition human listeners could easily agree on what the main
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melody is, regardless of the musical genre of the piece. This

is important as it allows us to generate an objective ground

truth in order to quantitatively compare different approaches.

The melody representation used in this study is the one

proposed by [4], namely a sequence of fundamental frequency

(F0) values corresponding to the perceived pitch of the main

melody. It is important to note that whilst pitch and F0 are

different concepts (the former being perceptual and the latter

a physical quantity), as common to the melody extraction

literature we will use the term pitch to refer to the F0 of the

melody. As argued in [4] such a mid-level description (avoid-

ing transcription into, for example, Western score notation)

has many potential applications such as Query by Humming

[5], music de-soloing for the automatic generation of karaoke

accompaniment [6] and singer identification [7], to name a

few. Determining the melody of a song could also be used as

an intermediate step towards the derivation of semantic labels

from musical audio [8]. Note that we consider not only sung

melodies but also those played by instruments, for example a

jazz standard in which the melody is played by a saxophone.

B. Related Work

Many methods for melody extraction have been proposed.

Of these perhaps the largest group are what could be referred

to as salience-based methods, which derive an estimation of

pitch salience over time and then apply tracking or transition

rules to extract the melody line without separating it from

the rest of the audio [3], [4], [9], [10]. Such systems follow a

common structure – first a spectral representation of the signal

is obtained. The spectral representation is used to compute a

time-frequency representation of pitch salience, also known

as a salience function. The peaks of the salience function are

considered as potential F0 candidates for the melody. Different

approaches exist for computing the salience function, [11] uses

harmonic summation with weighting learned from instrument

training data, whilst [4] lets different F0s compete for har-

monics, using Expectation-Maximization (EM) to re-estimate

a set of unknown harmonic-model weights. Finally, the melody

F0s are selected using different methods of peak selection or

tracking. In some systems a subsequent voicing detection step

(determining whether the main melody is present or absent in

each time frame) is also included. A detailed review of such

systems is provided in [1].

Another set of approaches attempt to identify the melody

by separating it from the rest of the audio using timbre-based

source separation techniques [12], [13]. Such systems use two

separate timbre models, one for the melody (sometimes specif-

ically human singing voice) and the other for the accompani-

ment. Some systems incorporate grouping principles inspired
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by auditory scene analysis (ASA), most often frequency prox-

imity [4]. Other grouping principles have also been exploited –

in [14] grouping principles based on frequency and amplitude

proximity and harmonicity are incorporated into a separation

framework based on spectral clustering, where a monophonic

pitch tracker is later applied to the separated melody source.

Algorithms that exploit the spatial information in stereo

recordings have also been proposed. In [15] stereophonic

information is used to estimate the panning of each source,

and a production model (source/filter) is used to identify

and separate the melody. Melody extraction is used as an

intermediate step to tune the separation parameters to the

estimated melody. Finally, purely data-driven approaches have

also been studied, such as [16] in which the entire short-time

magnitude spectrum is used as training data for a support

vector machine classifier.

Despite the variety of proposed approaches, melody ex-

traction remains a challenging and unsolved task, with cur-

rent state-of-the-art systems achieving overall accuracies1 of

around 70%2. The complexity of the task is twofold – firstly,

the signal representation of polyphonic music contains the

superposition of all instruments which play simultaneously.

When considering the spectral content of the signal, the

harmonics of different sources superimpose making it very

hard to attribute specific frequency bands and energy levels

to specific instrument notes. This is further complicated by

mixing and mastering techniques such as adding reverberation

(blurs note offsets) or applying dynamic range compression

(reduces the difference between soft and loud sources, increas-

ing interference). Secondly, even once we obtain a pitch-based

representation of the signal, the task of determining which

pitches constitute the main melody needs to be solved [17].

This in turn entails three main challenges – determining when

the melody is present and when it is not (voicing detection),

ensuring the estimated pitches are in the correct octave (avoid-

ing octave errors), and selecting the correct melody pitch when

there is more than one note sounding simultaneously.

C. Method Introduction, Contributions and Paper Outline

Though promising results have been achieved recently by

separation-based methods [13], salience-based approaches are

still amongst the best performing systems, as well as being

conceptually simple and computationally efficient. In this

paper a novel salience-based melody extraction method is

presented. The method is centred on the creation and char-

acterisation of pitch contours – time continuous sequences of

F0 candidates generated and grouped using heuristics based

on auditory streaming cues [18] such as harmonicity, pitch

continuity and exclusive allocation. We define a set of musical

features which are automatically computed for each contour.

By studying the feature distributions of melodic and non-

melodic contours we are able to define rules for distinguishing

between the contours that form the melody and contours

that should be filtered out. Combining these rules with voice

1Overall accuracy is defined in Section III-B.
2Music Information Retrieval Evaluation eXchange [Online]. Available:

http://www.music-ir.org/mirex/wiki/Audio Melody Extraction (Dec. 2011).

leading principles [19], novel techniques are developed for ad-

dressing the challenges mentioned earlier – voicing detection,

avoiding octave errors and selecting the pitch contours that

belong to the main melody.

The idea of F0 candidate grouping (or tracking) is not new

to the literature [10], [20]. ASA inspired grouping principles

have been employed in melody extraction systems based on

source separation [14], as well as in [9] where pitch contours

are first segmented into notes out of which the melody is

selected. While the structure of our system is somewhat

similar, the presented method differs in several important

ways. To begin with, a wider set of contour characteristics

beyond the basic pitch height, length and mean salience is

considered. The method does not require segmentation into

notes, and makes use of contour features that would be lost

during pitch quantisation such as vibrato and pitch deviation.

Furthermore, these features are exploited using new techniques

following the study of contour feature distributions.

The main contribution of the paper is the contour char-

acterisation and its application for melodic filtering. The

contribution can be summarised as follows: a method for the

generation and characterisation of pitch contours is described,

which uses signal processing steps and a salience function

specifically designed for the task of melody extraction. A set

of pitch contour features is defined and their distributions are

studied, leading to novel methods for voicing detection, octave

error minimisation and melody selection.

In addition to the main contribution, a comparative eval-

uation with state-of-the-art systems is provided, including a

statistical analysis of the significance of the results. We also

study the effect of optimising individual stages of the system

[21] on its overall performance, and assess the influence of

different algorithmic components. These evaluations are com-

plemented with a qualitative error analysis and glass ceiling

analysis to determine the current limitations of the approach

and propose directions for future work.

