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" ABSTRACT

A detailed model of the melting, shedding, and wet growth of spherical graupe! and hail is pres;nted. This
model is based upon recent experimental studies by Rasmussen et al. and Lesins et al. The model is presented
in the form of five easy-to-use tables. Important quantities considered were the heat transfer, terminal velocity

behavior, and shedding of liquid water.

1. Intreduction

Previous studies on the evolution of hail in convec-
tive storms have concentrated on processes by which
hail can grow to large sizes within a storm’s lifetime
(Browning and Ludlam, 1962; List, 1963; Browning,
1963; Bailey and Macklin, 1968; Heymsfield, 1982;
and Heymsfield 1983a). In general, recent modeling
efforts using three-dimensional (3-D) Doppler-derived
wind fields in conjunction with detailed hail growth
models (Paluch, 1978; Heymsfield 1983b; Foote, 1984)
have shown that our current knowledge of hail growth
seems to be sufficient to reproduce many of the main
features of hail growth. In contrast, relatively little at-
tention has been given to the physics of hail melting,
wet growth, and the shedding of liquid water. Melting
is critical to determining final hail size and terminal
velocity at the ground, while shedding can be an im-
portant source of new raindrops (Wisner et al., 1972)
which may subsequently serve as new hailstone em-
bryos (Rasmussen and Heymsfield, 1987b).

Wet growth is an important process which can sig-
nificantly affect the growth rate and terminal velocity
of hail (Lesins et al., 1980). Current parameterizations
of melting hailstones in the kinematic models described
above and in dynamical cloud models (Wisner et al.,
1972; Orville and Kopp, 1977; and Cotton et al., 1982)
are based on the work by Mason (1956) and Macklin
(1963). The major limitations of Mason and Macklin’s
studies were that only graupel (<0.5 cm diameter) and
large hailstones (>3 cm diameter) were considered, and
these were not falling at terminal velocity. The recent
experimental studies on melting by Rasmussen and
Pruppacher (1981) and Rasmussen et al. (1984a,b;
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hereafter referred to as RLPa,b) have significantly ex-
tended these resuits by allowing a wide range of particle
sizes (0.3-2.5 cm diameter) to melt at terminal velocity.

Wet growth parameterizations typically do not allow
for spongy growth, and assume that either all unfrozen
water is shed (Dennis and Musil, 1973; Orville and
Kopp, 1977) or all unfrozen water retained (English,
1973). Recent laboratory studies by Lesins et al. (1980)
and Joe et al. (1976) have greatly improved on our
knowledge of wet growth. In this study we will present
a detailed model of melting, shedding, and wet growth
based upon the experimental results of RLPa,b and
Lesions et al. (1980). Sensitivity studies using this
model will be presented in Part II (Rasmussen and
Heymsfield, 1987a). In Part III, we apply this model
to a particular case study (Rasmussen and Heymsfield,
1987b). ’

2. Model physics

The detailed microphysical model presented in the
following sections (based upon the model by Heyms-
field, 1982) allows individual particles, whether hail,
graupel, snowflakes, or single crystals, to evolve by
condensational growth, 2) dry riming growth, 3) wet
growth, 4) evaporation, and 5) melting. In this paper,
we will emphasize aspects of the model concerning the
evolution of spherical hail' and graupe! by melting,
shedding and wet growth. Shedding of water drops is
allowed to occur in both wet growth and melting. The
specific atmospheric environmental conditions of
temperature, pressure, relative humidity, and liquid
water content are specified before a model run. In most
cases, these conditions are obtained from rawinsonde
soundings or aircraft data. For a summarized form of
the model parameterization, see Tables 1 to 4 and
Fig. 1.

! Matson and Huggins (1980), for instance, found that 84% of the
hailstones they observed in free fall were spheroidal.
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Transitions during melting; meiting proceeds left to right.
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FIG. 1. Schematic diagram showing the stages of melting experienced by high- and
low-density ice particies. The left-most panel shows a dry particle; panels progressively
to the right show the stages encountered with increasing melting. The density of the
particle refers to the initial ice density. Columns D and E represent hailstones with a

density between ice and water.

