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We investigate the finite-temperature spectral functions of heavy quarkonia by using the soft-wall anti-

de Sitter/QCD model. We discuss the scalar, the pseudoscalar, the vector, and the axial-vector mesons and

compare their qualitative features of the melting temperature and growing width. We find that the axial-

vector meson melts earlier than the vector meson, while there appears only a slight difference between the

scalar and pseudoscalar mesons, which also melt earlier than the vector meson.
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I. INTRODUCTION

The strongly correlated quark-gluon plasma (sQGP),

which is hot and dense matter out of quarks and gluons

created at the Relativistic Heavy-Ion Collider in the

Brookhaven National Laboratory, have been attracting a

great deal of interest in its intrinsic nonperturbative prop-

erties [1–3]. Although there is no systematic way to study

such a nonperturbative system at strong coupling, a power-

ful technique has developed recently based on the gauge/

string correspondence [4–6]. The idea is that one can treat

the strong-coupling regime in the gauge field theory on the

boundary by solving the weak-coupling string theory (or

classical one in the large Nc and large ’t Hooft coupling

limit) in the bulk anti de Sitter (AdS) space.

A well-known example of successful application of the

gauge/string duality to the sQGP physics is the exact

computation of the shear viscosity to the entropy density

ratio, i.e. �=s ¼ @=ð4�kBÞ in an N ¼ 4 supersymmetric

Yang-Mills plasma [7–10]. This value of �=s is much

smaller than any observation in reality except for the

heavy-ion collisions; the hydrodynamic model studies im-

ply that �=s of QCD matter is as small as suggested by the

string theory [11,12]. Besides, it is conjectured that �=s ¼
@=ð4�kBÞ might be a universal lower bound and applied to

strong-coupling QCD as well as supersymmetric models.

The smallness of �=s is an important indication of the

sQGP because a larger reaction cross section leads to a

smaller � in gaseous states. Actually, perturbative QCD

calculations cannot give account for small �=s in the

weak-coupling regime [13–15]. The Monte Carlo simula-

tion of QCD on the lattice is a powerful instrument to look

into the nonperturbative strong-coupling regime. It is still

difficult to estimate � in fully dynamical simulations with

quarks, but the (quenched) results so far are not inconsis-

tent with the string theory estimate [16,17].

Another important indication to the sQGP is the in-

medium property of heavy quarkonia such as J=c . In the

recent lattice QCD simulations the J=c spectral functions

(SPFs) both above and below Tc have been successfully

constructed by means of the maximum entropy method

[18], which has indicated that the mesonic correlation (a

peak in the SPF) survives even above twice that of Tc [19–

23]. It is, however, a nontrivial question how to explain

such a high melting temperature for J=c in a conventional

way using the nonrelativistic model with the Debye

screened potential [24–28]. We have not yet reached a

full consensus on the interpretation of the J=c SPFs above

Tc, though there are many theoretical efforts. Our present

aim is to investigate this question using the gauge/string

duality along the same line as our previous work [29].

In Ref. [29] we calculated the SPFs in the vector channel

assuming that the heavy-quark sector is decoupled from

others. In this work we will extend our analysis to other

channels; scalar, pseudoscalar, and axial-vector mesons,

namely, �c0, �c, and �c1. Since the interpretation of �c0

(i.e. whether it melts or not above Tc) was controversial

[21–23], it is important to clarify whether c �c states in all

these channels melt at T > Tc and, if so, when they melt.

Under the situation that the maximum entropy method

construction of the SPFs in lattice QCD simulations are

still difficult for all these channels, it is valuable to take

advantage of the holographic QCD model to see what

spectral shape would transpire in the strongly coupling

system. In this work we will use the soft-wall AdS/QCD

model [30,31] (see Refs. [32,33] for related works).

Although the SPFs at finite temperature and density have

been discussed by means of the D3/D7 setup [34], it is not

straightforward to deal with the heavy-meson SPFs in the

D3/D7 model. This is because the only energy scale in this

model is fixed by the pion decay constant and the SPFs are

given as a function of not T andMq independently but only

T=Mq where Mq is the quark mass [35,36]. The soft-wall
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model, in contrast, has one more phenomenological pa-

rameter, c, which is fixed by the meson spectrum.