The outline of the remainder of the paper is as follows. In

Section II the proposed melody extraction method is described.

In Section III the evaluation process is described, including the

test collections and metrics used for evaluation. In Section IV

the results of the evaluation are presented, followed by a qual-

itative error analysis, component evaluation and a glass ceiling

study. Finally in Section V we conclude with a discussion of

the proposed method and the obtained results, providing some

suggestions for future improvements as well as a discussion

on the remaining challenges in melody extraction.

II. PROPOSED METHOD

Our approach is comprised of four main blocks, as depicted

in Figure 1. In the following sections we describe each of

the four blocks in detail. The motivation for choosing specific

processing steps and parameter values for the first two blocks

of the system is discussed in Section IV-C.

A. Sinusoid Extraction

The sinusoid extraction process is divided into three stages

as depicted in Figure 1: filtering, spectral transform and

sinusoid frequency/amplitude correction.
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Fig. 1. Block diagram of the system’s four main blocks: sinusoid extraction,
salience function computation, pitch contour creation and melody selection.

1) Filtering: We apply an equal loudness filter [22], which

enhances frequencies to which the human listener is more

perceptually sensitive (and attenuates those to which they

are not). This is done by taking a representative average of

the equal loudness curves [23] and filtering the signal by its

inverse. The filter is implemented as a 10th order IIR filter

cascaded with a 2nd order Butterworth high pass filter (for

further details see [22]). The filter is well suited for melody

extraction, as it enhances mid-band frequencies where we can

expect to find the melody, and attenuates low-band frequencies

where low pitched instruments (e.g. the bass) can be found.

2) Spectral Transform: After filtering, we apply the Short-

Time Fourier Transform (STFT) given by:

Xl(k) =

M−1
∑

n=0

w(n) · x(n + lH)e−j 2π
N

kn, (1)

l = 0, 1, . . . and k = 0, 1, . . . , N − 1

where x(n) is the time signal, w(n) the windowing function,

l the frame number, M the window length, N the FFT length

and H the hop size. We use the Hann windowing function

with a window size of 46.4ms, a hop size of 2.9ms and a ×4
zero padding factor, which for data sampled at fS = 44.1kHz

gives M = 2048, N = 8192 and H = 128. The relatively

small hop size (compared to other MIR tasks [24]) is selected

to facilitate more accurate F0 tracking during the creation of

pitch contours. The decision to use the STFT rather than some

type of multi-resolution transform [4], [10], [20] is justified in

Section IV-C. Given the FFT of a single frame Xl(k), spectral

peaks pi are selected by finding all the local maxima ki of the

magnitude spectrum |Xl(k)|.
3) Frequency/Amplitude Correction: The location of the

spectral peaks is limited to the bin frequencies of the FFT,

which for low frequencies can result in a relatively large

error in the estimation of the peak frequency. To overcome

this quantisation we use the approach described in [25], in

which the phase spectrum φl(k) is used to calculate the

peak’s instantaneous frequency (IF) and amplitude, which

provide a more accurate estimate of the peak’s true frequency

and amplitude. The choice of this correction method over

alternative approaches is explained in Section IV-C.

The IF f̂i of a peak pi found at bin ki is computed from

the phase difference ∆(k) of successive phase spectra using

the phase vocoder [26] method as follows:

f̂i = (ki + κ(ki))
fS

N
, (2)

where the bin offset κ(ki) is calculated as:

κ(ki) =
N

2πH
Ψ

(

φl(ki) − φl−1(ki) −
2πH

N
ki

)

, (3)

where Ψ is the principal argument function which maps the

phase to the ±π range. The instantaneous magnitude âi is

calculated using the peak’s spectral magnitude |Xl(ki)| and

the bin offset κ(ki) as follows:

âi =
1

2

|Xl(ki)|

WHann

(

M
N

κ(ki)
) , (4)

where WHann is the Hann window kernel.

B. Salience Function Computation

The extracted spectral peaks are used to construct a salience

function – a representation of pitch salience over time. The

peaks of this function form the F0 candidates for the main

melody. The salience computation in our system is based on

harmonic summation similar to [11], where the salience of

a given frequency is computed as the sum of the weighted

energies found at integer multiples (harmonics) of that fre-

quency. Unlike [11], only the spectral peaks are used in the

summation, to discard spectral values which are less reliable

due to masking or noise. Using the peaks also allows us

to apply the aforementioned frequency correction which has

been shown to improve the frequency accuracy of the salience

function [21].

The important factors affecting the salience computation are

the number of harmonics considered Nh and the weighting

scheme used. The choice of these parameters is discussed in

the results section of the paper (IV-C).

Our salience function covers a pitch range of nearly five

octaves from 55Hz to 1.76kHz, quantized into b = 1 . . . 600
bins on a cent scale (10 cents per bin). Given a frequency f̂
in Hz, its corresponding bin B(f̂) is calculated as:

B(f̂) =









1200 · log2

(

f̂
55

)

10
+ 1







 . (5)

At each frame the salience function S(b) is constructed

using the spectral peaks pi (with frequencies f̂i and linear

magnitudes âi) returned by the sinusoid extraction step (i =
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1 . . . I , where I is the number of peaks found). The salience

function is defined as:

S(b) =

Nh
∑

h=1

I
∑

i=1

e(âi) · g(b, h, f̂i) · (âi)
β , (6)

where β is a magnitude compression parameter, e(âi) is a

magnitude threshold function, and g(b, h, f̂i) is the function

that defines the weighting scheme. The magnitude threshold

function is defined as:

e(âi) =

{

1 if 20 log10(âM/âi) < γ,
0 otherwise,

(7)

where âM is the magnitude of the highest spectral peak in

the frame and γ is the maximum allowed difference (in dB)

between âi and âM . The weighting function g(b, h, f̂i) defines

the weight given to peak pi, when it is considered as the hth

harmonic of bin b:

g(b, h, f̂i) =

{

cos2(δ · π
2
) · αh−1 if |δ| ≤ 1,

0 if |δ| > 1,
(8)

where δ = |B(f̂i/h) − b|/10 is the distance in semitones

between the harmonic frequency f̂i/h and the centre frequency

of bin b, and α is the harmonic weighting parameter. The non-

zero threshold for δ means that each peak contributes not just

to a single bin of the salience function but also to the bins

around it (with cos2 weighting). This avoids potential prob-

lems that could arise due to the quantization of the salience

function into bins, and also accounts for inharmonicities. In the

results section of this paper (IV-C) we discuss the optimisation

of the aforementioned parameters for melody extraction, and

examine the effect it has on the global performance of the

system, comparing melody extraction results before and after

parameter optimisation.