a. Melting equations
1) HEAT TRANSFER

The transfer of heat to melting spherical hailstones
depends on the stage of melting, Equations describing
the heat transfer in each of the four stages discussed
by RLPab are shown in Table 1, with symbols defined
in appendix A. Equations (1) and (2) represent the
melting stage in which the ice core is completely
embedded within a spherical shell of meltwater. In this
Reynolds number regime the meltwater is circulating,
causing the heat transfer to be enhanced. The meltwater
in-this stage is not shed. Equation (3) represents the
melting stage in which the meltwater does not circulate
due to the oblate shape of the melting particle. Due to
the lack of circulation, heat transfer is reduced. The
ice core is still embedded in the meltwater during this
stage, and meltwater is not shed. Note that the equation
given by RLPb to cover the Reynolds number range
3.0 X 10°-6.0 X 10° has been replaced here with an
equation originally derived by Mason (1956). This
equation is much simpler to use than the equation sug-
gested by RLPb, and gives sufficient accuracy within
the indicated Reynolds number range. Equation (4)
represents the melting stage during which most of the
meltwater is shed. For Reynolds number greater than

2 X 10* the heat transfer coefficient, x, as given by
Bailey and Macklin (1968) for rough spheres has been
used [Eq. (5)]. This coefficient increases rapidly with
Reynolds number, and is essential for the growth of
large hailstones (Rasmussen and Heymsfield, 1987b).

The basic quantity predicted from these equations
is the change in radius of the ice core, a;, with time as
a function of the environmental conditions:

day_dg
dr dt’

The density used, p;, in this equation and in the
model, is the bulk ice density of the particle.

47rpia12Lm 1

2) TERMINAL VELOCITY

The following discussion relates to the problem of
calculating terminal velocity aloft.

(i) Equilibrium terminal velocity. As shown by
RLPbD, the melting process ofien leads to a significant
decrease in a particle’s terminal velocity. They observed
a torus of water to build up near the equator of their
solid ice sphere during melting, increasing its cross-
sectional area, and consequently decreasing its terminal
velacity. Once the torus became thick enough, shedding
of water drops occurred. This resulted in a further de-
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TABITE 1. Heat trax_)sfer equations for melting hailstones and graupel. Relations for /;, f,, L., L, Dy, k, and k,, are given in Table A1. The
expression (dm/df)., is the mass growth rate through collection of cloud droplets. Equation (3) is solved by an iterative solution to the heat

balance equation.

Applicable Reynolds number range Heat transfer equation No.
Nre <250 dafdt =(~4nak{Te,— To)fo— 4702 LD (P, = £u0)J5)2.0 ~ Cp(Too ~ ToXdm/dlt)cy (1)
2.5 % 10% < N, <3 X 10 dq/dt = ~4wakdTo — To) o = 47a4LDlpo.c ~ po0) fo — Co(Teo — ToNdm/di)ca ()]
3.0 X 10* < Ng, < 6 X 10° dmaza;k,[To— Ta{a;)] 3)

d d.=
afdt (a;—a)

= —dwagzk, Tgn — TAa)) fn— 47agLeD P10 — 01.0) fo— Conk Teo — ToXdm/dt).

6 X 10° < Ng. < 2 X 10*
where X = 0.76

Ngpe> 2 X 104

dg/dt = —X2mwa;Nge' [ Ne: kAT, uo = T0) + Ns"*LD{po,0 — o0)] — o Too — T o)(dm/dt)cd

. Same as Eq. (4) but X = 0.57 + 9.0 X 107%Ng,

)

(3)

crease in terminal velocity due to the loss of mass. For
particles with Reynolds number greater than 1.0 X 104,
shedding tends to occur as a result of the air flow shear-
ing off liquid from the torus. Below this Reynolds
number, shedding occurs as a result of the instability
of the water torus (similar to the spontaneous break-
up of large raindrops). In the following we refer to the
terminal velocity behavior after the onset of shedding
as “equilibrium terminal velocity.”

Observations by Matson and Huggins (1980) of
melting hailstones in free fall also suggest that terminal
velocities during melting are lower. The drag coeffi-
cients they determined for hailstones collected in
northeast Colorado were 50% higher than those for the
same sized rough sphere, but consistent with horizon-
tally oriented, oblate hailstones. Photographs of these
hailstones in free fall indicated an average axis ratio
that agreed well with those determined by Knight
(1984) for haiistones larger than 1.3 cm diameter (col-
lected at the ground in northeast Colorado), while for
hailstones smaller than 1.3 cm diameter, Matson and
Huggins’s axis ratios became progressively more oblate
than those given by Knight. This suggests that the for-
mation of a water torus due to melting was occurring
for these sizes. Photographs of the ice cores (presented
in Matson and Huggins) also revealed the characteristic
“Bayer aspirin” pill shape as found by RLPb for their
melting ice spheres. Further observations along these
lines, however, need to be done in order to confirm
this behavior. . :

