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Melting driven by rotating Rayleigh–Bénard
convection
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We study numerically the melting of a horizontal layer of a pure solid above a convecting
layer of its fluid rotating about the vertical axis. In the rotating regime studied here,
with Rayleigh numbers of order 107, convection takes the form of columnar vortices,
the number and size of which depend upon the Ekman and Prandtl numbers, as well
as the geometry – periodic or confined. As the Ekman and Rayleigh numbers vary, the
number and average area of vortices vary in inverse proportion, becoming thinner and
more numerous with decreasing Ekman number. The vortices transport heat to the phase
boundary, thereby controlling its morphology characterized by the number and size of
the voids formed in the solid, and the overall melt rate, which increases when the lower
boundary is governed by a no-slip rather than a stress-free velocity boundary condition.
Moreover, the number and size of voids formed are relatively insensitive to the Stefan
number, here inversely proportional to the latent heat of fusion. For small values of the
Stefan number, the convection in the fluid reaches a slowly evolving geostrophic state
wherein columnar vortices transport nearly all the heat from the lower boundary to melt the
solid at an approximately constant rate. In this quasi-steady state, we find that the Nusselt
number, characterizing the heat flux, co-varies with the interfacial roughness, for all the
flow parameters and Stefan numbers considered here. This confluence of processes should
influence the treatment of moving boundary problems, particularly those in astrophysical
and geophysical problems where rotational effects are important.
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1. Introduction

The coupling between a solid and the liquid from which it forms controls the long term
fate of both phases. Through deliberate manipulation of the flow of the nutrient phase,
engineers aim to control the character of a solidified material (Davis 2001). When the
heat transport required for solidification occurs through diffusion, initially planar phase
boundaries remain planar. But the presence of convection invariably leads to non-planar
interfaces. The uncontrolled interplay of convection, rotation and phase change determines
the dynamics of many geophysical and astrophysical systems. Indeed, such processes
operate from the Earth’s core to the principal components of the cryosphere (e.g. Huppert
1990; Worster 2000). In astrophysics, they underlie planet formation (e.g. Armitage 2020),
wherein for example the proto-Earth was believed to rotate approximately ten times
faster than today (e.g. Cuk & Stewart 2012), and the growth of neutron star crusts (e.g.
Baym et al. 2018), amongst many other phenomena. The confluence of dynamic and
thermodynamic processes in such systems is highly complex and involves multiple time
scales, components and phases.

Here, we study a simplified system of a single-component rotating phase boundary
heated from below. The associated rotation-influenced convection brings heat to the solid
upper boundary, controlling the morphology of the melting solid.

A non-rotating layer of fluid heated from below begins convecting when the thermal
buoyancy overcomes the viscous and thermal dissipation effects that suppress vertical
motions. This balance is characterized by the dimensionless Rayleigh number

Ra = gα�Th3

νκ
, (1.1)

where g is the acceleration due to gravity; α, ν and κ are the coefficient of thermal
expansion, the viscosity and the thermal diffusivity of the fluid; and h is the depth of
the fluid layer across which a temperature difference �T is imposed. Convective motions
begin when Ra exceeds a critical value Rac = O(103), the prefactor depending on the
boundary conditions (e.g. Chandrasekhar 1961).

In direct analogy with stratification in non-rotating systems, rotation suppresses vertical
motions due to buoyancy (Veronis 1970). Therefore, the critical Rayleigh number above
which convection occurs is a function of the rotation rate of the system (Chandrasekhar
1953). The Ekman number is the relevant non-dimensional rotation rate and is

E = ν

2Ωh2
, (1.2)

where Ω is the angular velocity of the system. Thus, rapidly rotating systems are
characterized by small E. Whereas in non-rotating convection a given set of boundary
conditions determines the single value of Rac, in rotating convection Ra is an increasing
function of E−1, where both the functional form and numerical factors depend on the
boundary conditions of the problem.

If the horizontal directions are assumed to be periodic, the onset of convection occurs
above Rac ∼ E−4/3. For one free-slip and one no-slip boundary each (and periodic
boundary conditions in the horizontal), in the limit of large E−1 (Chandrasekhar 1953),
Rac is

Rabulk
c = 2.39E−4/3. (1.3)

If the horizontal directions are bounded by walls, the critical Rayleigh number for the
so-called ‘wall mode’ (Zhong, Ecke & Steinberg 1991; Ecke, Zhong & Knobloch 1992) is,
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Phase boundaries and rotating convection

in the limit of large E−1, given by (Herrmann & Busse 1993)

Rawall
c |E−1→∞ = π

2(6
√

3)1/2E−1 < Rabulk
c . (1.4)

In a rotating system bounded laterally by walls, flow is absent for Ra < Rawall
c . The flow

structures that appear for Ra > Rawall
c take the form of a peripheral streaming current

adjacent to the walls, with alternating bands of up- and down-welling flow. While the flow
in them is still cyclonic, these patterns precess about the axis of rotation in a retrograde
direction (Horn & Schmid 2017; De Wit et al. 2020; Favier & Knobloch 2020; Zhang et al.

2020), even when there are severe obstacles in the way (Favier & Knobloch 2020). These
wall modes persist even when the bulk of the flow begins to convect, and they underlie an
observed mismatch between theoretical and numerical predictions of heat transport and
laboratory observations at large Ra (De Wit et al. 2020).

When Ra > Rabulk
c , convection begins throughout the fluid. For Ra � 10Rabulk

c , flow
occurs along columnar (Taylor) vortices that span the depth of the fluid (Boubnov &
Golitsyn 1986, 1990; Zhong et al. 1991; King et al. 2009; Aurnou et al. 2015). These
vortices are predominantly cyclonic near the upper and lower boundaries, with equal
numbers of cyclonic and anticyclonic vortices in the interior (Boubnov & Golitsyn 1986;
Zhong et al. 1991; Vorobieff & Ecke 1998; Kunnen, Clercx & Geurts 2010), thereby
transporting heat from the boundaries (Sakai 1997). For Ra > 10Rabulk

c , the columnar
vortices become plume-like and lose their vertical alignment with the axis of rotation. The
highest Rayleigh numbers achieved in our simulations are in this regime. For sufficiently
large Ra (and sufficiently large E−1), a state of ‘geostrophic turbulence’ sets in (Boubnov
& Golitsyn 1990; King, Stellmach & Aurnou 2012; Shi et al. 2020), a computationally
challenging regime to study.

The nature of rotating convection and the rate of heat transport are controlled by the
combination of E, Ra and Pr, and thus so too will be the melt rate and patterns of an
adjacent phase boundary, such as we study here. While varying the dimensionless latent
heat, or Stefan number, is expected to affect the overall rate of phase change, the effects
on the interfacial patterns that form are more subtle, which largely reflect the nature of
the transport properties of the bulk flow. This confluence of effects forms the core of our
study.

The rest of the paper is organized as follows. We describe the structure of the problem
in § 2, providing details of the phase-change treatment used; the approximations made;
the relevant physical scales and the non-dimensionalization; the boundary and initial
conditions; and the numerical algorithm used to solve the governing equations. In § 3, we
discuss the effects of the control parameters on the phase boundary morphology, which
is dominated by rotation. We obtain the melt rates and their associated Nusselt number
dependencies. Additionally, we discuss how the dynamics changes if the system is periodic
in the horizontal, if the lower boundary is one of no slip and when the solid has a thermal
diffusivity different from the liquid. We conclude with some ideas for future work.

2. Structure of the problem

Our study geometry is a box of dimensions L × L × H, with gravity g in the −z direction,
and rotating about the +z axis with an angular velocity Ω , shown schematically in figure 1.
The aspect ratio of the simulation domain is L/H = 2. The mean height of the liquid layer
at time t is h(t), with h(t = 0) = h0. We use the domain half-height as our length scale (see
§ 2.2 below), and define the aspect ratio as A = 2L/H. The system is heated from below
by imposing a constant temperature difference between the lower and upper boundaries,
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Figure 1. (a) A schematic of the geometry used, with the coordinate directions and dimensions marked. The
initial liquid height is h(t = 0) = h0. (b) Vertical cross-section of the geometry considered at t > 0. The system
rotates about the z axis, and gravity is in the −z direction. Here, Tm is the melting temperature of the pure
substance, and the lower boundary is at temperature Tm + �T . The effective Rayleigh and Ekman numbers are
defined based on the horizontally averaged fluid height h(t), while the reference values are defined based on
H/2, where H is the height of the solid+liquid system.

thereby melting the solid. As described in § 2.3, the majority of our results are obtained
with the entire solid at the melting temperature, so that there is no heat conduction through
the solid.

2.1. Enthalpy method

We employ a mixture theory approach to tracking the solid region, such that a solid fraction
variable χ varies from 0 in the liquid state to 1 in the solid state. The densities of the solid
and liquid phases are ρs and ρl respectively; their heat capacities are Cs and Cl respectively;
and the latent heat of fusion is λ. Here, for simplicity, we only consider the case where the
solid and liquid have the same densities and

ρs = ρl (= ρ) , (2.1)

Cs = Cl

(

=Cp

)

, (2.2)

with ρ and Cp being constants. The solid and liquid enthalpies are

Hs = ρCpT, and (2.3)

Hl = ρCpT + ρλ, (2.4)

respectively. The enthalpy of the solid phase at the melting temperature Tm is H0 =
ρCpTm, and that of a mixture of solid and liquid phases with solid volume fraction χ

is given by

H = χρCpT + (1 − χ) ρ
[

CpT + λ
]

.

= ρCpT + (1 − χ) ρλ. (2.5)

We non-dimensionalize the enthalpy as

φ = H−H0

ρCp�T
= T − Tm

�T
+ λ

Cp�T
(1 − χ) , (2.6)

where �T is the difference between the temperature of the lower boundary and the melting
temperature. Thus, if

θ = T − Tm

�T
(2.7)
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is defined to be the non-dimensional temperature, and

St = Cp�T/λ (2.8)

is the Stefan number (often also defined as the inverse of this) then we have

φ = θ + St−1 (1 − χ) . (2.9)

We note that in the purely solid state χ = 1 and θ ≤ 0, so that φ ≤ 0. The equation of
state (2.9) can be inverted to give the solid fraction in terms of the enthalpy as

χ = 1 − max [0, min (1, St φ)] , (2.10)

and hence the temperature follows as

θ = φ − St−1 (1 − χ) . (2.11)

Thus, in a pure solid, χ = 1, θ = φ; in a pure liquid, χ = 0, θ = φ − St−1; in the mixed
phase, 0 < χ < 1 and θ = 0, by definition. In the vicinity of the phase boundary χ must
change from 0 to 1 over a very thin region (see e.g. Rabbanipour Esfahani et al. 2018;
Favier, Purseed & Duchemin 2019), which is a requirement that our simulations obey.
The normal motion of the phase boundary, um, is determined by the interphase difference
between heat fluxes, and the Stefan condition in dimensional variables is

ρλum = ks (∇T)s − kl (∇T)l , (2.12)

where (∇T)s and (∇T)l are the temperature gradients in the solid and the liquid on either
side of the phase boundary; and ks and kl are the thermal conductivities in the solid and
liquid respectively.

2.2. Governing equations

The equations of motion that govern the evolution of the velocity u, and the enthalpy φ,
defined in (2.9), are as follows. We study the rotating Oberbeck–Boussinesq equations
with the assumptions in (2.1) and (2.2), which are

Du

Dt
= −∇p

ρ
+ ν∇2

u + gαez (T − Tm) − 2Ωez × u, (2.13)

Dθ

Dt
= ∇ · (κ∇θ) , and (2.14)

∇ · u = 0, (2.15)

where D/Dt is the material derivative, α is the coefficient of thermal expansion, ν is the
kinematic viscosity of the fluid and κ = χκs + (1 − χ)κl is the local thermal diffusivity.
These equations are non-dimensionalized using the temperature scale �T from (2.9), and
the length scale H/2, where H is the height of the domain, giving a buoyancy velocity
Ub = (gα�TH/2)1/2. Using these scales, the dimensionless equations of motion become

Du

Dt
= −∇p +

(

Pr

Ra

)1/2

∇2
u + ezθ − Ro−1

c ez × u, (2.16)

Dθ

Dt
=

(

1

RaPr

)1/2

∇ ·
(

κ̂∇θ
)

, and (2.17)

∇ · u = 0, (2.18)

where Pr = ν/κl is the Prandtl number, Roc is the Rossby number (see (2.22)) and κ̂ =
κ/κl is the ratio of the local thermal diffusivity to the diffusivity in the liquid. The Stefan
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condition ((2.12)) in non-dimensionalized form is given by

um = St

Re · Pr

[

κ̂s (∇θ)s − (∇θ)l

]

, (2.19)

where κ̂s = κs/κl is the non-dimensional thermal diffusivity in the solid. Finally, in the
solid there is only heat conduction and hence u = 0 in ((2.16) and (2.17)).

As the solid melts and the height of the liquid layer increases, the effective Rayleigh and
Ekman numbers evolve according to

Raeff = Ra

[

h (t)

H/2

]3

, and (2.20)

Eeff = E

[

H/2

h (t)

]2

, (2.21)

respectively, showing that as the solid melts and the liquid layer becomes deeper, Raeff

and E−1
eff both increase. We also note that the ratio (Ra/Rabulk

c )eff ∼ RaE4/3 (from (1.3))

increases with time as h1/3.
Unless specifically mentioned, we label the results presented here with the reference

values Ra and E. The effective Rayleigh and Ekman numbers Raeff and Eeff are considered
in the heat transport calculations in § 3.4.

Lastly, the Rossby number Roc in (2.16), also sometimes called the convective Rossby
number, is a measure of the rotation dominance of the flow, and is given by

Roc =
(

Ra

PrTa

)1/2

= E

(

Ra

Pr

)1/2

, (2.22)

where Ta = E−2 is the Taylor number. Despite system specific definitions of the Rossby
number, such as in geophysical fluid dynamics (see e.g. Cushman-Roisin & Beckers 2011,
chapter 9), all flows with Rossby numbers much less than unity are rotationally dominated.

2.3. Initial and boundary conditions

At t = 0, both the solid and liquid phases are at the melting temperature θ = 0. Unless
otherwise mentioned, we use h0 = H/2. The upper and lower boundaries are held
at temperatures θ = −f and θ = 1 respectively (f = 0 except in § 3.2.3). The lateral
boundaries are insulating, no-slip walls. No-slip conditions are also applied at the freely
evolving phase boundary, where the temperature is θ = 0. Ravichandran & Wettlaufer
(2020) showed that free-slip boundaries support flow structures that no-slip boundaries
cannot. Here, in order to examine how such structures influence the melting dynamics,
a free-slip velocity condition is used on the lower boundary, except in § 3.2.1, where we
study the influence of the no-slip velocity boundary condition on the lower boundary.

2.4. Numerical simulations

Equations ((2.16) and (2.17)), together with (2.19), are solved using the finite volume solver
Megha-5 on a uniform grid in all three space directions (Diwan et al. 2014; Prasanth 2014;
Ravichandran & Wettlaufer 2020; Ravichandran, Meiburg & Govindarajan 2020). After
every time step of (2.16) and (2.17), an equilibration step is implemented using (2.10)
and (2.11). This procedure is similar to that used by Rabbanipour Esfahani et al. (2018)
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(a)

Parameter Range

E 10−3 − 8 × 10−5

Ra 105 − 5 × 107

Pr 1, 5
St 0.05 − 1

R̃ = Ra/Rabulk
c O(100) − O(102)

(b)

Parameter/boundary Standard value/type Special cases

Lateral boundaries Solid walls Periodic (§ 3.2.2)
Lower boundary Free slip No slip (§ 3.2.1)
κ̂s 1 0.2, 5 (§ 3.2.3)

Table 1. (a) Ranges of the controlling parameters (defined in the text) used. (b) Typical boundary conditions
or values of parameters used, except in special cases called out in the text.

and has been validated against analytical results (appendix A). The requisite velocity
conditions in the resulting arbitrarily shaped solid region are applied using the volume
penalization method of Kevlahan & Ghidaglia (2001), wherein the solid is modelled as a
porous medium with vanishing porosity. This amounts to adding a term −(χ/η)u to the
right-hand side of (2.16), where η ≪ 1 is the penalization parameter. Our simulations are
performed with up to 5122 × 256 grid points, a penalization parameter of η = 2 × 10−3,
and a time step of δt = 10−3. The results presented are independent of the grid resolution
and insensitive to the value of the penalization parameter used (appendix B).

We note that for the single component two-phase system considered here, the
solid–liquid interface has to be sharp and hence χ varies smoothly from 0 to 1 over a
finite number of grid points (see figure 23 in appendix A). For the purposes of plotting,
the solid–liquid interface is taken to be the iso-surface χ = 0.5.

3. Results and discussion

The range of Ekman and Rayleigh numbers we consider here are listed in table 1, and
correspond to rapidly rotating convection. For the associated values of Ra/Rac, we obtain
no flow for Ra < Rawall

c ; a streaming flow close to the walls (the ‘wall modes’) for Rawall
c <

Ra < Rabulk
c ; and columnar vortices for Ra > Rabulk

c . We do not study the geostrophic
turbulence regime, Ra ≫ Rabulk

c . In the majority of cases we report here, the flow takes
the form of columnar vortices, with a peripheral retrograde near-wall current. We show
how the nature of the flow controls the morphology of the melting of the solid, and how
the melting influences the flow structures. We also study the sensitivity of these results to
the Stefan number. As we explain below, choosing a Prandtl number of 5 allows columnar
vortices to form at lower Rayleigh numbers.

3.1. Flow structure and melting morphology

Before discussing the influence of these flow structures on the morphology of the melting,
we look first at some properties of the columnar vortices themselves. We identify these
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Figure 2. The number of columnar vortices as a function of time for Pr = 5, St = 1 and (a) Ra = 7.8 × 106,
and (b) E = 10−4, showing that, as rotational effects become more dominant, the number of vortices increases.

vortices as isolated regions at the horizontal plane given by z = H/4 where

ωz = ∂v

∂x
− ∂u

∂y
> ω0. (3.1)

Whilst the threshold used, ω0 = 0.25, is arbitrary, this choice does not change the number
of vortices significantly, but it does affect the vortex area, as is to be expected. The rotating
convection driving the melting is time dependent, and the mean and maximum vorticity
increase with time. For this reason, we rationalize an arbitrary threshold in order to have a
means of comparing vortex areas and numbers at different points of time.

3.1.1. Rotational dominance and columnar vortices

For a given Ra, Pr combination, decreasing E increases the rotational control of the flow
and we expect a larger number of thinner vortices (Zhong et al. 1991; Sakai 1997; Vorobieff
& Ecke 1998), as shown in figure 2(a). Moreover, as the Rayleigh number increases the
number of vortices decreases, as shown in figure 2(b). Of particular relevance to the
phase-change dynamics, figure 3(a) shows that as the number of vortices increases the
average area of each vortex decreases. Moreover, this behaviour is independent of the flow
regimes studied, as evidenced by the parametric collapse onto a single curve. Figure 3(b)
shows that, beyond the initial transients, the total vortex area reaches a quasi-steady state.
For a given E, this total vortex area increases with increasing Ra.

Vertical and horizontal cross-sections of the temperature and vertical velocity in figure 4
show the typical patterns of flow and melting seen at the smallest and largest E in our
simulations (table 1). Particularly notable is the increase in the number of vortices in
smaller E more rotationally dominant flows.

These columnar vortices carry heat from the lower boundary to the solid and, as figure 4
shows, etch voids into the solid. Therefore, the morphology of the phase boundary – the
average area and number of void regions melted into the solid – reflects the state of the
flow. Figure 5 shows that the number of voids and their average cross-sectional area are
proportional to the number and the average area of the vortices respectively. However,
whereas the number and size of the vortices play a role in the total heat transport by the
fluid, the heat transfer is not simply proportional to the total vortex area, but depends
additionally upon their specific heat and velocity, as described presently.
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Figure 3. Dependence of flow structure on the flow parameters E and Ra with Pr = 5 and St = 1. (a) The
number of vortices and the average area of each vortex area inversely proportional to each other. (b) The total
cross-sectional area of the columnar vortices is an increasing function of time before saturating at late times.

We note that figure 4 shows sharp cusps in the solid–liquid interface. Such cusps are a
common challenge in numerical simulations of interfacial flows (e.g. Popinet 2018). Here,
we find no evidence that these features influence the overall dynamics appreciably. In
particular, we have verified that the shapes and sizes of the cusps, and the shapes and areas
of the voids are independent of grid resolution.

As the melting proceeds and the height of the liquid layer grows, Raeff and E−1
eff grow as

well ((2.20) and (2.21)). Moreover, as the vortices merge into larger vortices, the voids do
as well. The average area of the voids thus grows as a function of time, as seen in the plot
of the average void area vs Eeff in figure 6. We note, however, that figure 6 is primarily
intended to motivate future work. Namely, because they do not span two decades on both
axes, a rigorous evaluation (see, e.g. Stumpf & Porter 2012) of the relationship between
the void area and Eeff cannot be made.

The convective Rossby number, Roc, is another key parameter that quantifies the
rotational control of the flow. As seen in (2.22), for a given combination of Ra and E,
a larger Pr leads to a smaller Roc, and thus to greater rotational dominance. In figure 7,
this is reflected in the melt voids that are created by the columnar vortices present for
Pr = 5, but absent for Pr = 1.

We note that the times at which the phase boundaries are shown in figure 7 reflect
that for a given Ra, a reduction in Pr reflects an increase in heat transfer and hence melt
rate, further evidence of which is seen in figure 8, where we plot the amount of solid
hs(t) = H − h as a function of time for Pr = 1 and Pr = 5.

It is intuitive that for a given E, the melt rate increases with Ra and this is seen in
figure 9(a,b). Moreover, for similar values of Ra/Rac, melting is faster for larger E,
when vertical transport is less rotationally constrained. We analyse the energy balance
underlying the melting rates and the effective Nusselt numbers in detail in § 3.4.

3.1.2. Wall modes and peripheral melting

When the Rayleigh number approaches the critical value, Rabulk
c , heat is transported

predominantly through the peripheral streaming current, and hence the solid regions closer
to the walls melt significantly faster than the interior, which, as shown in figure 10,
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Figure 4. Cross-sections of the temperature θ and the vertical velocity w for (a–d) E = 10−3, Ra = 2 × 105,
Pr = 5, f = 0, St = 1, t = 240; and (e–h) E = 8 × 10−5, Ra = 7.8 × 106, Pr = 5, f = 0, St = 1, t = 500. In
each panel, the horizontal sections (a,b,e, f ) are plotted on the z = H/4 plane and the vertical sections (c,d,g,h)
are plotted on the y = 0 plane. The yellow lines in the vertical sections show the instantaneous location of
the solid–liquid interface. Vertical heat transport occurs in columnar vortices as reflected in the pattern of the
melting solid.

remains more planar. Whereas in figure 10(a), Ra/Rac = O(1), as it increases we see both
the effects of the wall modes and the bulk flow. Thus, when columnar vortices are present,
as is the case for Pr = 5 in figure 10(b), the voids formed penetrate deeper into the solid
than the melt regions created by the wall modes.

3.1.3. Initial fluid layer height

The effective Rayleigh number at t = 0 is determined by the initial height of the liquid
h0. In recent studies of convection-driven melting (e.g. Rabbanipour Esfahani et al. 2018;
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Figure 5. (a) The number of solid voids as a function of the number of vortices, showing the linear dependence
of the former on the latter. (b) The area of the solid voids as a function of the area of the vortices. In both figures,
points are plotted every 20 flow units excluding initial transients and before the fluid comes into direct contact
with the upper boundary. Here, Pr = 5, f = 0 and St = 1 in all cases shown.
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Figure 6. (a) The average area of the voids formed grows with time, and is seen to grow proportionally to
Eeff . Apart from the initial transients (and the divergence to infinity in cases where all the solid has melted
away within the simulation time), the same proportionality holds for different values of E = Eeff (t = 0). (b) A
reasonable collapse is obtained if the void areas are multiplied by E−3/2 (note that we multiply by the initial
value, not the abscissa). The parameter combinations are the same as in figure 5, and the symbols have the
same meaning.

Favier et al. 2019), the initial liquid height is taken to be small fraction of the domain height
H, such that Raeff (t = 0) < Rac. Thus, convection begins only after an initial stage where
melting occurs by the relatively slow diffusion of heat, which eventually leads to Raeff >

Rac. In our simulations with h0 = H/2, the initial Ra is sufficiently large so that convection
occurs immediately. While the melting history will obviously depend on h0, this choice
does not change the general conclusions drawn from our simulations. We show this in
figure 11 by comparing the void area and number as a function of the height of the fluid
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Figure 7. The solid–liquid interface (viewed from the solid side) with St = 1, f = 0 for (a) E = 10−3, Ra =
2 × 105, Pr = 1, t = 120; (b) E = 10−3, Ra = 2 × 105, Pr = 5, t = 240; (c) E = 10−4, Ra = 5 × 106, Pr = 1;
t = 240; (d) E = 10−4, Ra = 5 × 106, Pr = 5, t = 500. For Pr = 5, vertical heat transport occurs in columnar
vortices as reflected in the pattern of the melting solid.

0

0

0.2

0.4

hs

0.6

0.8

1.0

100 200 300

t
400 500 0 100 200 300

t
400 500

(b)(a)

E = 1 × 10–3, Pr = 1

E = 1 × 10–3, Pr = 5

E = 5 × 10–4, Pr = 1

E = 5 × 10–4, Pr = 5

E = 5 × 10–4, Pr = 1

E = 5 × 10–4, Pr = 5

Figure 8. The volume-averaged height of the solid hs = H − h as a function of time, showing the role of the
flow parameters, with St = 1, f = 0. (a) Ra = 105; Columnar vortices are absent for both Prandtl numbers.
(b) Ra = 106; Columnar vortices are present for Pr = 5. For the three combinations of E, Ra (i) E = 10−3,
Ra = 105, Ra/Rabulk

c = 4.2; (ii) E = 5 × 10−4, Ra = 105, Ra/Rabulk
c = 1.6; (iii) E = 5 × 10−4, Ra = 106,

Ra/Rabulk
c = 16.6. For a given Ra, melting is slower for larger Pr regardless of the degree of supercriticality

Ra/Rac or the presence of columnar vortices.
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melt rate, as shown for (a) E = 10−3 and (b) E = 5 × 10−4. For comparable Ra/Rac, melting is slower for
smaller E, as seen in (c,d). Note that the simulations in (d) are run for 2000 flow time units.
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Figure 11. (a) The number of solid voids, and (b) the area of the solid voids as a function of the liquid height
h, for E = 10−4, Ra = 107, Pr = 5, St = 1, f = 0.

layer in simulations with h0 = 1 and h0 = 0.1. Apart from initial transient differences, the
curves follow very similar trajectories.

3.1.4. Stefan number

Smaller Stefan numbers, as defined in (2.8), are associated with large latent heats and thus
lead to lower melt rates (see e.g. Worster 2000), in which case simulations need to be
run for longer times. However, the melting morphology we find is independent of Stefan
number for the range studied (St = 0.2–1), which is shown by plotting the number and
areas of the voids formed in figure 12. The same is found in the melting of pure solids
driven by non-rotating convection (Rabbanipour Esfahani et al. 2018; Favier et al. 2019).

3.2. Special cases

3.2.1. No-slip lower boundary: melting rates, flow structures and wall modes

In the simulations presented thus far, the fluid layer is bounded laterally and above
by no-slip boundaries. Only the heated lower boundary is one of free slip. In rotating
Rayleigh–Bénard convection, the role of the velocity boundary layers is as essential as
in the non-rotating case (e.g. Rossby 1969; Liu & Ecke 2009; Schmitz & Tilgner 2010;
Julien et al. 2012; King et al. 2012). Moreover, the critical Rayleigh number in (1.3) is
largest for free-slip top and bottom boundaries, and smallest for one free-slip and one
no-slip boundary; the case of two no-slip boundaries is intermediate between these cases
(Chandrasekhar 1953; Boubnov & Golitsyn 1990). Despite this, for the parameter ranges
considered here, the Nusselt number is larger for the case with no-slip upper and lower
boundaries, owing to the interaction of the thermal and velocity boundary layers at the
lower boundary (e.g. Rossby 1969). Thus, the melting rates are higher when the lower
boundary is one of no slip as compared to one of free slip, as seen in figure 13.

Experiments show that columnar vortices in rotating convection show horizontally
diffusive motion (see e.g. Noto et al. 2019). Because the phase boundary voids created
by the heat transported through the columnar vortices are colocated, the latter can be
arrested (and perhaps pinned) by the former. In our simulations, this effect is influenced
by velocity boundary conditions, with horizontal motion suppressed in the case of
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Figure 12. (a) The number of solid voids; and (b) the area of the solid voids as a function of the liquid height
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Figure 13. The melting histories with either a no-slip or a free-slip lower boundary. The other parameters are
identical, with E = 8 × 10−5, Ra = 7.8 × 106, Pr = 5, St = 1, f = 0. Due to the enhanced heat transport, the
rate of melting is higher with a no-slip lower boundary.

no-slip boundaries. In figure 14, we show that the wall-modes that usually precess in a
retrograde (i.e. clockwise as seen from above) direction are locked in place as the solid
melts, an effect that is more prominent with a no-slip lower boundary than with a free-slip
lower boundary.
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The wall modes, which usually propagate clockwise, are locked in place once melting begins. The parameters
are E = 8 × 10−5, Ra = 1.56 × 106, Pr = 1, St = 1, f = 0.
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Figure 15. The solid–liquid interface (viewed from the solid side) at t = 400 for E = 8 × 10−5, Ra = 7.8 ×
106, Pr = 5, St = 1, f = 0, and (a) no-slip walls (b) periodic in the horizontal. The effects of the peripheral
streaming flow seen in (a) as increased melting near the walls is absent in (b), although the voids and the overall
rate of melting are very similar in the two cases.

3.2.2. Horizontal periodicity

As we have seen, the presence of walls confining the flow in the horizontal directions
leads to the generation of a peripheral current that can affect the melting of the solid. This
peripheral flow is absent in a horizontally periodic system, as seen in figure 15. However,
the columnar-vortical flow at Pr = 5 and the resultant melt pattern reflecting the presence
of these vortices, as well as the overall melt rate, both remain unchanged.

3.2.3. Thermal diffusivity in the solid

The thermal diffusivity of the solid governs the amount of heat transported away from the
solid–liquid interface and thus the melt rate (see (2.19)), with a larger diffusivity in the
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Figure 16. (a) The melting histories for E = 8 × 10−5, Ra = 7.8 × 106, St = 1, f = 1, Pr = 5 with periodic
boundary conditions in the horizontal for (i) κ̂s = 0.2 and (ii) κ̂s = 5. As κ̂s increases the melt rate decreases.
(b) The solid–liquid interface (viewed from the solid side) for κ̂s = 5 at t = 500. The system is periodic in the
horizontal, and the other parameters are as in (a), but the voids are not as prominent.
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Figure 17. (a) The net circulation (Γ =
∫∫

ωz dx dy) at z = H/4 and the roughness as a function of time; and
(b) the net circulation Γ as a function of the roughness, characterized by the standard deviation of the liquid
height, σ(h), for simulations with E = 3.2 × 10−4, Ra = 2 × 106, f = 0, Pr = 5 and St = 0.05, 0.2, 1 showing
that the total vorticity and the roughness co-vary. The curves are computed using a running average over 10
points, each spaced 20 flow units apart.

solid κ̂s leading to smaller um. Figure 16(a) shows this effect for two values of κ̂s = 0.2
and κ̂s = 5, with f = 1 (so that the upper boundary is at θ = −1). For the largest value of
the diffusivity, κ̂s = 5, and the smaller melting rate (see, (2.12)), the horizontal drift of the
columnar vortices is faster than the melt rate and hence we infer the vortices are not pinned
in the voids. As a result, we see in figure 16(b) that the voids have smaller amplitudes.

3.3. Coupling of interfacial geometry and flow structure

We argued in § 3.2.3 that the phase boundary and the flow structures co-evolve, which is
particularly well reflected in figure 3 showing the proportionality between the number and
area of the vortices for St = 1. Whilst we are unable to track individual vortices in our
simulations, in figure 17 we assess their interaction with the voids by plotting the time
evolution of the net vertical circulation, or vorticity, and the roughness, as characterized
by the standard deviation of the liquid height σ(h). We see that the rates at which
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both roughness and vorticity increase, decrease as the latent heat increases and that the
roughness and the vorticity increase collinearly, which is a natural consequence of the
conservation of potential vorticity. Indeed, we speculate that the increase in vorticity with
latent heat shown in figure 17(b) is associated with the horizontal drift of the columnar
vortices being faster than the evolution of the phase boundary. However, in order to assess
such a scenario one must track individual vortices.

3.4. Heat transport and the melting rate

In § 2.3 we noted that the initial and boundary conditions in most of the simulations
reported here, except those in §3.2.3, are that the solid is at the melting temperature
throughout, viz., θ(t = 0) = 0, and the upper boundary is held at θ = 0. Therefore, the
heat available for melting is transported by the fluid from the lower heated boundary to the
solid and described by the integral form of energy conservation, (2.17), as

ρλ(H/2)2Ub

[

d

dt

∫∫∫

(1 − χ) dx dy dz

]

= kl�TA2(H/2)

[〈

−∂θ

∂z

〉

z=0

]

− ρCp�T(H/2)2Ub

[

d

dt

∫∫∫

θ dx dy dz

]

, (3.2)

where the terms in square brackets are non-dimensional. Dividing by kl�TA2H/2 gives

(RaPr)1/2

St

dh

dt
=

〈

−∂θ

∂z

〉

z=0
− 2 (RaPr)1/2 dθ̄

dt
, (3.3)

where

θ̄ = 1

2A2

∫∫∫

θ dx dy dz (3.4)

is the average non-dimensional temperature over the simulation volume and

h = 1

A2

∫∫∫

(1 − χ) dx dy dz (3.5)

is the volume-averaged dimensionless height of the fluid. The relative contributions of the
sensible heating of the fluid and the melting of the solid to the heat balance are shown
in figure 18. Initially, all the energy supplied to the system from the boundary heats up
the liquid. For smaller E and Ra, vertical motions are suppressed and hence so too is the
delivery of the specific heat to the phase boundary, where melting may proceed (beginning
here at about t = 50). Once melting begins the latent heat draws down the sensible heat
stored in the fluid and eventually a near steady balance between the energy delivered
and that available for melting may be maintained. Hence, whilst the vigour of convection
depends on E and Ra, such a balance between the heat input at the lower boundary and the
latent heat of fusion requires quasi-steady rotating convection.

We see in figure 18(b) that the quasi-steady state of convection in the fluid described by
(3.3) breaks down at t = 340 when fluid comes into contact with the upper solid boundary
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Figure 18. The terms in (3.3), with Pr = 5 and f = 0 for (a,c) E = 10−4 Ra = 107; (b,d) E = 3.2 × 10−4,
Ra = 2 × 106. The Stefan numbers are (a,b) St = 1; (c) St = 0.1; (d) St = 0.05. Note that the quasi-steady
state of convection in the fluid described by (3.3) breaks down when the voids in the solid reach the upper
boundary and fluid comes into direct contact with the container surface at t = 340 in (b).

through the voids in the solid. Note that the slight mismatch between 〈−(∂θ/∂z)〉z=0 and
the sum

(RaPr)1/2

St

dh

dt
+ 2(RaPr)1/2 dθ̄

dt
(3.6)

in figure 18 is a consequence of the coarse time discretization used in calculating the time
derivatives in the plots.

Additionally figure 18 shows that, when the specific heat stored in the convecting fluid
is small, i.e. when the Stefan number is small, there is a nearly steady balance between the
heat supplied at the base of the cell and the melt rate. As the fluid interior cools slightly in
time this is balanced by a slight increase of the melt rate and the heat input from the lower
boundary, as seen in figure 18(c,d). The temperature in the liquid is, of course, not uniform
in space. Indeed, as shown in figure 19, the structure of the mean temperature gradient in
the fluid is reminiscent of non-rotating high Ra convection, with a thermal boundary layer
at the base and a nearly isothermal interior. However, the phase change at the ramified
upper boundary maintains the average temperature near the melting point. This situation
can be treated by approximating (3.3) using only the first two terms, viz.,

(RaPr)1/2

St

dh

dt
= Nu

h
, (3.7)
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Figure 19. The area-averaged solid fraction 〈χ〉 and temperature 〈θ〉 as a function of the vertical coordinate z

at t = 400, for the case E = 10−4, Ra = 107, Pr = 5, St = 1 and f = 0.

where Nu is the Nusselt number – the total heat flux scaled by the conductive heat flux –
across the fluid region.

In § 3.1 we showed that for most combinations of parameters examined here, the phase
boundary is ramified, so that the solid depth varies substantially in the horizontal. In
consequence, we see from figure 19 that within the broad average transition region from
fluid to solid the average temperature relaxes to the bulk melting temperature. Therefore,
we take the domain-averaged h (see also § III of Rabbanipour Esfahani et al. 2018) when
considering the quasi-steady balance in (3.7). We note, however, that we understand that
there are three-dimensional heat fluxes in the interfacial region, which are simpler to treat
when the phase boundary has small amplitude variations, such as in the non-rotating case
(e.g. Favier et al. 2019; Toppaladoddi & Wettlaufer 2019). Another perspective is that for
a vortex-induced highly ramified interface, the interfacial region might be considered as a
‘mushy layer’, as observed in binary systems (Worster 2000), wherein there is two-phase,
two-component coexistence and the condition of marginal equilibrium holds. Clearly here
there are no impurities, but we can see in figure 19 the relaxation towards equilibrium of
the average temperature and enthalpy through the mixed phase region.

For geostrophic convection, the average Nu can be expressed in terms of the Rayleigh
number and the critical Rayleigh number, using (2.20), (2.21) and (1.3), as

Nu = C

(

Ra

Rabulk
c

)β

eff

, (3.8)

where β is in general a function of (Ra/Rabulk
c )eff and C is a numerical prefactor that

may depend on Pr. For large values of Ra/Rabulk
c , two values have been suggested in

the literature; β = 3 (Boubnov & Golitsyn 1990; King et al. 2012) and β = 3/2 (Julien
et al. 2012), the latter finding C = (1/25)Pr−1/2. For more modest values of Ra/Rabulk

c ,
Ravichandran & Wettlaufer (2020) found β = 3/4 and Liu & Ecke (2009) found β = 2/7.
In the limit of large Ro, that is in the classical non-rotating Rayleigh–Bénard convection
regime, one finds, with a different prefactor than in (3.8), β = 1/3 up to Ra = 1015

(Doering, Toppaladoddi & Wettlaufer 2019; Doering 2020a,b; Iyer et al. 2020).
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Figure 20. The Nusselt number plotted as a function of (Ra/Rac)eff , calculated using the mean fluid height
h(t) and (2.20) and (2.21).

In figure 20 we plot the Nusselt number, calculated using (3.7), vs the effective
Rayleigh number as melting proceeds. In the quasi-steady state the curves for different
St collapse with E and Ra dependent slopes, suggesting that although (3.8) provides an
ideal organizing principle for our simulations, we are unable to determine the associated
exponent given our parameter range (see e.g. Stumpf & Porter 2012).

3.5. Maximal phase boundary roughness and maximal heat flux

We conclude § 3 with the observation that the roughness of the phase boundary
continuously increases and reaches a maximum approximately simultaneously with the
Nusselt number. As seen in figure 18, the heat supplied at the bottom boundary, and the
melt rate of the solid, are approximately independent of time and hence the left-hand side
of (3.7) is approximately constant. Therefore, the Nusselt number increases linearly with
the liquid height h and reaches a maximum when the voids in the solid reach the upper
boundary of the cell. We again characterize the roughness using the standard deviation
of the liquid height, σ(h), which we observe reaches a maximal value when the voids
reach the upper boundary, namely when there is fluid in contact with the upper boundary.
Further melting reduces the roughness. The correlation between Nu and σ(h) is shown
in figure 21(a), where we see that the maximal Nusselt numbers are reached before the
roughness of the solid–liquid interface becomes maximal, with the interval between the
maxima increasing as the Stefan number decreases (and the melt rate decreases). Smaller
Stefan numbers lead to voids of unequal depths, with some voids reaching the upper
boundary before others. The decrease of the interface roughness associated with the former
is compensated, for a limited period, by the continued deepening of the latter.
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Figure 21. The Nusselt number Nu and standard deviation of the phase boundary height, σ(h), plotted as a
function of time for f = 0 and (a) E = 3.2 × 10−4, Ra = 2 × 106, Pr = 5, h0 = 1.0, for a range of St; and for
(b) St = 1 with two combinations of E, Ra and h0 = 0.1. The correlation between Nu and σ(h) is evident in all
of these cases. In (c), we show the roughness data in (a) with the time coordinate rescaled by the Stefan number.
Thus, we see the Nusselt number maxima occurring at smaller t × St for smaller St, from which we expect that
the data for St = 0.05 will follow this trend and reach a maximum, were we able to run longer simulations in
that case.

Since the areas and number of voids depend on the flow parameters (figure 5), the
maximum value of σ(h) depends on these parameters as well, with the thinner vortices
in flows with smaller Roc ((2.22)) leading to narrower voids and thus a rougher interface
(see e.g. figure 21b). In particular, the continued increase of σ(h) in figure 21(b), where
the initial liquid height h0 = 0.1, shows that the voids formed by the columnar vortices
will continue to penetrate deeper into the solid with time, only being limited by the depth
of the solid itself. The curves for St = 0.05 in figure 21(a) have not reached their maxima.
However, the rescaling of the data in figure 21(c) suggests that the time interval between
the maximal Nu and the maximal σ(h) will further increase for St = 0.05, and we expect
that a maximum will be reached were we able to run longer simulations in that case.

In non-rotating turbulent Rayleigh–Bénard convection, with Dirichlet boundary
conditions and periodically rough boundaries, Toppaladoddi, Succi & Wettlaufer (2015,
2017) showed that, for a given roughness wavelength, there is a ratio of the thermal
boundary layer thickness to the roughness amplitude that optimizes Nu. Moreover, this
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enhancement of heat transport is a general consequence of roughness, observed for a wide
range of geometries from rough on all surfaces to fractal boundaries (Roche et al. 2001;
Goluskin & Doering 2016; Toppaladoddi et al. 2020). In these situations, the systems are
in a statistical steady state. Here, with the geometry free to evolve subject only to the
underlying conservation laws, both the roughness of the phase boundary and the Nusselt
number increase with time as the solid phase melts according to (3.7). The Stefan number
dependence of the observed correlation between the vorticity and the interfacial roughness
shown in figure 17 underlies this process.

4. Conclusion

We have studied the melting of a pure solid by the convection of its liquid phase when
the former overlies the latter and the entire system rotates about an axis parallel to
gravity. The width of the system is twice its depth and we have examined ranges of
the Ekman, Rayleigh and Prandtl numbers predominantly corresponding to moderately
rotating Rayleigh–Bénard convection.

There are three regimes of flow that influence the morphology of the phase boundary.
First, when the Rayleigh number is greater than the bulk critical value, Ra > Rabulk

c

((1.3)), the flow takes the form of columnar vortices. Second, in confined geometries
there is a streaming flow close to the lateral walls of the container. This occurs when
Rawall

c < Ra < Rabulk
c , where Rawall

c is given by (1.4) (Herrmann & Busse 1993). Third,
in the periodic geometry, there is no flow for Ra < Rabulk

c . We found that the number of
melt voids in the solid is proportional to the number of heat transporting vortices present,
which in turn increases as the convective Rossby number decreases and rotational effects
become dominant. We showed that the overall melting rate is a non-trivial function of
the flow parameters; for the same Ra/Rac, melting rates are smaller for larger Prandtl
numbers and smaller E. Moreover, we found that the phase boundary morphology can
be highly ramified or relatively smooth, reflecting the nature and number of rotationally
controlled vortices transporting heat across the evolving fluid layer. Lastly, we showed that
the peripheral streaming current characteristic of rotating Rayleigh–Bénard convection
may become ‘locked’ in place due to the coupling between the flow and the melting of the
solid.

For large values of the latent heat of fusion, characterized by the Stefan number, we
found a quasi-steady geostrophic convective state in which the net vertical heat flux is
nearly constant over long time intervals. This leads to a situation in which the constant heat
supplied at the base balances the melt rate. In the case of non-rotating binary systems, it is
now well known that the fluid mechanics of solidification lead to complex phase boundary
geometries and their associated transport phenomena (e.g. Huppert 1990; Sullivan, Liu
& Ecke 1996; Worster 2000; Philippi et al. 2019). Here, in contrast, in a pure system,
we find that convective and rotationally controlled vortices alone can create ramified
phase boundaries. While no obvious optimization of the Nusselt number is seen as a
consequence of the increasing boundary roughness, that roughness evolves in time in a
unique manner coupled to the rotationally influenced evolving buoyancy of the liquid
phase. The associated void structure in the solid will affect the mechanical and thermal
properties of materials formed in such circumstances. Thus, the inclusion of compositional
effects with the rotational processes studied here will open a new set of questions regarding
the structure of partially molten rotating systems. Finally, we note that in astrophysical and
geophysical problems wherein rotational effects are important, assumptions of planarity of
the phase boundary should therefore be made with care.
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Figure 22. (a) The liquid height h(t) from the one-dimensional numerical solution and the analytical solution
of the Stefan problem ((A1)). In the numerical solution h(t) is bounded by the height of the domain, 0.5. (b) For
the alternate initial conditions (see text), the amount of unmelted solid from the numerical solution from the
finite-volume solver is compared with the analytical solution in one dimension. The parameters are κ = 0.01,
St = 1.
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Appendix A. Validation of the enthalpy method

We validate the enthalpy method used here by comparing the numerical solution to the
one-dimensional analytical solution for a purely conducting case (e.g. Worster 2000).
We then study the convergence of the method with grid resolution in a case with fluid
convection.

A.1. Melting by conductive heat transfer

Consider a semi-infinite solid layer in the region z > 0 at the melting temperature. The
boundary at z = 0 is held at θ = 1. The solid melts, forming a liquid layer of height h(t)

given by

h = 2ξ
√

κt, (A1)

where ξ is the solution of the transcendental equation deriving from the Stefan condition,

ξ exp(ξ2)erf(ξ) = St√
π

. (A2)

In figure 22(a) the analytical solution of the Stefan problem is compared with a numerical
solution of (2.17) in one dimension with the boundaries at z = 0 and z = H = 0.5. Next,
we consider a case where there is already some liquid (at θ = 0) present in the region
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Figure 23. The variation of the solid mask and the temperature through the solid–liquid interface. Parameters:
E = 8 × 10−5, Ra = 7.8 × 106, Pr = 5, St = 1, f = 0, grid spacing dz ≈ 0.004 with (a) η = 2 × 10−3,
(b) η = 10−3. The dotted lines in (a) show the average thickness of the thermal boundary layer at the heated
lower boundary.
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Figure 24. (a) The vertical velocity and (b) the temperature fields at t = 56 for simulations at the highest
resolution (N = 1024), with Ra = 1.25 × 105, Pr = 1 and St = 1.

0 < z < z0 = 0.05, with solid at the melting temperature in the region z0 < z < H at θ =
0. The boundaries are held at θ(z = 0) = 1 and θ(z = H) = 0. The numerical solution in
one dimension is compared with the solution from the three-dimensional solver, and the
amount of unmelted solid plotted as a function of time in figure 22(b). In both these cases,
the one-dimensional solution is obtained using fourth-order Runge–Kutta integration; the
three-dimensional solver uses a second-order Adams–Bashforth scheme (as described in
§ 2.4).

For the single-component, two-phase systems considered here, the solid–liquid interface
is sharp. In the numerical simulations, this interface is defined as the region where 0 <

χ < 1, and is distributed over a finite number of grid points. This is shown in figure 23
where the mask χ and the temperature θ are plotted on a vertical line through the peak
of the void in the solid region. The mask function χ varies from 0 to 1 over a distance of
about δz = 0.008, which is 2 grid points in the 2562 × 128 simulations. This is similar to
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Figure 25. (a) The liquid height as the grid resolution is varied, and (b) the root-mean-square error as a
function of the resolution.
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Figure 26. (a) The melting history and (b) the melting Nusselt number for E = 8 × 10−5, Ra = 7.8 × 106,
Pr = 5, St = 1, f = 0, as η is varied. The difference in the total amount of solid melted changes by only
approximately 5 %–10 % over 250 flow units when η is halved from 2 × 10−3 to 10−3. The differences in the
melting rates are even smaller. As a result, the Nusselt number also changes by only approximately 5 %–10 %
as the η is halved.

results obtained by Couston et al. (2021), and those prescribed (in their formulation) by
Favier et al. (2019) who use a nominal interface thickness of half the grid spacing. We note
that for the range of values of η used here, the thinness of the interface is not affected by
changes in the grid resolution or in the penalization parameter, as seen from figure 23(b),
with η = 10−3.

A.2. Melting by convective heat transfer

The grid dependence of the accuracy of our solution method is examined as follows. We
use the geometry in Appendix A2 of Favier et al. (2019), and Ra = 1.25 × 105, Pr = 1
and St = 1, with an initial temperature perturbation of

θ(t = 0) = 1 − z + A sin(2πx) sin(πz). (A3)
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Figure 27. Snapshots of the phase boundary at t = 500 for the case E = 8 × 10−5, Ra = 7.8 × 106, Pr = 5,
St = 1, f = 0, with (a) η = 2 × 10−3 and (b) η = 10−3. The number and area of the voids, as well as the overall
amount of melting (noting that the figures are plotted at the same time t = 500), can be seen to be insensitive
to the penalization parameter.
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Figure 28. The void areas and the number of voids formed in the solid for different values of the penalization
parameter. The number and area of the voids can be seen to be insensitive to the penalization parameter.

The resulting velocity and temperature fields at t = 56 are plotted in figure 24. The location
of the solid–liquid interface is given by the liquid height h from (3.5), and is plotted
as the grid resolution is varied in figure 25(a). We then use the solution at the highest
grid resolution (N = 1024) as a reference, and linear interpolation to find the interface
location at intermediate points. The root-mean-square error is plotted as a function of N in
figure 25(b), showing that the error decreases as N is increases, with an exponent between
1 and 2, as also reported by Favier et al. (2019).

Appendix B. Penalization parameter

The volume penalization method has a tuneable parameter η. The principle of the volume
penalization method is to treat the solid as a porous medium of vanishing porosity. The use
of a finite value for η creates a velocity boundary layer of size (νη)1/2 in the solid. Engels
et al. (2015) showed that the optimal value of η is such that the grid spacing is comparable
to the boundary layer thickness, namely dx ∼ (νη)1/2. All of our results are reported with
the penalization parameter η = 2 × 10−3 (§ 2.4), satisfying this requirement.
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In detail the melting process is influenced by the boundary layer and hence depends on
η. As seen in figure 26, upon reduction of η by a factor of 2, the melt rate changes by only
a few per cent. Therefore, the latent heat flux and the quasi-steady balance described by
(3.7) underlying the results shown in figures 18(b) and 21 are insensitive to the choice of η.
Snapshots of the interface shown in figure 27, and the plots of the number and areas of the
voids shown in figure 28 demonstrate the persistence of the central behaviour; convective
vortices etch voids into the solid, and the number of voids are proportional to the number
of vortices. Thus, as noted in § 3.5, Nu(t) and the maximal interface roughness depend on
η, but the correlation between Nu and σ(h) shown in figure 21 do not.
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