C. Creating Pitch Contours (Peak Streaming)

Once the salience function is computed, its peaks at each

frame are selected as potential melody F0 candidates. At this

stage, some melody extraction methods attempt to track the

melody directly from the set of available peaks [4], [27]. Our

approach however is based on the idea that further information

(which can be exploited to select the correct melody pitch) can

be extracted from the data by first grouping the peaks into pitch

contours – time and pitch continuous sequences of salience

peaks. Each contour has a limited time span corresponding

roughly to a single note in the shortest case or a short phrase

in the longest. Though F0 grouping is not a new concept [9],

[20], in this paper the characterisation of pitch contours is

explored in new ways, resulting in original solutions to the

challenges mentioned in Section I-B.

Before the streaming process is carried out, we first filter out

non-salient peaks to minimise the creation of “noise” contours

(non-melody contours). The filtering process is carried out

in two stages: first, peaks are filtered on a per frame basis

by comparing their salience to that of the highest peak in

the current frame. Peaks below a threshold factor τ+ of the

salience of the highest peak are filtered out. In the second

stage the salience mean µs and standard deviation σs of all

remaining peaks (in all frames) are computed. Peaks with

salience below µs − τσ · σs are then filtered out, where τσ

determines the degree of deviation below the mean salience

accepted by the filter. The first filter ensures we only focus

on the most predominant pitch candidates at each frame,

whilst the second, a precursor to our voicing detection method,

removes peaks in segments of the song which are generally

weaker (and more likely to be unvoiced). This filtering has an

inherent trade-off – the more peaks we filter out the less noise

contours will be created (thus improving the detection of non-

voiced segments and the correct selection of melody contours),

however the greater the risk of filtering out salience peaks

which belong to the melody (henceforth “melody peaks”). The

selection of optimal values for τ+ and τσ is discussed at the

end of this section.

The remaining peaks are stored in the set S+, whilst the

peaks that were filtered out are stored in S−. The peaks are

then grouped into contours in a simple process using heuristics

based on auditory streaming cues [18]. We start by selecting

the highest peak in S+ and add it to a new pitch contour. We

then track forward in time by searching S+ for a salience

peak located at the following time frame (time continuity

cue) which is within 80 cents (pitch continuity cue) from the

previously found peak. A matching peak is added to the pitch

contour and removed from S+ (exclusive allocation principle).

This step is repeated until no further matching salience peaks

are found. During the tracking we must ensure that short

time gaps in the pitch trajectory do not split what should

be a single contour into several contours. To do so, once

no matching peak is found in S+, we allow the tracking to

continue for a limited amount of frames using peaks from

S−. The underlying assumption is that melody peaks whose

salience is temporarily masked by other sources will be stored

in S−, and tracking them allows us to stay on the correct

trajectory until we find a peak in S+. If the gap length exceeds

100ms (see below for selection of threshold and parameter

values) before a peak from S+ is found the tracking is ceased.

We then go back to the first peak of the contour and repeat

the tracking process backwards in time. Once the tracking is

complete we save the contour and the entire process is repeated

until there are no peaks remaining in S+.

To select the best parameters for the contour creation (τ+,

τσ , the maximum allowed pitch distance and gap length), we

compared contours generated from different excerpts to the

excerpts’ melody ground truth and evaluated them in terms of

pitch accuracy (distance in cents between the ground truth and

the contours) and voicing (i.e. whether the contours exactly

cover the ground truth or are otherwise too long or too short).

This process was repeated in a grid search until the parameters

which resulted in the most accurate tracking were found (0.9,

0.9, 80 cents and 100ms respectively). For τ+ and τσ we

also measured the amount of melody peaks (and non-melody

peaks) before and after the filtering. This analysis revealed

that as τ+ is increased the number of non-melody salience

peaks drops dramatically, whilst the number of melody peaks

reduces very gradually. Using the selected parameter values
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the number of non-melody peaks is reduced by 95% whilst

melody peaks are reduced by less than 17% (and this loss

can be recovered by the gap tracking). The result is that the

percentage of melody peaks out of the total number of peaks

goes up on average from 3% initially to 52% after filtering.

The quality of contour formation is discussed in Section IV-G.

D. Pitch Contour Characterisation

Once the contours are created, the remaining challenge is

that of determining which contours belong to the melody. To

do so, a set of contour characteristics is defined which will

be used to guide the system in selecting melody contours.

Similarly to other systems, we define features based on contour

pitch, length and salience. However, by avoiding the quantisa-

tion of contours into notes [9] we are able to extend this set by

introducing features extracted from the pitch trajectory of the

contour, namely its pitch deviation and the presence of vibrato.

Note that whilst [9] also keeps a non-quantised version of each

contour for use at a later stage of the algorithm, it does not

exploit it to compute additional contour features. Furthermore,

as shall be seen in the next section, we use not only the feature

values directly but also their distributions. The characteristics

computed for each contour are the following:

• Pitch mean Cp̄: the mean pitch height of the contour.

• Pitch deviation Cσp
: the standard deviation of the con-

tour pitch.

• Contour mean salience Cs̄: the mean salience of all

peaks comprising the contour.

• Contour total salience CΣs: the sum of the salience of

all peaks comprising the contour.

• Contour salience deviation Cσs
: the standard deviation

of the salience of all peaks comprising the contour.

• Length Cl: the length of the contour.

• Vibrato presence Cv: whether the contour has vibrato

or not (true/false). Vibrato is automatically detected by

the system using a method based on [28]: we apply the

FFT to the contour’s pitch trajectory (after subtracting the

mean) and check for a prominent peak in the expected

frequency range for human vibrato (5-8Hz).

In Figure 2 we provide examples of contours created for

excerpts of different musical genres (the relative sparseness

of non-melody contours can be attributed to the equal loud-

ness filter and salience peak filtering described earlier). By

observing these graphs we can propose contour characteristics

that differentiate the melody from the rest of the contours:

vibrato, greater pitch variance (in the case of human voice),

longer contours, a mid-frequency pitch range and (though

not directly visible in the graphs) greater salience. These

observations concur with voice leading rules derived from

perceptual principles [19]. To confirm our observations, we

computed the feature distributions for melody and non-melody

contours using the representative data-set described in Section

III-A3. Note that in most (but not all) of the excerpts in

this data-set the melody is sung by a human voice. The

resulting distributions are provided in Figure 3, where for

each feature we plot the distribution for melody contours

(solid red line) and non-melody contours (dashed blue line). In

plots (c), (d) and (e) the feature values are normalised by the

mean feature value for each excerpt. We see that the above

observations are indeed evident in the feature distributions.

Additionally, for vibrato presence we found that 95% of all

contours in which vibrato was detected were melody contours.

The consideration of various contour characteristics means

accompanying instruments will not necessarily be selected as

melody if they exhibit a certain melodic characteristic. For

example, a contour produced by an accompanying violin with

vibrato may still be discarded due to its pitch height. Finally,

we note that basing our system on pitch contours gives us the

possibility of introducing new contour features in the future,

as well as using these features for other MIR tasks such as

genre classification [29] or singing style characterisation.
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Fig. 2. Pitch contours generated from excerpts of (a) vocal jazz, (b) opera,
(c) pop and (d) instrumental jazz. Melody contours are highlighted in bold.
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Fig. 3. Pitch contour feature distributions: (a) Pitch mean, (b) Pitch std. dev.,
(c) Mean salience, (d) Salience std. dev., (e) Total salience, (f) Length. The
red solid line represents the distribution of melody contour features, the blue
dashed line represents the distribution of non-melody contour features.
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E. Melody Selection

We now turn to describe how the melody is chosen out of all

the contours created in the previous step of our method. Rather

than selecting melody contours, we pose this task as a contour

filtering problem, where our goal is to filter out all non-melody

contours. As seen in the block diagram in Figure 1, this process

is comprised of three steps: voicing detection, octave error

minimisation/pitch outlier removal, and final melody selection.

In the first two steps contour characteristics are used to filter

out non-melody contours, and in the final step the melody

frequency at each frame is selected out of the remaining

contours.

1) Voicing Detection: Voicing detection is the task of

determining when the melody is present and when it is not.

For example in plot (a) of Figure 2 the melody is present

between seconds 0-3 and 4-5, but not between 3-4 where non-

melody contours are found. To filter out these contours we take

advantage of the contour mean salience distribution given in

plot (c) of Figure 3. Though the distributions are not perfectly

separated, we see that by setting a threshold slightly below the

average contour mean salience of all contours in the excerpt

Cs̄, we can filter out a considerable amount of non-melody

contours with little effect on melody contours. We define the

following voicing threshold τv based on the distribution mean

Cs̄ and its standard deviation σCs̄
:

τv = Cs̄ − ν · σCs̄
(9)

The parameter ν determines the lenience of the filtering – a

high ν value will give more false positives (i.e. false melody

contours) and low value more false negatives (i.e. filter out

melody contours). The sensitivity of the system to the value

of ν is discussed in Section IV-E. We also compared using the

contour total salience CΣs instead of the mean salience in the

equation above, but the latter was found to give better results.

This is likely due to the bias of the contour total salience

towards longer contours, which is not beneficial at this stage

as we risk removing short melody contours. At a later stage

length will be exploited to guide the system when a choice

must be made between alternative concurrent contours.

In the previous section we also noted that if the system

detected vibrato in a contour, it was almost certainly a melody

contour. Furthermore, in plot (b) of Figure 3 we see that

there is a sudden drop in non-melody contours once the pitch

deviation goes above 20 cents, and once the deviation is greater

than 40 cents the probability of a contour being a non-melody

contour is less than 5%. We use this information to tune our

voicing filter, by giving “immunity” to contours where vibrato

was detected (Cv = true) or whose pitch deviation is above 40

cents (Cσp
> 40). In this way we ensure that contours which

have relatively low salience but strong melodic characteristics

are not filtered out at this stage.

2) Octave Errors and Pitch Outliers: One of the main

sources of errors in melody extraction systems is the selection

of a harmonic multiple/sub-multiple of the correct melody F0

instead of the correct F0, commonly referred to as octave

errors. Various approaches have been proposed for the min-

imisation of octave errors, usually performed directly after

the calculation of the salience function and on a per-frame

basis [20], [30]. When we consider a single frame in isolation,

determining whether two salience peaks with a distance of one

octave between them were caused by two separate sources or

whether they are both the result of the same source (one peak

being a multiple of the other) can prove a difficult task. On the

other hand, once we have created the pitch contours, detecting

the presence of octave duplicates becomes a relatively straight

forward task, as these manifest themselves as contours with

practically identical trajectories at a distance of one octave

from each other. In practice, to compare contour trajectories

we compute the distance between their pitch values on a per-

frame basis for the region in which they overlap, and compute

the mean over this region. If the mean distance is within

1200±50 cents, the contours are considered octave duplicates.

An example of octave duplicates can be observed in Figure 2

plot (b) between seconds 3-4s where the correct contour is at

about 4000 cents and the duplicate at about 2800 cents.

In this paper we propose a method for octave error minimi-

sation that takes advantage of this type of temporal information

in two ways. Firstly, as mentioned above, we use the creation

of pitch contours to detect octave duplicates by comparing

contour trajectories. Secondly, we use the relationship be-

tween neighbouring contours (in time) to decide which of

the duplicates is the correct one. Our approach is based on

two assumptions: firstly, that most (though not all) of the

time the correct contour will have greater salience than its

duplicate (the salience function parameters were optimised to

this end). Secondly, that melodies tend to have a continuous

pitch trajectory avoiding large jumps, in accordance with voice

leading principles [19].

To implement these principles, we iteratively calculate a

“melody pitch mean” P (t), i.e. a pitch trajectory that rep-

resents the large scale time evolution of the melody’s pitch.

When octave duplicates are encountered, the assumption is

that the contours directly before and after the duplicates will

pull P (t) towards the duplicate at the correct octave. Thus, the

duplicate closest to P (t) is selected as the correct contour and

the other is discarded. Similarly, we use P (t) to remove “pitch

outliers” – contours more than one octave above or below the

pitch mean. Filtering outliers ensures there are no large jumps

in the melody (continuity assumption), and may also filter out

non-voiced contours that were not captured by the voicing

detection algorithm. The distance between a contour and P (t)
is computed as before, by averaging the per-frame distances

between them. The complete process can be summarised as:

1) Calculate P (t) at each frame as the weighted mean of

the pitch of all contours present in the frame.

2) Smooth P (t) using a 5-second sliding mean filter (length

determined empirically) with a hop size of 1 frame. This

limits the rate at which the melody pitch trajectory can

change, ensuring continuity and avoiding large jumps.

3) Detect pairs of octave duplicates and, for each pair,

remove the contour furthest from P (t).
4) Recompute P (t) using the remaining contours, follow-

ing Steps 1-2.

5) Remove pitch outliers by deleting contours at a distance

of more than one octave from P (t).
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6) Recompute P (t) using the remaining contours, follow-

ing Steps 1-2.

7) Repeat Steps 3-6 twice more, each time starting with

all contours that passed the voicing detection stage, but

using the most recently computed melody pitch mean

P (t). The number of iterations was chosen following

experimentation suggesting this was sufficient for ob-

taining a good approximation of the true trajectory of

the melody. In the future we intend to replace the fixed

iteration number by a stabilisation criterion.

8) Pass the contours remaining after the last iteration to the

final melody selection stage.

It was found that the pitch mean P (t) computed in Step 1

most closely approximates the true trajectory of the melody

when each contour’s contribution is weighted by its total

salience CΣs. This biases the mean towards contours which are

salient for a longer period of time, which is desirable since

such contours are more likely to belong to the melody, as

evident from the distributions in Figure 3 (e) and (f).

An example of running steps 1-6 is provided in Figure 4.

In plot (a) we start with a set of contours, together with the

smoothed melody pitch mean P (t) (Steps 1-2) represented by

the dashed red line. In the next plot (b), octave duplicates are

detected, and the duplicate farther from the melody pitch mean

is removed (Step 3). Next (c) the mean P (t) is recomputed

(Step 4), and pitch outliers are detected and removed (Step 5).

Finally P (t) is recomputed once more (Step 6), displayed in

plot (d) together with the remaining contours.

Fig. 4. Removing octave duplicates and pitch outliers. (a) Steps 1-2: the initial

smoothed melody pitch mean P (t) is computed (dashed red line). (b) Step 3:

an octave duplicate is detected and removed. (c) Steps 4-5: P (t) is recomputed

and two pitch outliers are removed. (d) Step 6: P (t) is recomputed.

3) Final Melody Selection: In this final step we need to

select from the remaining contours the peaks which belong

to the main melody (recall that each peak represents an F0

candidate). Whilst in other systems this step often involves

fairly complicated peak tracking using streaming rules or

note transition models, in our system these considerations

have already been taken into account by the contour creation,

characterisation and filtering process. This means that often

there will only be one peak to choose. When there is still more

than one contour present in a frame, the melody is selected

as the peak belonging to the contour with the highest total

salience CΣs. If no contour is present the frame is regarded as

unvoiced. In order to evaluate raw pitch and chroma accuracy

(see III-B) we also provide an F0 estimate for unvoiced frames

by selecting the peak of the most salient contour that was

present in these frames prior to contour filtering. In Figure

5 we provide an example of the complete melody extraction

process for the excerpt previously featured in plot (a) of Figure

2. In Figure 5 plot (a) we show all created contours, in plot

(b) the remaining contours after filtering with the final melody

pitch mean P (t) indicated by the thick red line, and in plot

(c) the final melody estimation (black) and the ground truth

(thick red, shifted down one octave for clarity).
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Fig. 5. Vocal jazz excerpt: (a) all pitch contours created, (b) contours after
filtering and melody pitch mean (thick red line), (c) final extracted melody
(black) and ground truth (thick red, shifted down one octave for clarity).

III. EVALUATION METHODOLOGY

The described system was submitted to the 2010 and 2011

Music Information Retrieval Evaluation eXchange (MIREX),

an annual campaign in which different state-of-the-art MIR

algorithms are evaluated against the same data-sets in order

to compare their performance [31]. This allowed us not only

to evaluate our proposed method on an extensive and varied

set of testing material, but also to compare it with alternative

approaches. The difference between our submission in 2010

and 2011 is the analysis and parameter optimisation described

in Section IV-C. By comparing our results before optimisation

(2010) and after (2011) we can evaluate the effect of the

optimisation on the overall performance of the system.

In addition to the MIREX results, we carried out sev-

eral complementary evaluation experiments, providing further

insight into the nature of the remaining challenges. These

include: a qualitative error analysis focusing on octave errors,

a study of the effect of the key parameter in our voicing

detection method ν on performance, an evaluation of the

influence of each algorithmic component of the system on

overall performance, and a glass ceiling study in which we

examine the current limitations of the system, including the

quality of contour formation (peak streaming). The results of

these experiments, in particular the glass ceiling study, allow

us to identify which parts of the algorithm could be further

improved, and provide future directions for our research.
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A. Test Collections

1) MIREX: Four music collections were used in the

MIREX evaluations (2010 and 2011), as detailed in Table

I. Note that each clip from the MIREX09 collection was

mixed at three different levels of signal-to-accompaniment

ratio resulting in three different test collections, which together

with the other collections makes a total of six test collections.

TABLE I
MUSIC COLLECTIONS USED FOR EVALUATION IN MIREX 2010/2011.

Collection Description

ADC2004 20 excerpts of roughly 20s in the genres of pop, jazz and
opera. Includes real recordings, synthesized singing and
audio generated from MIDI files. Total play time: 369s.

MIREX05 25 excerpts of a 10-40s duration in the genres of rock,
R&B, pop, jazz and solo classical piano. Includes real
recordings and audio generated from MIDI files. Total
play time: 686s.

MIREX08 Four 1 minute long excerpts from north Indian classical
vocal performances. There are two mixes per excerpt with
differing amounts of accompaniment for a total of 8 audio
clips. Total play time: 501s.

MIREX09 374 Karaoke recordings of Chinese songs (i.e. recorded
singing with karaoke accompaniment). Each recording is
mixed at three different levels of signal-to-accompaniment
ratio {-5dB, 0dB, +5dB} for a total of 1,122 audio clips.
Total play time: 10,022s.

2) Parameter Optimisation: For optimising system parame-

ters, a separate collection of 14 excerpts of various genres was

used. Further details about this collection and the optimisation

procedure are provided in [21]. A summary of the results

obtained in [21] is provided in section IV-C.

3) Additional experiments: For the voicing detection

(IV-E), component evaluation (IV-F) and glass ceiling study

(IV-G), we used a representative test set freely available to

researchers. This set includes 16 of the ADC2004 excerpts, 13

excerpts similar to those used in the MIREX05 collection, and

40 excerpts similar to those used in the MIREX09 collection.

B. Evaluation Metrics

The algorithms in MIREX were evaluated in terms of five

metrics, as detailed in [1]:

• Voicing Recall Rate: the proportion of frames labeled

voiced in the ground truth that are estimated as voiced

by the algorithm.

• Voicing False Alarm Rate: the proportion of frames

labeled unvoiced in the ground truth that are estimated

as voiced by the algorithm.

• Raw Pitch Accuracy: the proportion of voiced frames

in the ground truth for which the F0 estimated by the

algorithm is within ± 1

4
tone (50 cents) of the ground truth

F0. Algorithms may also report F0 values for frames they

estimated as unvoiced so that the raw pitch accuracy is

not affected by incorrect voicing detection.

• Raw Chroma Accuracy: same as the raw pitch accuracy

except that both the estimated and ground truth F0s are

mapped into a single octave. This gives a measure of

pitch accuracy ignoring octave errors which are common

in melody extraction systems.

• Overall Accuracy: this measure combines the perfor-

mance of the pitch estimation and voicing detection tasks

to give an overall performance score for the system. It

is defined as the proportion of frames (out of the entire

piece) correctly estimated by the algorithm, where for

non-voiced frames this means the algorithm labeled them

as non-voiced, and for voiced frames the algorithm both

labeled them as voiced and provided a correct F0 estimate

for the melody (i.e. within ± 1

4
tone of the ground truth).

IV. RESULTS

The results obtained by our optimised algorithm are pre-

sented in Table III (Section IV-D). For completeness, we start

by presenting the results of MIREX 2010, followed by a

qualitative error analysis of our submission. Next, we provide

a summary of the optimisation process carried out in [21],

and then we present the results obtained by our optimised

algorithm in MIREX 2011. Then, we describe the additional

evaluation experiments carried out to assess the influence of

specific parameters and algorithmic components. Finally, we

present the results of a glass ceiling analysis of our algorithm.

A. Comparative Evaluation: MIREX 2010

Five algorithms participated in the 2010 audio melody

extraction task of the MIREX campaign. In Table II we present

the overall accuracy results obtained by each system for each

of the test collections. Systems are denoted by the initials of

their authors – HJ [32], TOOS [33], JJY (who submitted two

variants) [34] and SG (our submission). For completeness, we

also include the results obtained by the best performing system

from the previous year’s campaign [10], denoted KD. In the

last column we provide the mean overall accuracy computed

over all six collections3.

TABLE II
OVERALL ACCURACY RESULTS: MIREX 2010.

2004 2005 2008 2009 2009 2009 Mean
Algorithm 0dB -5dB +5dB

HJ 0.61 0.54 0.77 0.76 0.63 0.83 0.69

TOOS 0.54 0.61 0.72 0.72 0.63 0.79 0.67

JJY2 0.72 0.61 0.80 0.63 0.47 0.79 0.67

JJY1 0.70 0.62 0.80 0.63 0.47 0.79 0.67

SG 0.70 0.62 0.78 0.74 0.58 0.81 0.70

KD 0.86 0.75 0.81 0.68 0.52 0.78 0.73

We see that of the systems participating in 2010, our

system achieved the highest mean overall accuracy, surpassed

only by the best performing system from the previous year.

Nonetheless, the performance of all systems is very similar

(with the exception of KD for the 2004 and 2005 data-

sets4). We performed an analysis of variance (ANOVA) of

the results obtained by the algorithms participating in 2010,

revealing that for the 2004, 2005 and 2008 data-sets there

3The mean is not weighted by the size of the data-sets due to the order
of magnitude difference in size between the 2009 data-sets and the other
collections which, though smaller, are more representative of the type of
material one would encounter in a real world scenario.

4A possible explanation for this is KD’s better ability at extracting non-
vocal melodies, which constitute a larger proportion of these collections.
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was in fact no statistically significant difference between any

of the algorithms (for a p-value < 0.05). This is probably

in part due to the small size of these collections. For the

three 2009 collections, a statistically significant difference was

found between most algorithms, though the artificial nature

of these collections (karaoke accompaniment, amateur singing

and no studio mixing or post production) makes them less

representative of a real-world scenario. In conclusion, the

comparable performance of most systems suggests that further

error analysis would be of much value. Only through analysing

the types of errors made by each algorithm can we get a better

understanding of their advantages and pitfalls.

B. Qualitative Error Analysis

Following the conclusions of the previous section, we

performed a qualitative error analysis of our submission,

focusing on octave errors. We noted that for the MIREX05

collection there was a significant difference between the raw

pitch accuracy and the raw chroma accuracy. This disparity is

caused due to the selection of contours at the wrong octave.

In Figure 6 we display the raw pitch accuracy versus the

raw chroma accuracy obtained by our algorithm in each of

the collections (a), and the per-song results for the MIREX05

collection (b).
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Fig. 6. (a) Mean pitch and chroma accuracies for each test collection. (b)
Per-song pitch and chroma accuracies for the MIREX05 collection.

Examining the per-song results we discovered that the

largest differences between pitch and chroma accuracy occur

mainly in non-vocal excerpts, especially solo piano pieces.

This suggests that whilst our octave selection method works

well for vocal music, further work would be required to adapt

it for instrumental music, especially that performed by a single

(polyphonic) instrument.

C. Process Analysis and Parameter Optimisation

In [21] the first two blocks of the system, sinusoid extraction

and salience function computation, were studied with the goal

of identifying the processing steps and parameter values most

suitable for melody extraction. In this section we provide a

brief summary of the conclusions reached in that study, which

were used to select the processing steps and parameter values

for the first two blocks of the system presented in this paper.

The effect of the optimisation is shown in the following section

were the MIREX 2011 results are presented.

In the first part of the study carried out in [21] alternative

signal processing methods were compared for each of the three

stages in the sinusoid extraction process (filtering, spectral

transform and frequency/amplitude correction). For filtering,

it was shown that the equal loudness filter (c.f. II-A1) consid-

erably reduces the energy of non-melody spectral peaks whilst

maintaining almost all energy of melody peaks.

Next we evaluated the spectral transform. Some melody

extraction systems use a multi-resolution transform instead

of the STFT which has a fixed time-frequency resolution

[4], [10], [20]. The motivation for using a multi-resolution

transform is that it might be beneficial to have greater fre-

quency resolution in the low frequency range where peaks

are bunched closer together and are relatively stationary over

time, and higher time resolution for the high frequency range

where we can expect peaks to modulate rapidly over time

(e.g. the harmonics of singing voice with a deep vibrato).

In the study we compared the STFT to the multi-resolution

FFT (MRFFT) proposed in [25]. Interestingly, it was shown

that the MRFFT did not provide any statistically significant

improvement to spectral peak frequency accuracy and only a

marginal improvement to the final melody F0 accuracy (less

than 0.5 cents). Following these observations we opted for

using the STFT in the proposed system.

For frequency/amplitude correction two methods were com-

pared: parabolic interpolation [35] and instantaneous fre-

quency using the phase vocoder method [26]. It was shown that

both methods provide a significant improvement in frequency

accuracy compared to simply using the bin locations of the

FFT, and that the phase-based method (used in this paper)

performs slightly better (no significant difference though).

In the second part of the study, an evaluation was carried

out to study the effect of the weighting parameters α and β,

the magnitude threshold γ and the number of harmonics Nh

on the resulting salience function. The salience function was

computed with different parameter value combinations using a

grid search and the resulting salience peaks were evaluated us-

ing metrics specifically designed to estimate the predominance

of the melody compared to other pitched elements present in

the salience function. This led to the determination of optimal

values for the salience function parameters: α = 0.8, β = 1,

γ = 40 and Nh = 20. For comparison, the values used in

MIREX 2010 were 0.8, 2, 40 and 8 respectively, empirically

assigned based on initial experiments carried out before the

more comprehensive parameter optimisation study in [21].

D. Comparative Evaluation: MIREX 2011

Eight participants took part in the MIREX 2011 melody

extraction campaign, including our optimised system (SG)5.

The overall accuracy results are provided in Table III. For easy

comparison, our result from 2010 is repeated in the last row

of the table. We see that our optimised system achieves the

highest overall accuracy in four of the six test-sets. Conse-

quently, our method also achieves the highest mean overall

accuracy (surpassing KD), making it the best performing

5Detailed information about all participating algorithms can be found at:
http://nema.lis.illinois.edu/nema out/mirex2011/results/ame/mirex09 0dB/
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TABLE III
OVERALL ACCURACY RESULTS: MIREX 2011.

2004 2005 2008 2009 2009 2009 Mean
Algorithm 0dB -5dB +5dB

TY 0.47 0.51 0.70 0.52 0.41 0.56 0.53

TOS 0.59 0.57 0.72 0.74 0.62 0.82 0.68

LYRS 0.73 0.59 0.72 0.47 0.36 0.54 0.57

HCCPH 0.44 0.45 0.64 0.50 0.39 0.59 0.50

CWJ 0.73 0.57 0.69 0.53 0.40 0.62 0.59

YSLP 0.85 0.65 0.73 0.52 0.39 0.66 0.63

PJY 0.81 0.65 0.71 0.74 0.54 0.83 0.71

SG 0.74 0.66 0.83 0.78 0.61 0.85 0.75

SG (2010) 0.70 0.62 0.78 0.74 0.58 0.81 0.70

melody extraction algorithm to be evaluated on the current

MIREX test-sets (2009 to date). When comparing our results

before optimisation (2010) and after (2011), we see that for

all collections there is a notable improvement in accuracy. The

increase can be attributed to better voicing detection (resulting

in lower voicing false alarm rates), better contour generation

(higher pitch and chroma accuracies) and less octave errors

(smaller difference between pitch and chroma accuracies). We

note that whilst the system’s parameters have been optimised,

it could still be improved through the introduction of new

contour characteristics or additional signal processing steps.

These options are discussed further in Section IV-G.

E. Voicing

In Section II-E1 we proposed a new voicing detection

method in which the determination of voiced sections is based

on the study of contour feature distributions. The method was

in part responsible for the successful results in MIREX, where

our system achieved the best trade-off between voicing recall

and voicing false alarm rates. In this section we study the

sensitivity of our system to the method’s key parameter ν
(Equation 9). Recall that ν determines the lenience of the

filtering: increasing ν makes it more lenient (less contours

are filtered out), whilst decreasing ν makes it stricter (more

contours are filtered out). In Figure 7 we plot the overall

accuracy, voicing recall and voicing false alarm rates for each

collection in our representative test set, as a function of ν.
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Fig. 7. Overall accuracy, voicing recall and voicing false alarm rates versus
the voicing parameter ν.

As expected, the trade-off between the voicing recall and

voicing false alarm rates is clearly visible. As ν is increased

(reducing the filtering threshold τv) the recall rate goes up for

all collections, but so does the false alarm rate. The optimal

value for ν is the one which gives the best balance between

the two, and can be inferred from the overall accuracy. We

see that this optimal value is slightly different for each of

the three collections. This is because the relationship between

the salience distribution of melody contours and the salience

distribution of non-melody contours (c.f. Figure 3 plot (c)) is

affected by the type of musical accompaniment used, which

varies between the collections. Nonetheless, the optimal ν
values for the three collections lie within a sufficiently limited

range (0.0-0.4) such that a satisfactory compromise can be

made (e.g. for the collections under investigation, ν = 0.2).

Finally, this (albeit small) difference between the optimal ν
values suggests that whilst the proposed approach already

provides good results, further contour characteristics would

have to be considered in order to improve voicing detection

rates across a wide range of musical styles and genres. As

future work we propose the development of a voiced contour

classifier trained using a wider set of contour features.

F. Component Evaluation

As with the voicing filter, each algorithmic component of

the system influences its overall performance. In Table IV

we evaluate the complete system on the representative test

set (III-A3) each time removing one component, in this way

assessing its effect on overall performance. The components

removed are: equal loudness filter (EQ), peak frequency cor-

rection (FC), voicing filter (VF), octave duplicate and outlier

removal (OO). We also tested replacing the optimised salience

function parameters with the MIREX 2010 configuration (SF),

as well as removing different combinations of components.

TABLE IV
SYSTEM PERFORMANCE WITH DIFFERENT COMPONENTS REMOVED.

Component Voicing Voicing Raw Raw Overall
Removed Recall False Alarm Pitch Chroma Accuracy

None 0.86 0.19 0.81 0.83 0.77

EQ 0.83 0.19 0.79 0.81 0.75

FC 0.85 0.19 0.79 0.82 0.76

EQ & FC 0.83 0.18 0.77 0.80 0.75

SF 0.85 0.24 0.77 0.81 0.74

VF 0.92 0.42 0.81 0.83 0.72

OO 0.87 0.24 0.79 0.83 0.75

VF & OO 0.95 0.56 0.79 0.83 0.67

All 0.95 0.64 0.71 0.78 0.60

We see that each component has a direct effect on the

overall accuracy. Importantly, we note that there is a strong

interaction between components. For example, without the

voicing filter (VF) accuracy goes down by 5% and without

the octave duplicate and outlier removal (OO) it goes down

by 2%, but if both were removed the accuracy would drop

by 10%. This reveals that the latter step (OO), in addition to

its primary role, also improves voicing detection by removing

non-voiced contours that were missed by the voicing filter.

If all components were removed the combined effect would

cause a drop of 17% in overall accuracy, which is 4% more

than the sum of all individual accuracy decreases combined.
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G. Glass Ceiling Analysis

As a final evaluation step, we test to see what would be

the best result our algorithm could possibly achieve, assuming

we had a perfect contour filtering approach. To do this, we

compare all contours generated for an excerpt with its ground

truth, and keep only those which overlap with the reference

melody. These contours are then passed to the final melody

selection stage as before, and the resulting melody is evaluated

against the ground truth. In Table V we present for each

collection the best result obtained by our algorithm, followed

by the result obtained using the perfect filtering simulation.

TABLE V
RESULTS ACHIEVED BY SYSTEM AND GLASS CEILING RESULTS.

Collection Voicing Voicing Raw Raw Overall
Recall False Alarm Pitch Chroma Accuracy

ADC2004
0.83 0.11 0.79 0.81 0.76
0.84 0.05 0.84 0.84 0.84

MIREX05
0.88 0.23 0.83 0.84 0.78
0.86 0.07 0.84 0.85 0.86

MIREX09
0.87 0.24 0.81 0.84 0.76
0.86 0.14 0.85 0.85 0.83

Comparing the results obtained by our system to the results

using the perfect filtering simulation, we can make several

important observations. First of all, we see that the overall

accuracy using the perfect contour filtering simulation is below

100%. As suggested by the title of this section, this reveals

a glass ceiling, i.e. a top limit on the overall accuracy that

could be obtained by the system in its current configuration.

We begin by discussing the differences between our system’s

results and the glass ceiling results, and then analyse the

limitations of the system that result in this glass ceiling limit.

We start by drawing the reader’s attention to the raw chroma

metric. We see that the chroma accuracy of our system is

practically equal to the glass ceiling result. This suggests that

the system can almost perfectly select the correct contour

when faced with two or more simultaneous contours (that are

not octave duplicates). Turning to the raw pitch accuracy, the

results obtained by the system are on average only 3.5% below

the glass ceiling result. Again, this implies that whilst there

is still room for improvement, the octave error minimisation

method proposed in the paper is certainly promising. The

main difference between our system and the glass ceiling

results is the voicing false alarm rate. Though already one

of the best voicing detection methods in MIREX, we see that

further improvements to the method would provide the most

significant increase in the overall accuracy of our system.

Finally, we consider the possible cause of the identified

glass ceiling limit. Assuming the system can perform perfect

contour filtering, the overall accuracy is determined entirely

by the accuracy of the contour formation. If all melody

contours were perfectly tracked, the raw pitch and chroma

scores of the glass ceiling should reach 100%. This implies

that to increase the potential performance of our system, we

would have to improve the accuracy of the contour formation.

Currently, our tracking procedure takes advantage of temporal,

pitch and salience information. We believe that an important

part of the puzzle that is still missing is timbre information.

Timbre attributes have been shown to provide important cues

for auditory stream segregation [36], suggesting they could

similarly be of use for pitch contour tracking. Furthermore, the

extraction of pitch specific timbre attributes could lead to the

development of a contour timbre feature Ct, that could be used

in the melody selection process by introducing rules based

on timbre similarity between contours. Another possibility

for improving contour formation would be the suppression of

noise elements in the signal before the salience function is

computed. For instance, we could apply harmonic/percussive

source separation such as in [33], [37] to minimise the disrup-

tions in the salience function caused by percussive instruments.

V. CONCLUSION

In this paper we presented a system for automatically

extracting the main melody of a polyphonic piece of music

from its audio signal. The signal processing steps involved

in the extraction of melody pitch candidates were described,

as well as the process of grouping them into pitch contours.

It was shown that through the characterisation of these pitch

contours and the study of their distributions, we can identify

characteristics that distinguish melody contours from non-

melody contours. It was then explained how these features are

used for filtering out non-melody contours, resulting in novel

voicing detection and octave error minimisation methods.

The proposed system was evaluated in two MIREX cam-

paigns, where the latest version of our algorithm (2011) was

shown to outperform all other participating state-of-the-art

melody extraction systems. The results were complemented

with a qualitative error analysis, revealing that the different

characteristics of instrumental music complicate the task of

octave error minimisation, requiring further adjustments to the

proposed method for this type of musical content. The MIREX

2011 results confirmed the expected increase in performance

following the optimisation of system parameters [21]. We

evaluated the influence of individual algorithmic components

on system performance, and noted that the interaction between

different components can be important for maintaining high

accuracies. Finally, a glass ceiling analysis confirmed that in

most cases the proposed contour filtering process is successful

at filtering out non-melody contours, though a further increase

in accuracy could still be achieved by reducing the voicing

false alarm rate of the system. In addition, it was determined

that to increase the potential performance of the system

we would have to improve its contour formation stage, and

possible methods for achieving this were proposed.
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