In RLPb’s study, they examined the change in ter-
minal velocity for a 1.84-cm diameter solid ice sphere
melting at sea level. A reexamination of their data
showed that the Reynolds number of a melting particle
once it starts to shed, can be expressed as a linear func-
tion of the mass of ice remaining for Reynolds numbers
between 5 X 10% and 2.5 X 10*

Niey, = 4800.0+4831.5- M;. )

This equation was determined using linear regression,
and has a correlation coefficient of 0.99 with the lab-
oratory data. This equation, however, strictly applies
only to sea level conditions. In order to extend this
equation to other conditions and heights in the at-
mosphere, we use an approach suggested by McDonald
(1960) and confirmed by Beard (1976) for raindrops.
This method is valid for particles whose shape is in-
variant with changing atmospheric conditions.

This approach begins with the balance between a
particle’s drag and weight:

D= Cp3paU%A.=mg, 3
where 4, is the cross-sectional area of the particle, and
D is the total drag. Consider now the same particle at
two different levels in the atmosphere. Since mg re-
mains nearly the same, the total drag at these two lo-
cations will be the same, and we can therefore write

‘the following equation:

1 1
CD] EPGAUEMAC: = CD:EpangozAcz’ (4)
where subscript 1, 2 refers to level 1, 2. If the particle’s
shape is preserved with altitude, then 4., = 4., (cross-
sectional areas are equal), and we can solve for the
terminal velocity at level 2:

Cb, pay U2
g -
CDZ Pa;

U%,= &)

If the ratio (Cp,/Cp,) can be determined at the two
levels, then (5) can be solved. Since the drag curves for
spheroids of different axis ratio are similar in their
functional form (Beard, 1976), we may estimate this
ratio from the corresponding ratio for smooth spheres
at these two levels. The critical question, then, is.
whether the invariance of shape (i.e., cross-sectional
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area and axis ratio) with different atmospheric condi-
tions can be shown.

The shape of water drops falling in air is mainly
determined by a balance of the internal hydrostatic
pressure gradient and the surface tension, independent
of the aerodynamic pressures and atmospheric con-
ditions (Beard, 1976). This means that a melting par-
ticle’s shape is also likely to be invariant with altitude
for Ng. < 5 X 10° because it rapidly melts into the
raindrop shape for these Reynolds numbers. For higher
Reynolds numbers, shape is determined by the build-
up of a water torus by the shear stress at the particle’s
surface. This shear stress i1s proportional to the Ber-
noulli pressure, $p,U>, in (3). Consider a large spher-
ical ice core uniformly coated with water released from
rest in still air of density p,. The Bernoulli pressure,
and therefore the shear stress, will increase with in-
creasing U,,. Water will start to be dragged upwards
toward the particle’s equator. Water from the rear,
downstream region of the particle will have a tendency
to move upstream under the influence of gravity to-
wards the region of flow separation near the particle’s
equator. This process will result in an increase of the
cross-sectional area, as well as the drag coefficient, since
the drag coefficient of spheroids increases with increas-
ing oblateness (List et al., 1973). Since the drag coef-

ficient for a given spheroid varies very slowly with Ng,

(Clift et al., 1978, p. 145) in the range 3 X 10% < Ng,
< 3 X 103, an increase of Cp, with oblateness will occur
in this Reynolds number range. Thus, Cp and A, for
the above-considered particle will increase with
Lp,U% , (for the above Reynolds number range), until
the total drag D, balances the weight, mg. Because of
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this, Cp is only related to the axis ratio (and therefore
A.) of the oblate spheroid. Since Cp in this case is only
a weak function of atmospheric conditions, there will
be only one value of p,U?% , independent of altitude,
which will balance the particle’s weight at terminal ve-
locity (Cp and A, depend upon each other).

This leads to the general result that a given particle
will have unique values of Cp and 4. for given
1p,U%, and that the balance condition when D = mg
will have unique values of CpA4,, and 1p,U?% . Since D
= Cpip,U% A, is invariant with altitude [Eq. (4)], Cp,
A, and 1p,U% will also be invariant with altitude. This
in turn, means that the shape of a melting particle will
tend to be invariant with altitude, allowing use of (5)
to calculate the terminal velocity of melting particles
at any atmospheric condition. The specific algorithm
used for this calculation is summarized in Tables 2 and
3 under the “equilibrium mass of water on surface”
category (see also Fig. 1, E).

(i) Terminal velocity during initial phase transition.
The terminal velocity estimates developed in the pre-
ceding section only give a method to calculate the
equilibrium terminal velocity of a melting particle (see
Fig. 1, E). In the following we consider the transition
of the terminal velocity from a dry particle to a particle
in equilibrium.

Let us first consider the transition from adry to a
just-wet hailstone, without a significant change in shape
(Fig. 1, B). One might expect intuitively that wet hail-
stones have lower drag coefficients than dry ones.
Macklin and Ludlam (1961) showed experimentally,
however, that the drag coeflicient of a wet-ice model
with 4 X 10* < Ng. < 1.6 X 10° did not differ signifi-

TABLE 2. Terminal velocity of wet high—dénsity hailstones.

Surface state

Terminal velocity relationship

1) Just wet* N > 4000

Ng. < 4000

2) Transition from “just wet” to
“equilibrium mass of water on
surface”

3) Equilibrium mass of water on surface
NRe < 5000
5 X 10* < Mg, < 2.5 X 10*

Drag coefficient for dry hailstone (appendix B)
Smooth sphere drag coefficient (appendix B)

Linear interpolation between “just wet” terminal velocity and terminal velocity
calculated assuming the equilibrium amount of water on surface.
Interpolation based upon fraction of equilibrium water on surface.

Terminal velocity of raindrops following Beard (1976)

U2, = Cp,pa UL N(Co,p0) )

where subscript 1 refers to sea level, and subscript 2 to any arbitrary height and

Co _

U = (4800.0 +4831.5M,)0.15
< 2a,

= ratio of the drag coefficients for spheres of the same mass and size at sea level

D2 and the arbitrary height (Beard, 1976)

Nie > 2.5 X 10°

Assume a drag coefficient of 0.6 (nearly all water shed).

* Just wet refers to the surface state of the hailstone immediately after passing from the dry stage to the wet stage (surface temperature is

equal to 0°C).
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TABLE 3. Terminal velocity of wet low-density* hailstones {graupel).

Surface state

Terminal velocity relation

1) Just wet
Nge > 4000
Nge < 4000

2) Soaking of water
3) Just soaked

Drag coefficient for dry graupel (appendix B)
Smooth sphere drag coefficient (appendix B)

Drag coeflicient as in “Just Wet” stage

If p; > 0.8, drag coefficient for dry graupel (Appendix B)

If p; < 0.8, drag coefficient for smooth sphere (Appendix B)

4) Transition from “just soaked” to
“equilibrium mass of water on
surface”

Linear interpolation between “just soaked” terminal velocity and the terminal
velocity calculated assuming the equilibrium mass of water on surface.
Interpolation based on the fraction of water on surface compared to equilibrium

amount on surface

5) Equilibrium mass of water on surface
Ng. < 5000
5X 10° < Ng, < 2.5 X 10*

Terminal velocity of raindrops following Beard (1976)

U%oz = CD|pa1 U?xal/(cbzpa;) ( l)

where subscript 1 refers to sea level and subscript 2 to any arbitrary height and

(4800.0 +4831.5M,)0.15
2(14

Up, =

Cp,

— = ratio of the drag coefficients for spheres of the same mass at sea level and the
Dz arbitrary height

M = sum of M; and soaked water

Nge > 2.5 X 10°

Assume a drag coefficient of 0.6 (nearly all water shed)

* The density referred to is the initial ice density.

.

cantly from the drag coefficient when the ice model
was dry. The fact that surface roughness has very little
effect on the drag of a large hailstone can be deduced
from the experimental work by Achenbach (1972) on
spheres. He found that the skin-friction component of
the drag for smooth spheres between 3 X 10% < Ng,
< 3 X 10° was only 1% to 10% of the total drag. The
overall drag of the particle was mainly determined by
the particle’s shape (form drag). Thus, even a 100%
increase in the skin-friction drag (roughness) will have
only a minimal effect on the drag of these-large spheres.
For lower Reynolds numbers, however, Selberg and
Nicholls (1968) have shown that roughness can signif-
icantly increase the drag coefficient. This follows be-
cause the drag coefficient of low Reynolds number
spheres have a strong dependence on the skin-friction
component. For instance, for Ng, = 300, the skin-fric-
tion component of the drag is 47% of the total drag
(LeClair et al., 1972).

This behavior led us to base our terminal velocity
transition from a dry to a wet surface on the Reynolds
number. For Reynolds numbers greater than 4000, we
assume no change in the drag coefficient from a dry
hailstone. For Reynolds numbers less than 4000, the
drag coefficient of the wet hailstone or graupel is as-
sumed to be that of a smooth sphere (Fig. 1, column
B) A summary of this procedure for graupel and hail
is presented in Tables 2 and 3 under the category

“just wet.”

Since we often have low-density particles of high
Reynolds number melting (e.g., Knight and Heyms-
field, 1983), an additional transition is necessary. As
stated earlier, for high Reynolds numbers, the shape
of the particle mainly determines the drag coefficient,
assuming that the particle assumes the same orientation
with respect to the airflow. After a low-density particle
is fully soaked with water, the shape may be signifi-
cantly affected because the soaked meltwater can be
aerodynamically molded such that it does not conform
to the exterior of the ice core. We therefore allow tran-
sition to a smooth sphere for Ng. = 4000 if the density
of ice is less than 0.8 g cm™> (see Fig. 1, B). This be-
havior is summarized in Table 3 under the category:
just soaked. :

Finally, we still have to consider the transition be-
tween a just-wet hailstone or graupel and a hailstone
or graupel with the equilibrium amount of water on
its surface (Fig. 1, C). This is done by linear interpo-
lation between the just-wet terminal velocity, and the
terminal velocity calculated for the particle assuming
that it has the equilibrium amount of water on its sur-
face (Table 2 under: transition from just wet to equi-
librium).

When low-density graupel are melting, we first allow
the particle to completely soak with water (Kidder and
Carte, 1964; Prodi, 1970) (see Fig. 1, C and D), after
which the particle transforms to the equilibrium-sized
particle (Fig. 1, E). During this transition, we assume
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the terminal velocity of a smooth sphere (Table 3 un-
der: transition from just soaked to equilibrium).

3) AXIS RATIO

Calculations of axis ratio used in Part Il of this study
are based on the melting results of RLPb. The param-
eterization uses the mass of water accumulated on the
surface and the mass of the ice core plus any soaked
water as the basic predictor. The axis ratio is then de-
termined from the figures presented in RLPb. The
present calculation assumes that the particles are not
colliding with other particles, and that turbulence levels
are low.

b. Shedding equations
1) MELTING

The experiments of RLPb have shown that melting
ice spheres shed part of their meltwater (in the form
of water drops) if their initial diameter is greater than
9 mm (at sea level). For the present study, we have
taken their results on shedding and formulated an
equation relating the mass of the ice core to the mass
of water on its surface:

M, . =0.268 +0.1389M; 6)

where M,, _ is the mass of water on the ice core’s surface
Jjust before shedding occurs. This equation is valid for
melting ice spheres shedding at sea level. A plot of this
equation is shown as the upper line in Fig. 2. The lower
line is a plot derived from the theoretical work of Chong
and Chen (1974). The experiments by RLPb observed
much more water being retained by the ice core than
predicted by Chong and Chen. These two studies rep-

0° T T
S 08| =
)
2 0.7+ WATER SHED T
S ost i
5} Rasmussen, et al., (1984b)
& os ]
5 WATER RETAINED
2 04 "
W
S o3 .
]
; 0.2 Equilibrium curve during shedding ~

o . \/Chonq and Chen (I974) -

oL 1 ] ] L
Lo 2.0 30 40 50

MASS OF ICE (g}

FIG. 2. Experimental (Rasmussen et al., 1984b) and theoretical
(Chong and Chen, 1974) predictions of the equilibrium mass of water
coating for given mass of spherical, 0.91 g cm™? density, ice core
during melting or wet growth. By equilibrium we are referring to the
maximum amount of water mass which can coat the ice core before
shedding. Above the respective lines water is shed, while below the
respective lines water is retained.
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resent the two extreme behaviors expected, nearly all
water shed versus large amounts of liquid water re-
tained under stable flow conditions.

Equation (6) implies there is a maximum amount
of water which can be retained on the surface of a given
ice core mass before shedding (the “equilibrium”
amount). If the amount of water exceeds this maximum
amount, we allow shedding of the excess water to occur.
This permits a very simple description of the shedding
process.

If low-density graupel are melting, we first allow the
meltwater to completely soak (all air spaces occupied)
the graupel (Kidder and Carte, 1964), (Fig. 1, D), and
then allow accumulation of water on the surface (Fig.
1, E). The ice core mass used in Eq. (6) is calculated
as the sum of the ice plus any soaked water.

Equation (6), however, only applies to the experi-
mental conditions of RLPb. What happens when we
bring the same particle into other atmospheric condi-
tions? This problem can be addressed by referring back
to the previous section on terminal velocity. In that
section we determined that for Ng. > 4000, a given
distribution of ice core mass and accumulated water
will maintain the same Bernoulli pressure and cross-
sectional area with altitude. Since shedding for these
high Reynolds numbers depends mainly on the surface
shear stress and shape, the shedding behavior of the
melting hailstones should be independent of altitude.
For Ny, < 4000, shedding does not depend on the shear
stress, but on Rayleigh-Taylor instability (RLPb). Since
this mechanism depends only on the mass of water
present, this shedding mechanism is also independent
of altitude. This allows us to use (6) in calculating the
maximum stable amount of surface water for a given
ice core mass for any atmospheric condition and
Reynolds number. Since the meliwater is always close
to 0°C, the temperature variation of surface tension is
not important for these calculations. It must also be
remembered that these results apply only to non-tum-

bling hail. It has not been determined conclusively if
melting hail does or does not tumble. RLPb observed
that a water torus tended to stabilize its particles during
the initial stages of melting. Free-fall hydrodynamic
motions were restricted however, by the size of the
tunnel. Blanchard (1955) allowed a 2-cm diameter ice
sphere to melt in free fall in a wind tunnel and found
that the water torus which formed around the particle’s
equator tended to stabilize it. Russian wind tunnel ex-
periments on melting hail in free fall also suggest that
tumbling motions do not occur (Gvelesiani and Kart-
sivadze, 1968). They observed melting hail to move in
a helical fall pattern of one meter diameter, with the
water torus oriented horizontally at all times (Tlisov,
private communication). This also makes physical
sense because the water torus is fluid, and able to adjust
to any new orientation of the hailstone. This param-
eterization, however, does not consider the effects of
horizontal wind shear, turbulence, or collisions between
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particles. Further experiments are needed to determine
if these effects are important.

2) WET GROWTH

In many ways, wet growth is analogous to melting.
Wet growth occurs on a hailstone when all the accreted
water is not immediately frozen, but accumulates on
or within the hailstone. In the following we distinguish
between two separate parameterizations of wet growth,
“high-density wet growth” and “spongy wet growth.”

(i) High-density wet growth. In this case, we assume
all frozen water has a density of 0.91 g cm ™. All un-
frozen water is assumed to accumulate on the particle’s
surface. Terminal velocity and shedding are calculated
in the'same manner as during melting.

(ii) Spongy wet growth. Spongy growth of hail occurs
when “that portion of the collected water which im-
mediately freezes produces a skeletal framework . . .
of dendritic ice crystals in which the unfrozen portion
of the collected water is retained as in a sponge whose
surface temperature is at 0° Celsius> (Pruppacher and
Kiett, 1980). During this type of wet growth, water is
assumed to freeze with a low density (0.48-0.75 g
cm™%), within which the unfrozen portion of the col-
lected water is retained. If the volume of unfrozen water
is greater than the soakable volume, water is allowed
to accumulate on the hailstone’s surface based on Eq.
(6). The mass of the ice core used to calculate the equi-
librium mass of water on the surface (Eq. 6) is consid-
ered to be the mass of ice plus any soaked water.

Whether or not hailstones tumble or gyrate during
wet growth has not been determined. Mossop and Kid-
der (1962) found that for artificial hailstones suspended
rigidly but kept at terminal velocity with a drag balance,
spongy growth became aerodynamically molded into
a belt around the equator, similar to that found by
Blanchard (1955) and RLPb for melting ice spheres.
This type of aerodynamic molding of spongy growth
was also found by Kidder and Carte (1964) as well as
by List (1959). If the spongy ice layer is semifluid, it
may be able to inhibit tumbling or gyration in the same
manner as suggested for melting hail. If there is more
unfrozen water than can be soaked into the low-density
ice matrix, a water torus may develop which will also
tend to stabilize tumbling.

On the other hand, if the spongy ice layer is not fluid
enough, tumbling or gyrating motions may develop,
as suggested by List et al. (1973), Thwaites et al. (1977),
and Knight and Knight (1970). List et al. suggest that
gyrating motions become more likely as a particle be-
comes more oblate, which indeed occurs with aero-
dynamic molding of spongy growth.

The above discussion shows that the free-fall behav-
ior of hailstones undergoing spongy growth is not very
well understood. The fact that shedding of liquid water
occurs during spongy growth, however, has been well
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documented by many studies (Kidder and Carte, 1964;
Carras and Macklin, 1973; Joe et al., 1976; Lesins et
al., 1980; Joe and List, 1984). These shedding results,
however, are from rigidly mounted cylinders and
spheres, and from spheres with prescribed gyration.
Carras and Macklin (1973) do include resulits for one
hailstone falling at terminal velocity in their tunnel,
but these data are not sufficient to permit generalization
to arbitrary atmospheric conditions. In light of the in-
adequate knowledge on both the fall behavior and
shedding of hailstones undergoing spongy growth, we
are forced to make a best guess as to their actual be-
havior in formulating a parameterization of spongy
growth. In formulating this parameterization, we will
attempt to determine the minimum amount of mass
shed during spongy growth, and use the best available
data.

One of the more complete studies on shedding dur-
ing spongy growth was conducted by Lesins et al.
(1980). They conducted icing experiments on rotating
cylinders for a wide range of liquid water contents (2~
40 g m™3), air temperatures (—2 to —20°C), and rota-
tion rates (2-30 Hz), but all at a constant air velocity
of 18 m s™! and initial cylinder diameter of 1.9 cm.
This airspeed and cylinder diameter, however, are typ-
ical of conditions in clouds under which hailstones are
shedding. We will therefore base much of our param-
eterization on this study.

One of the important parameters that needs to be
determined is the density of the ice matrix. This is given
by Lesins et al. (1980) as a function of the fraction of”
the total accreted deposit frozen, called 7, the ice frac-
tion. They found that for cylinder rotation rates of 0.5
Hz, the ice fraction depends only on LWC, and not
on air temperature in the temperature range —4° to
—16°C. They also found that water was shed in this
case from a 3 mm bulge near the equator, similar to
the torus observed by RLPb during melting.

For rotation rates of 5~7 Hz, the ice fraction reached
a minimum. Shedding also reached a minimum, re-
flected in the bulge in the water skin becoming smaller.
This rotation rate allowed more of the water to become
trapped in the ice matrix, and less to accumulate in
the bulge. Nearly all shedding was observed to originate
from this water bulge, similar to that observed during
the melting of ice spheres by RLPb. For higher rotation
rates, shedding was observed to increase as the cen-
trifugal force was now strong enough to overcome sur-
face tension forces. These higher rotation rates also left
unrealistic spikes which are not observed for natural
hailstones. Realistic features were observed for rotation
rates less than about 10 Hz.

As stated earlier, we would like to parameterize the
minimum amount of water shed by a hailstone in
spongy growth. We therefore reduced the ice fraction
frozen for a rotation rate of 0.5 Hz by 0.2 in order to
better agree with the minimum ice fraction at 5-7 Hz,
where shedding was also a minimum, and the growth
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TABLE 4. Wet growth parameterization.

1. High-density wet growth
- All frozen water has a density of 0.91 g cm™.
2. Spongy wet growth
Spongy growth is assumed to have a density of:

Pspongy = (1.0 —0.081)1 (1)
where I is the ice fraction given by:
I=L+[(1 =)+ KW, - W)H-02 W,;>2gm™>

I=1

)
W;<2gm™  (3)
where

Io =0.25
K;=0.1798gm™
W,;=20gm3

and W is the liquid water content in g m™,

The ice fraction represents the fraction of a water mass frozen.

pattern fairly realistic. Table 4, Eq. (2) shows the ice
fraction equation, and Eq. (1), Table 4, the density of
the spongy ice matrix. The water not frozen is soaked
into the ice matrix, and any excess water allowed to
accumulate in a bulge near the particle’s equator. We
then use the shedding parameterization developed for
melting spheres to determine when the mass of the
bulge exceeds the equilibrium mass. Any water in ex-
cess of the equilibrium size is shed.

3. Conclusions

A comprehensive melting and wet-growth parame-
terization has been presented which describes the

1) heat transfer
2) changes in terminal velocity, and
3) shedding of water drops

experienced by hailstones as they fall through regions
of the atmosphere which causes their surface temper-
ature to be greater than or equal to 0°C (air tempera-
tures greater than 0°C or high liquid water contents).
The parameterization is presented in the form of five
easy-to-use tables.
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APPENDIX A
List of Symbols
ay overall radius of particle
a; radius of ice core
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A, cross-sectional area perpendicular to the flow
Cp drag coefficient
¢w  heat capacity of water
D total drag
D, diffusivity of water vapor in air
T mean ventilation coefficient for heat
£ mean ventilation coefficient for water vapor
g gravitational acceleration
1 ice fraction
Iy constant equal to 0.25
kq thermal conductivity of air
k. thermal conductivity of water
k; constant equal to 0.1798 g m™3
K, thermal diffusivity of air
L, latent heat of evaporation
L, latent heat of melting
M; mass of ice core
m total mass of particle
M, . critical mass of water on ice core just before
the onset of shedding
Nr. Reynolds number (=2a,U/v)
Nge,, Reynolds number of a melting particle after
the onset of shedding
Np, Prandtl number (=»/K)
Nsc Schmidt number (=v/D,)
q heat content
TABLE Al.
L= 597.3(27;” 5)’, ¥ =0.167+3.67X 10T

with T'in °K, L, in cal g"".
L,=79.7+0.485T—2.5% 107312
with Tin °C, L, in cal g~'.

T 1.94 Pg
p-oz1(Z)" (Y

with 7,=273.15°K,
Py=1013.25 mb,
Tin °K, D,in cm?s7.
k,=(5.69+0.017T)Xx 107°
with Tin °C and k, in cal cm™' s™! °C™.,
o= 135.8 X 107% exp(3.473 X 10737 — 3.823 X 10~°T*
+1.087 X 1075T3)
with T'in °C, k, in calcm™! ™! °C!,
Jo=0.78+0.308 Ng. > Ng. '
J2=0.78+0.308 Np, ' Ng 2
where Np, and N, are defined in Appendix A.
Values of f, and f, were taken from Pruppacher and Rasmussen

(1979) and L., L,,, D,, k, and k,, were obtained from Pruppacher
and Kiett (1980).
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t time

T, temperature (K) at the surface of the particle

To constant equal to 273.16 K (triple point)

T, temperature (K) in the environment far from
particle’s surface

terminal velocity of the particle

W,  constant equal to 2.0 g m™

W,  liquid water content in g m™?

pi density of ice

Pa density of air

Poa water vapor density at temperature 7,
poo  Water vapor density at temperature 7o
Pvoo  Water vapor density at temperature 7,
v kinematic viscosity of air

N2 dynamic viscosity of air

X heat transfer coefficient

APPENDIX B
Terminal Velocity of Dry Graupel and Hailstones

Figure 3 presents a plot of drag coefficient versus
Reynolds number for 1) smooth spheres (solid line)
and 2) graupel and hail. The smooth sphere plot was
obtained from Clift et al. (1978), in which they used
existing data to obtain a curve valid for Reynolds
numbers between 1 and 107. The graupel and hail curve
(dashed line) was based on the studies by Knight and
Heymsfield (1983), Roos and Carte (1973), Roos
(1972), Bailey and Macklin (1968), Young and
Browning (1967), Willis et al. (1964), Macklin and
Ludlam (1961), and List and Schemenauer (1971). In
the present model, graupel and hail are assumed to be
spherical. The terminal velocity of a particle is calcu-
lated by 1) determining the Best number (X) = CpNge’
= 8mgp,/(7ns?) from the mass of the particle and en-
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vironmental conditions; 2) determining the particle’s
Reynolds number from a Best number-Reynolds
number relation; and 3) solving for terminal velocity
from the Reynolds number U,, = ,Nre/(2a402).

The Best number-Reynolds number relation is de-
termined from the drag coefficient versus Reynolds
number dashed curve in Fig. 3. For graupel and hail
with Reynolds number between 1 and 3 (X10%), the
relations are (W = log,eX):

log1oNre = 1.7095 + 1.33438 W —0.11591 W2

73<X<562 (1<Nge<122), (BI)
logioNge = —1.81391 + 1.34671 W
—0.12427W240.0063 W3 :
562<X<1.83X10° (12.2<Np.<30) (B2)
Nge=0.4487Xx0-5536
1.83 X 10°<X<3.46 X 10®
(B30 <Nge<2.4X10%, (B3)
Nr=(X/0.6)"7?,
3.46 X 108 <X <5.4X10'°
(24X 10%°<Ng,<3.0X10%. (B4)

Equation (B4) is equivalent to assuming that the drag
coefficient equals 0.6. The equations given for Ny,
< 30, are based upon drag coefficients for smooth
spheres. The terminal velocity behavior during critical
transition and beyond are not presented here but can
be found in Clift et al. (1978). The critical transition
condition for hailstone growth rarely occurs (Roos,
1972).

2
10 e T

,\\_/

< Hail (Cp=0.6)
I Te-—a f -
i T ——— Critical

Transition

DRAG COEFFICIENT

| 10 102

LILBLLALLLI

103

LILRALL

Smooth Sphere (Clift et al., 1978)

Graupe! and Hall {(Knight and Heymsfield,!1983)

104 0% 108 107

REYNOLDS NUMBER

FIG. 3. Drag coefficients as a function of Reynolds number for 1) smooth spheres (solid line) and
2) graupel and hail (dashed line).
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