One of the important features in the soft-wall AdS/QCD

model is that a parameter in the bifundamental scalar

sector controls the chiral symmetry breaking, that is, the

chiral condensate. Interestingly enough, the chiral conden-

sate is uniquely determined from the infrared (IR) bound-

ary condition that is specified by a smooth function in the

soft-wall model. Therefore, in this model, there is no

ambiguity in the IR limit in the case at finite T (see

Refs. [37,38] for holographic approaches to finite-T me-

sons). The regular IR boundary condition allows us to

evaluate the Minkowskian correlator [39–41] from which

we can compute the SPFs. We will find, in view of the

resultant SPFs, that the axial-vector states melt faster than

the vector ones. We will then clarify its origin in the chiral

symmetry breaking due to the scalar field which yields a

difference between the vector and axial-vector equations of

motion. On the other hand, the scalar and pseudoscalar

dissociation temperatures are almost the same; T ’ Tc.

Finally, before closing this paper, we shall take a closer

look at the vector channel.

II. SOFT-WALL MODEL

The principle to construct the AdS/QCD model is the

bulk/boundary correspondence or UV/IR relation. The

generating functional in the gauge field theory is equivalent

to the exponential of an on-shell action in the gravity

theory (Gubser-Klebanov-Polyakov-Witten relation [5,6]),

Z½�0� ¼ hei
R

dx�0ðxÞOðxÞigauge ¼ eiSgravity½�0�; (1)

where Z½�0� is the generating functional with the source

�0 coupled with an operatorOðxÞ and Sgravity is an on-shell
action with the boundary condition � ! �0 at the UV

boundary where the gauge theory resides.

The AdS/QCD models are five-dimensional field theo-

ries designed to describe QCD properties through the bulk/

boundary correspondence [32]. The essential ingredients

of the AdS/QCDmodel are the AdS space with an IR cutoff

(i.e. wall) that translates into a typical energy scale in

QCD, the ULð2Þ � URð2Þ vector fields, AL, AR, and the

bifundamental scalar field X. The vacuum expectation

value of X is responsible for the explicit and spontaneous

chiral symmetry breaking. The soft-wall model is defined

by the following action [31]:

S ¼
Z

d5xe�c�z
2 ffiffiffiffiffiffiffi�g
p

L; (2)

L ¼ tr

�

�jDXj2 þ 3

L2
jXj2 � 1

4g25
ðgMNgPQFL;MPFL;NQ

þ gMNgPQFR;MPFR;NQÞ
�

; (3)

where X ¼ Xata with ta being the generator of Uð2Þ and

DMX ¼ @MXþ iAL;MX � iXAR;M. Here, M ¼ x0, x1, x2,
x3, z and g5 are the indices for the five-dimensional coor-

dinates and gauge coupling, respectively. We note that

g25 ¼ 24�2L=Nc is concluded by matching [31]. We also

use the Greek index � ¼ x0, x1, x2, x3 to refer to the four-

dimensional coordinates. The model parameter, c�, char-

acterizes the wall location; since the contribution from the

IR region z * 1=
ffiffiffiffiffi
c�

p
is suppressed by e�c�z

2
, it represents

a potential with the wall providing a typical QCD scale.

The background geometry is specified as the AdS metric as

gMNdx
MdxN ¼ L2

z2
ð�dt2 þ d~x2 þ dz2Þ: (4)

It should be mentioned that the vector-meson mass

spectra at T ¼ 0 are quantized by the normalizability

condition and given as the following Regge trajectory:

[31],

m2
n ¼ 4c�n; (5)

where n is the radial excitation number. Then we can

determine c� by fitting the above relation to the vector-

meson spectra; �ð770Þ, �ð1450Þ, �ð1700Þ, etc. If we take

m� ¼ 0:77 GeV for n ¼ 1, we have c� ¼ 0:772=4 ¼
0:148 GeV2, while we will later find that the spectral

peak is slightly shifted from Eq. (5) and will fix c� ¼
0:151 GeV2 to fit the peak position with the mass.

Now that we fix the model parameter c�, let us consider

the model at finite temperature. Here, we shall introduce

the following background, which is called the AdS black-

hole (AdSBH),

gMNdx
MdxN ¼ L2

z2

�

�fðzÞdt2 þ d~x2 þ 1

fðzÞdz
2

�

; (6)

with fðzÞ ¼ 1� z4=z4h where the horizon is related to the

Hawking temperature that is interpreted as the system

temperature of dual QCD as zh ¼ 1=ð�TÞ. It is known

that the AdSBH is unstable at low temperature, and thus

the Hawking-Page-type transition occurs at a critical tem-

perature, Tc ¼ 0:492
ffiffiffiffiffi
c�

p
. This is a first-order phase tran-

sition from the AdSBH to the thermal AdS metric [42,43]

as the temperature is lowered and is a phase transition from

the deconfined to the confined phase.

In the soft-wall model one can introduce the chiral

symmetry breaking explicitly (i.e. quark mass) and sponta-

neously (i.e. chiral condensate) through the bifundamental

scalar field X, which is decomposed as Xðx; zÞ ¼
e2i�ðx;zÞ½X0ðzÞ þ Sðx; zÞ� where x refers to four-

dimensional coordinates only and X0 is a constant back-

ground with respect to x. The fluctuations, S and �,

represent the scalar and pseudoscalar fields. In the case

when quark masses are degenerated, X0ðzÞ is proportional
to unity in flavor space and satisfies the following equation

of motion:
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X00
0 ðzÞ þ

�

�2czþ f� 4

zf

�

X0
0ðzÞ þ

3

z2f
X0ðzÞ ¼ 0; (7)

where the prime stands for the derivative with respect to z.
From this differential equation we find that in the vicinity

of z ¼ 0 the general solution behaves as

L3=2X0ðzÞ � 1
2ðMqzþ �z3Þ; (8)

where, according to the dictionary of bulk/boundary cor-

respondence, the parameters Mq and � are identified with

the quark mass matrix and the chiral condensate, respec-

tively. Here, in the soft-wall model, � is uniquely deter-

mined for a given Mq so that Eq. (7) can yield a finite and

regular solution of X0. This property is a flaw in the light-

quark sector becauseMq ¼ 0 always leads to� ¼ 0 and so
the spontaneous breaking of chiral symmetry is not cor-

rectly described unless Eq. (7) is modified with higher-

order potential terms [44,45]. In the present work, as we

discuss later, only the heavy-quark sector is of interest to

us, and we need not alter Eq. (7) because chiral symmetry

is largely broken in an explicit manner.

We must point out that the conventional soft-wall model

has another flaw in the chiral properties. In the vicinity of

the UV limit two independent solutions of Eq. (7) are

definitely z and z3, but if we carefully go beyond the

leading order, the former solution receives a correction

by a logarithmic term as z ! zþ ð�1=2þ logzÞz3. This
higher-order correction is small as compared to z, but not
small at all to another solution z3. Therefore, Eq. (7) leads
to a UV divergent chiral condensate, which is an artifact of

the soft-wall model. (There is no such logarithmic term in

the hard-wall model.) Therefore, we need to modify the

model as done in Refs. [44,45], for example. In the present

work we will take the following strategy. That is, to solve

Eq. (7) numerically, we will force the initial condition by

Eq. (8) and find � in such a way that the solution in the IR

region contains no singularity. This is not a fully satisfac-

tory resolution but is acceptable pragmatically for the soft-

wall model that is only a phenomenological model.

Let us mention on the asymptotic solutions of X0 near

the horizon (z ’ zh) for the finite-T case. Equation (7)

can simplify by the variable change from z to t ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1� z=zhÞ
p

, which reduces to the Bessel equation near

the horizon t� 0. It is thus obvious that the asymptotic

solutions of X0 are given by the first-kind Bessel function

J0ðtÞ which is regular and the second-kind Bessel function

Y0ðtÞ which is divergent at t ¼ 0. Since the physical solu-
tion must yield a finite action, we should pick only J0ðtÞ up
near z ¼ zh. To this end we need adjust an appropriate ratio
ofMq and� in the initial condition (8) in the UV boundary,

so that it evolves to J0ðtÞ near the horizon. We will con-

cretely carry this procedure out in later discussions.

III. FLAVOR-DEPENDENT SOFT-WALL MODEL

The mass spectra (5) in the soft-wall model successfully

reproduce the Regge trajectory of the light vector mesons

consisting of u and d quarks as seen in the previous section.
In order to apply this model description to the heavy-quark

sector, we propose a modification on the soft-wall model in

such a way that we treat c as a flavor-dependent parameter.

The following action in our treatment is composed from

two sectors: one is the light-quark (u, d, s) sector and the

other is the heavy-quark (c) sector,

S ¼
Z

d5x
ffiffiffiffiffiffiffi�g

p
trðe�c�z

2
Llight þ e�cJ=c z

2
LheavyÞ; (9)

where Lheavy takes an almost identical structure with

Eq. (3) in the light-quark sector. The only difference is

that fields in Llight and in Lheavy belong to U(3) and U(1)

groups, respectively. From the vector-meson mass formula

(5), we can determine the model parameters as

c� ¼ 0:151 GeV2; cJ=� ¼ 2:43 GeV2; (10)

to reproducem� ¼ 0:77 GeV andmJ=c ¼ 3:1 GeV (as we

have noted, the spectral peak is slightly different from

Eq. (5) and c is shifted from the naive estimates accord-

ingly). If we believe in the mass formula, the above value

of cJ=c predicts the mass of the first excited state as

4.4 GeV, which overestimates the mass of c ð2SÞ that is
3.7 GeV. Therefore, this deviation by around 20% should

be taken for a systematic error in this model [38]. We note

that the holographic model is not very successful to repro-

duce the charmonium mass spectrum in the vacuum. This

is a caveat in our present work. Our analysis here should be

thus limited only to the qualitative investigation of in-

medium effects on the SPF behavior. To this and only

this end it is meaningful to utilize the holographic

approach.

Because of c� � cJ=c , the latter term in the action (9) is

negligible to evaluate the magnitude of S. Hence, the

critical temperature Tc of the Hawking-Page transition in

this model is solely determined by the former term involv-

ing c�, that means Tc ¼ 0:492
ffiffiffiffiffi
c�

p ¼ 0:191 GeV is un-

changed. In short, the bulk thermodynamics is dominated

by the former term, while the heavy-flavor sector is de-

scribed by the equation of motion deduced from the latter

term the action (9).

Before closing this section let us comment on possible

justification of this model treatment with two scales. One

may wonder that c should be common to all flavors be-

cause it is a parameter related to the QCD string tension.

Besides, it should be more natural that mJ=c arises mostly

fromMq rather than cJ=c . In the soft-wall model, however,

the vector-meson field has no direct coupling with X0 and

so it does not depend on Mq. The important point is that

cJ=c as a ‘‘renormalized’’ scale can originate from the

back-reaction with the heavy charm-quark mass beyond
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the probe approximation. In fact it is pointed out in

Ref. [44] that the backreaction from the X field in the

hard-wall model produces an effective soft wall with c
depending on Mq. So far there is no such analysis on the

backreaction within the framework of the soft-wall model,

but it would be a reasonable anticipation that c must get

larger with heavierMq once the back-reaction is taken into

account. The backreaction analysis in the top-down ap-

proaches [46,47] also implies that our treatment could be

pragmatically acceptable. In the next section we simply

denote cJ=c as c.

IV. SPECTRAL FUNCTIONS

In this section we proceed to actual calculation of the

SPFs. As seen from the bulk/boundary correspondence, we

can derive the SPFs in the channel of our interest by

solving the classical equation of motion in five dimensions.

Here, we take the AdS radius as L ¼ 1 since this quantity

disappears in the physical correlation functions. In addi-

tion, for convenience, we use the dimensionless energy !,

momentum q, and temperature t in the unit of
ffiffiffi
c

p ¼ ffiffiffiffiffiffiffiffiffiffi
cJ=c

p
and change the variable for the fifth coordinate by � ¼
ffiffiffiffiffiffiffiffiffiffi
cJ=c

p
z ¼ ffiffiffi

c
p

z, so that we can totally eliminate c from the

equation of motion. Because only c is a dimensional

parameter in the model, we can easily restore c to discuss

physical quantities. It should be noted that spatial and

temporal components lead to distinct differential equations

since Lorentz symmetry is broken in the presence of a

medium. For the moment we will focus on the solution

of spatial fields in this section, then in Sec. VC we will

address a physics insight into the dependence on the po-

larization direction.

Here, we make an important remark on the interpretation

of our results shown in what follows below. Strictly

speaking, the SPFs obtained by means of the AdSBH

background make sense only for t > Tc=
ffiffiffiffiffiffiffiffiffiffi
cJ=c

p ¼
0:492

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c�=cJ=c
q

¼ 0:122 where the AdSBH metric is

more favored. We must say, therefore, that all the SPF

curves for t < 0:122 are not physical ones, which is an

obvious deficiency in our treatment. If a spectral peak

widens and disappears far below t ¼ 0:122 as is the case

for the axial-vector channel, what should really happen in

the SPFs is that a sharp peak is not changed at all up to

t ¼ 0:122 and then a first-order Hawking-Page transition

lets it melt away completely. The reasons why we still like

to show results at t < 0:122 are as follows; First, the critical
value of t may not be 0.122 or may be smaller because the

soft-wall model is defined in such a way that the metric

does not solve the gravity equation. This problem would be

clarified in a more consistent model beyond the soft-wall

implementation. Second, what we are interested in is not

the large-Nc world but the real QCD world in which the

finite-T transition is smooth crossover. Since there is no

sharp transition in QCD, it is conceivable to expect that the

extrapolation from above to below Tc may be useful as a

plausible guess about the situation around the crossover

region in QCD.

A. Vector mesons

Let us first consider the vector meson whose dual field is

VM ¼ ðAL;M þ AR;MÞ=2 and then the axial-vector meson

whose dual field is AM ