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Abstract Solidification of materials to near net shape is one of the most commonly used and
economical methods of manufacturing. Different industries impose different restrictions on the solid-
ification process. For example, single crystal growth requires a planar growth front, whereas casting
requires homogenous material distribution. There are various techniques to control the flow in the
melt to achieve the required objectives. Magnetic field based control techniques have become the
most popular, commercially used methods. The application of a non-uniform external magnetic field
produces an extra body force (Kelvin force) in the melt which along with the Lorenz force can be used
to effectively control solidification and crystal growth processes. The physics behind the application
of a time varying magnetic gradient on the flow is discussed and a coupled set of equations governing
the fluid flow, thermal and concentration fields is determined. In this work, we only consider the
solidification of non-conducting melts in the presence of magnetic fields and magnetic field gradients.
A computational method for the design of solidification of non-conducting materials is developed such
that a prescribed characteristic during solidification is achieved. An appropriate cost functional is
defined. The cost function is here taken as the square of the L2 norm of the deviation of the velocity
field in the melt region from conditions corresponding to convection-less growth. The adjoint method
for the inverse design of continuum processes is adopted in this framework. A continuum adjoint
system is derived to calculate the adjoint temperature, concentration and velocity such that the gra-
dient of the cost functional can be expressed analytically. The cost functional is minimized using
the conjugate gradient method with a finite element realization of the continuum direct, sensitivity
and adjoint problems. An example of designing the time history of the magnetic field is presented.
Similar developments to the ones discussed here have been achieved for the solidification of conducting
melts. Thus the developed methodology has wide applications in crystal growth and the directional
solidification of materials, organic compounds and biological macromolecules.

Key words: inverse design, solidification, magnetic fields, magnetic field gradients, magneto-hydro-
dynamics, adjoint formulation

INTRODUCTION

Various design and control problems of interest can often be posed as inverse problems in which, in
addition to the various field equations, incomplete conditions are given on one part of the boundary,
whereas over-specified boundary conditions are available on another part of the boundary or inside
the domain (Tichonov [1]). In the context of thermal design, inverse heat conduction problems have
been well studied due to their widespread engineering applications as well as their simplicity. Research
attention has also been directed towards inverse convection and fluid flow control problems due to their
practical relevance (Gunzberger et al. [2]). These methodologies have simultaneously been extended
to solidification process design by Zabaras and colleagues [3]-[4]. The main emphasis of these papers



has been the design of mold heating/cooling conditions in order to achieve a solid/liquid growth with
a desired interfacial flux G and front velocity vf .
Application of magnetic fields is known to stabilize both flow and temperature oscillations in the melt
and thereby represents a promising opportunity to obtain an improved crystal quality. The effects of a
constant magnetic field on melt convection has been previously investigated by several authors [5]-[8].
The effects of a strong vertical magnetic field on convection and segregation in the vertical Bridgeman
crystal growth process was considered by Kim et al. [7], while Ben Hadid et al. [8] investigated
its effect on the horizontal Bridgeman growth. A constant magnetic field suppresses thermo-solutal
flow, but the inter-dendritic flows and macro-segregation patterns are not significantly affected by the
magnetic field. Grants et al. [9] used a rotating magnetic field (RMF) in the growth of GaAs. The
RMF was shown to affect the heat flux and the interface curvature. But there are some drawbacks to
the application of a uniform magnetic field to influence growth. Any significant convection damping
requires prohibitively large magnetic fields. The magnetic field must be oriented in a specific direction
relative to the bulk flow for the Lorentz force to take effect and most significantly, the technique cannot
be used for electrically non-conducting materials. In [10], the authors have investigated the effect of
magnetic gradients on the quality of the crystal. A magnetic gradient superimposed on a uniform
magnetic field caused substantial reduction in convection and resulted in a much better crystal. In
the present work, the effect of a (time varying) combined magnetic field and magnetic gradient on
the control of melt flow is investigated. The extension of the methodology presented here to other
conducting and non-conducting materials is provided in [11]-[12].
The sequencing of the various sections of the present work is as follows. The physics of the problem
of interest is presented along with the governing equations. The inverse solidification problem is then
posed as a functional optimization problem. An example illustrating the formulation is provided next.
Finally, some conclusions and possible extension of the work presented here are discussed.

GOVERNING EQUATIONS OF THE DIRECT PROBLEM

Let Ω be a closed bounded region with a piece-wise smooth boundary Γ. The region is filled with an
incompressible, nonconducting fluid. At time t = 0, a part of the boundary is cooled below the freezing
temperature of the fluid. When the temperature drops below the freezing temperature, solidification
begins along that boundary. Let us denote the solid region by Ωs (boundary defined by Γs1

⋃
Γs2 ) and

the liquid region by Ωl (boundary defined by Γl). These regions share a common solid-liquid interface
boundary ΓI .
The governing equations for the binary alloy solidification system are now introduced. Let, L be the
characteristic length of the domain; ρ, the density; k, the thermal conductivity; α (α ≡ k/ρc), the
thermal diffusivity; D, the solute diffusivity and ν, the kinematic viscosity of the liquid melt. For
clarity of the analysis, and furthermore, to understand the effect of competing complex processes, the
system is analyzed in a non-dimensionalized form. The characteristic scale for time is taken as L2/α
and for velocity as α/L. The dimensionless temperature is defined as θ ≡ (T̂ − To)/∆T , where T̂ ,
To and ∆T are the temperature, reference temperature and reference temperature drop, respectively.
Similarly, the dimensionless concentration is given as c ≡ (ĉ − co)/∆c, where ĉ, co and ∆c are the
concentration, reference concentration and reference concentration drop, respectively.
The motion of a fluid element in the melt is due to the various forces acting on it. In the context of
the present work, there are two main body forces acting on the fluid element, namely the solutal and
thermally-induced buoyancy forces. These two forces can be written as:

f buoyancy = ρogβT (T − To)eg + ρogβC(c− co)eg (1)

where eg is the unit vector in the direction of the gravity and the rest of the notation is standard.
The non-dimensional form of this force involves the use of the thermal and solutal Rayleigh numbers.
An externally applied magnetic field acts on the whole domain Ω. The externally applied magnetic
field affects both the energy and the momentum of the system. These effects include the so-called



phenomenological cross-effects which can be placed into the following general categories: galvomag-
netic, thermomagnetic and thermoelectric effects [13]. With the classical MHD assumptions of non-
relativistic flow and quasi-magnetostatics, the electro-magnetic force on the system becomes:

f = J × B + ∇B · M (2)

where, M is the magnetization, M = χm

µm(1+χm)
B, µm the permeability of free space and χm the

magnetic susceptibility. The assumption of a non-conducting fluid reduces this force to the Kelvin
force:
fKelvin = ∇B · M '

χm

2µm

∇B2 (3)

This provides the ability to exert a magnetizing force depending on the magnitude of the magnetic
susceptibility. According to the Curie-Weiss law, the mass magnetic susceptibility χ of a paramagnetic
material is inversely proportional to its absolute temperature. The above equation can be rewritten
by replacing the magnetic susceptibility, χm with the mass magnetic susceptibility, χ, in the following
way:

fKelvin =
ρχ

2µm

∇B2 (4)

Most materials found in nature are diamagnetic. For a diamagnetic fluid, the mass susceptibility is
independent of temperature, but the magnetizing force appears due to the change in density in the
above equation. Toshio et al. [14] have derived a Boussinesq approximation for this force term:

fKelvin =
βχρo

2µm

(T − T0)∇B
2 =

ρoβχ

µm

(T − T0)B · ∇B =
χB · ∇B

µmg
ρogβ(T − T0) = γρogβ(T − T0) (5)

where γ ≡
χBi

∂Bj

∂xi

µmg
. Notice the similarity of the form of the force terms in Eqs. (1) and (5). The form

of the body force in Eq. (5) can be considered to be the product of two terms; the magnetic field B,
and the magnetic gradient,∇B. Thus, fKelvin can be controlled independently in different ways, for
example, by varying the direction and/or magnitude of the magnetic field (Bx(t), By(t), Bz(t)) or, by
varying the magnitude of each of the components of the gradient tensor. Magnetic Resonance Imaging
(MRI) machines can be used to simultaneously apply controlled magnetic fields and magnetic field
gradients. Use of such magnetic fields is important for reliable imaging of human tissue [15]. Rapid
progress in MRI imaging has resulted in the commercial production of linear magnetic fields producing
gradient coils [16].
In the context of control using magnetic fields, it is possible to control the Kelvin force term in at
least six independent ways. But in the present work, the variation in the Kelvin force is assumed
to be only due to changes in the magnetic field. That is, the magnetic gradients are kept fixed and
any variation in the Kelvin force is due corresponding changes to the magnetic field B(t). Further,
since the aim of using magnetic field is to control the convection causing forces, the magnetic field is
oriented in the direction of buoyancy, i.e. B = Beg.
The basic equations that govern the evolution of the solidifying system are given in BOX I. They are
given in terms of the following dimensionless groups: Prandtl number, (Pr ≡ ν/α), Lewis number
(Le ≡ α/D), thermal Rayleigh number (RaT ≡ gβT ∆TL3/να) and solutal Rayleigh number (Rac ≡
gβc∆cL

3/να). In addition, Rk ≡ ks/kl is the ratio of the thermal conductivities of the solid and liquid,
Ste ≡ (Cp∆T )/LH is the Stefan number, κ is the partition coefficient and δ ≡ co/∆c is the ratio of
the reference concentration co and reference concentration drop ∆c. In the above definitions, Cp is
the heat capacity of the liquid melt, LH is the latent heat of solidification, g is the gravity constant,
βT is the thermal coefficient of expansion and βc is the solutal coefficient of expansion.

THE INVERSE MELT FLOW CONTROL PROBLEM

The design objective is to produce a growth that is purely diffusion-dominated thus leading to a better
quality of the crystal. The design definition for the problem can be stated as follows:



‘Find the time history of the externally applied magnetic field such that the solidification process defined
by the equations in BOX I proceeds with negligible convection over the whole time domain.’
The design definition implies that the convection causing buoyancy force has to be neutralized by
the Kelvin force. The thermal/solutal buoyant force is either parallel or anti-parallel to the gravity
vector. As mentioned earlier, the magnetic gradient is assumed to be non-zero only in the direction
of gravity. It follows that, γ is proportional to B dB

dz
. The applied field is non-dimensionalized with

the initial field Bo, and the non-dimensionalized field is referred to as b(t) (= B(t)
Bo

). The Kelvin force

is therefore represented as γ0bRaT θeg, where γ0 is
χBo

dB
dz

µg
. The design definition can now be restated

as follows:
‘Given the IBVP defined by the equations in BOX I and the magnitude of the superimposed magnetic
gradient, dB

dz
, find the time history of the imposed uniform magnetic field, b(t), so that melt convection

is minimized.’
To achieve a diffusion-based growth the magnetic field must be chosen in such a way so as to negate
the effects of the thermal and solutal buoyancy. The objective is restated in terms of b(t) ∈ L2[0, tmax].
We are looking for an optimal solution b̄(t) ∈ L2[0, tmax] such that:

S(b̄) ≤ S(b) ∀ b ∈ L2[0, tmax] (6)

where

S(b) =
1

2
‖ v(x, t; b) ‖2

L2(Ω×[0,tmax]) =
1

2

∫ tmax

0

∫
Ω
v(x, t; b) · v(x, t; b)dΩdt (7)

In the above equation, v(x, t; b) is defined as the melt flow for the direct solidification problem with
an applied field corresponding to b and a given superimposed magnetic gradient dB

dz
. The domain used

to define the cost functional can be considered as Ω or Ωl since the velocity v = 0 in the solid phase.
The main difficulty with the above optimization problem is the calculation of the gradient S ′(b(t))
of the cost functional in the L2(Ω × [0, tmax]) space. Introducing the directional derivative D∆b ≡
(S ′(b),∆b)L2(Ω×[0,tmax]) of S(b), and using the definition of the cost functional, we can write the fol-
lowing.

D∆bS(b) ≡ (S ′(b),∆b)L2(Ω×[0,tmax]) = (v(x, t; b),V(x, t; b,∆b))L2(Ω×[0,tmax]) (8)

where the sensitivity velocity field V(x, t; b,∆b) ≡ D∆bv(x, t; b) and the sensitivity temperature field
and the sensitivity concentration field written as Θ(x, t; b,∆b) ≡ D∆bθ(x, t; b) and C(x, t; b,∆b) ≡
D∆bc(x, t; b), respectively are defined as the linear ∆b parts of θ(x, t; b), v(x, t; b) and c(x, t; b) calcu-
lated at b.

θ(x, t; b+ ∆b) = θ(x, t; b) + Θ(x, t; b,∆b) +O(‖ ∆b ‖2
L2(Ω×[0,tmax])) (9)

v(x, t; b+ ∆b) = v(x, t; b) + V(x, t; b,∆b) +O(‖ ∆b ‖2
L2(Ω×[0,tmax])) (10)

c(x, t; b+ ∆b) = c(x, t; b) + C(x, t; b,∆b) +O(‖ ∆b ‖2
L2(Ω×[0,tmax])) (11)

As is clear from Eq. (8), the calculation of the gradient S ′(b) requires the evaluation of the adjoint to
the sensitivity of the velocity operator.
Taking the directional derivatives of the governing equations of BOX I in the direction of ∆b and
calculated at the direct fields θ(x, t; b), c(x, t; b) and v(x, t; b) corresponding to the imposed field b
results in a linear sensitivity solidification problem that can be used to evaluate the fields Θ(x, t; b),
C(x, t; b) and V(x, t; b). This sensitivity problem is summarized in BOX II, where Σ(x, t; b,∆b) and
Π(x, t; b,∆b) are used to denote the directional derivatives of the stress σ(x, t; b) and pressure p(x, t; b),
respectively.
The calculation of the gradient of the objective function requires the appropriate evaluation of the
adjoint operators to the sensitivity operators. The adjoint temperature is represented as ψ. ω and ρ
represent the adjoint velocity and adjoint concentration, respectively. The derivations of the adjoint
equations are given in [11]-[12]. The finally obtained sensitivity and adjoint systems of equations are
given below in BOX II and BOX III, respectively.



BOX I Direct problem

Solve for v(x, t; b), θ(x, t; b) and c(x, t; b)

• Melt region

∇ · v(x, t) = 0, (x, t) ∈ Ωl(t) × [0, tmax]

∂v(x, t)

∂t
+ v(x, t) · ∇v(x, t) = −∇p+ Pr∇2v(x, t) +RaTPrθl(x, t)eg

−RacPrc(x, t)eg −RaTPrγ0bθl(x, t)eg, (x, t) ∈ Ωl(t) × [0, tmax]

∂c(x, t)

∂t
+ v(x, t) · ∇c(x, t) = Le−1∇2c(x, t), (x, t) ∈ Ωl(t) × [0, tmax]

∂θl(x, t)

∂t
+ v(x, t) · ∇θl(x, t) = ∇2θl(x, t), (x, t) ∈ Ωl(t) × [0, tmax]

∂θl(x, t)

∂n
= 0,

∂c(x, t)

∂n
= 0, (x, t) ∈ Γl(t) × [0, tmax]

v(x, t) = 0, (x, t) ∈ Γl(t) × [0, tmax]

v(x, 0) = 0, c(x, 0) = ci, θ(x, 0) = θi, x ∈ Ωl(t = 0)

• Solid zone

∂θs(x, t)

∂t
+ v(x, t) · ∇θs(x, t) = ∇2θs(x, t), (x, t) ∈ Ωs(t) × [0, tmax]

θs(x, 0) = θi, x ∈ Ωs(t = 0)

∂θs(x, t)

∂n
= 0, (x, t) ∈ Γs1 × [0, tmax], θs(x, t) = θs2, (x, t) ∈ Γs2 × [0, tmax]

• Interface

Rk

∂θs(x, t)

∂t
−
∂θl(x, t)

∂t
= Ste−1Vf · n, (x, t) ∈ ΓI(t) × [0, tmax]

θ(x, t) = θ0 +mc(x, t), (x, t) ∈ ΓI(t) × [0, tmax]

∂c(x, t)

∂n
= Le(k − 1)(c(x, t) + δ)Vf · n, (x, t) ∈ ΓI(t) × [0, tmax]

Using the definition of the adjoint operators defined above the following relations are obtained:

D∆bS(b) ≡ (S ′(b),∆b)L2(Ωl×[0,tmax]) = (v,V)L2(Ωl×[0,tmax])

(ω,RatPr∆bγ0θeg) = (V, RaTPrv) (12)



BOX II Sensitivity problem

Solve for V(x, t; b,∆b), Θ(x, t; b,∆b) and C(x, t; b,∆b)

• Melt region

∇ · V(x, t) = 0, (x, t) ∈ Ωl(t) × [0, tmax]

∂V(x, t)

∂t
+ V(x, t) · ∇v(x, t) + v(x, t) · ∇V(x, t) = −∇Σ −RacPrC(x, t)eg

+RaTPr(1 − γ0b)Θ(x, t)eg −RaTPr∆bγ0θ(x, t)eg, (x, t) ∈ Ωl(t) × [0, tmax]

Σ(x, t) = −Π(x, t)I + Pr[∇V(x, t) + (∇V(x, t))T ], (x, t) ∈ Ωl(t) × [0, tmax]

∂C(x, t)

∂t
+ v(x, t) · ∇C(x, t) + V(x, t) · ∇c(x, t) = Le−1∇2C(x, t),

(x, t) ∈ Ωl(t) × [0, tmax]

∂Θ(x, t)

∂t
+ v(x, t) · ∇Θ(x, t) + V(x, t) · ∇θ(x, t) = ∇2Θ(x, t),

(x, t) ∈ Ωl(t) × [0, tmax]

∂Θ(x, t)

∂n
= 0,

∂C(x, t)

∂n
= 0, (x, t) ∈ Γl(t) × [0, tmax]

V(x, t) = 0, (x, t) ∈ Γl(t) × [0, tmax]

V(x, 0) = 0, C(x, 0) = 0,Θ(x, 0) = 0, x ∈ Ωl(t = 0)

• Interface

Rk

∂Θs(x, t)

∂n
−
∂Θl(x, t)

∂n
= Ste−1Ṽf · n, (x, t) ∈ ΓI(t) × [0, tmax]

Θ(x, t) = mC(x, t), (x, t) ∈ ΓI(t) × [0, tmax]

∂C(x, t)

∂n
= Le(k − 1)(c(x, t) + δ)Ṽf · n + Le(k − 1)C(x, t)Vf · n,

(x, t) ∈ ΓI(t) × [0, tmax]

The gradient of the cost function can therefore be written in terms of the adjoint variables

S ′(b) ≡ γ0θ(ω · eg) (13)

Once the gradient of the cost functional is found, any gradient-based optimization method can be
used to solve the optimization problem. In the present work the conjugate gradient method is used.



BOX III Adjoint problem

Solve for ω(x, t; b,∆b), ψ(x, t; b,∆b) and ρ(x, t; b,∆b)

−
∂ω

∂t
− v · ∇ω + ω · ∇vT + ∇π − Pr∇2ω −RaTPrψ∇θ +RacPrρ∇c

+RaTPrv = 0, (x, t) ∈ Ωl(t) × [0, tmax]

−
∂ρ

∂t
− u · ∇ρ− Le−1∇2ρ+ ω · eg = 0, (x, t) ∈ Ωl(t) × [0, tmax]

−
∂ψ

∂t
− u · ∇ψ −∇2ψ + (1 − γ0b)ω · eg = 0, (x, t) ∈ Ωl(t) × [0, tmax]

∂ψ(x, t)

∂n
= 0,

∂ρ(x, t)

∂n
= 0, (x, t) ∈ (Γl(t) − ΓI(t)) × [0, tmax]

ω(x, t) = 0, (x, t) ∈ ΓI(t) × [0, tmax]

Θ
∂ψ

∂n
= ψ(

∂Θ

∂n
), (x, t) ∈ ΓI × [0, tmax]

C
∂ρ

∂n
= ρ(

∂C

∂n
), (x, t) ∈ ΓI × [0, tmax]

ω(x, tmax) = 0, ρ(x, tmax) = 0, ψ(x, tmax) = 0, x ∈ Ωl(t = 0)

NUMERICAL EXAMPLE

In this section, solidification of a salt solution in a rectangular cavity is considered. The physical
properties of the system are taken as Pr = 6.44, RaT = 200000, RaC = 10000, Le = 1000 and
Ste = 0.034. The initial temperature of the melt is 1C. The right wall is maintained at −10C for
the duration of the simulation. The other walls are thermally insulated (see [17] for more details on
the problem setup). The freezing temperature of the fluid is −10C. The growth was simulated for a
dimensionless time of 0.1. The melt computational domain consisted of 1200 quadrilateral elements
and 1271 nodes, while the solid computational domain consisted of 800 quadrilateral elements and
861 nodes. The inverse design problem examined here is the following:
‘Find the magnetic field b(t) such that convection-less solidification growth leading to a vertical freezing
interface is achieved during the process defined by the problem of Box I’.
The time domain [0, τmax] is taken with τmax = 0.1. This is chosen, because beyond this time the
temperature of the melt reaches a temperature close to the freezing temperature and the velocity in
the melt region is negligible. An initial guess of b0(t) = 1 is used to start the CGM iterations. Within
each CGM iteration, the direct, adjoint and sensitivity problems are solved using a deforming finite
element method. The spatial and temporal discretization remain the same for all three problems.
The total number of time steps involved in the solution of each of the direct, sensitivity and adjoint
problems is 201. The total computational time for each CGM iteration including the solution of the
three subproblems was about 2.5 hours on a Pentium 4 processor. This included considerable time
spent on reading/writing data as the adjoint and the sensitivity problems require the direct problem
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 Figure 1: (a) Cost functional, (b) Gradient of the cost functional and (c) Converged optimal field.

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   0.1 0.125 0.15 0.175 0.2 0.225 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Interface positions
dimensionless time
0.025
0.05
0.075
0.1

 0.1 0.125 0.15 0.175 0.2 0.225 0.25
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Interface positions
dimensionless time
0.025
0.05
0.075
0.1

 
 
 
 
 
 

 
 
 
 

0.295572

1.08488

1.87418

2.66349

3.4528

4.2421

5.0
31

41
5.

82
07

2

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

  

-0.00278758

-0.00557611

-0.00836464

-0 .0 1 394 17

-0.0195188

- 0.0250958

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Reference case Optimal case Reference case Optimal case

Figure 2: Comparison of the interface positions and streamline contours.

solution at each time step of their solution. The convergence of the CGM is shown in Fig. 1(a). The
computations were stopped after the cost functional reached a specified error tolerance of 5 × 10−4.
The gradient of the cost functional which determines the approach to the optimal solution is plotted
against the iteration counter in Fig. 1(b).
The temporal variation of the optimal external magnetic field to be applied is given in Fig. 1 (c). At
very early times the buoyant force is purely due to the thermal gradients present as a result of the
lower temperature at the left wall. The magnetic gradient is at the maximum value of b = 1.0 during
this time. When solidification starts at the left wall, there is immediately solute rejection into the melt
from the solidified material. This changes the solute concentration along the interface non-uniformly.
This non-uniformity in concentration coupled with the movement of the heavier solute towards the
bottom of the cavity leads to a concentration gradient. The concentration gradient, in turn, leads
to a solutal buoyant force that acts in the direction opposite to the thermal buoyant force. To make
the net body force zero, the optimization algorithm compensates for the decreased body force by
correspondingly decreasing the magnetic field such that the sum of the three body forces cancel each
other out. With increasing time, since a diffusion-based growth is attained, the solute is rejected all
along the interface in to the melt. This leads to a uniform distribution of concentration along the
interface. Hence, the solutal buoyant force gradually reduces. This reduction in the solutal buoyant
force is in turn compensated by an increase in the magnetic field at later times. In order to see how
close the desired objectives were met a comparison of the optimal solution with a reference case was
made. The reference case involved running the direct problem for no applied magnetic case while the
optimal solution involved running the direct problem with the magnetic gradient obtained from the
converged CGM optimization scheme.
To evaluate whether the desired flat interface is obtained, the interface positions and shapes for the
reference case and the optimal case are shown in Fig. 2. The optimal magnetic gradient ensures a
perfectly planar growth front. To evaluate weather the desired convection-less growth is achieved,
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Figure 3: Comparison of isotherms and isochors.

isotherms of the reference case as well as the optimal solution are plotted in Fig. 3. Under the
action of the optimal magnetic gradient the isotherms are parallel to the moving front at all times
during the growth simulation. The substantial suppression of velocity in the melt is brought out
by the streamline contours shown in Fig. 2. The maximum strength of the vorticity reduced from
ωmax = 5.82 to about ωmax = 0.025. As a consequence of a planar interface and diffusion dominated
growth, the concentration evolution is also diffusion-based. A comparison of the isochors of the two
above mentioned cases is provided in Fig. 3. Compare the uniform distribution of the solute along the
length of the interface under the action of the magnetic gradient to the isochors for the reference case.
The solute is uniformly distributed along the length of the interface. This results in a homogeneous
distribution of the solute in the solid.

CONCLUSIONS

A systematic continuum formulation using the adjoint method was proposed for the design of the
solidification process. The objective was the control of the externally applied magnetic field such that
the solidification of the material proceeds in a convection-less environment. An inverse design problem
was defined and the exact gradient of the cost functional was obtained using the solution of an adjoint
system of equations. The non-linear conjugate gradient method was used to solve for the optimal
magnetic field. The application of the optimal calculated magnetic field along with a superimposed
magnetic gradient resulted in the uniform growth of the interface and suppression of temperature
and concentration fluctuations in the solid. It has been shown that, through proper application of a
magnetic field and magnetic field gradient(s), a state of earth-based reduced gravity growth, resulting
in better quality of crystals can be achieved.
The present methodology can be further extended to the design of the orientation as well as the mag-
nitude of the magnetic field along with the thermal fluxes (furnace design) to include broader design
conditions. With the demonstrated potential of the developed methodology to the solidification of
non-conducting materials, we are currently investigating using magnetic field gradients in the con-
trolled crystallization of proteins. Applications to the solidification and crystal growth of conducting
materials can be found in Reference [12].
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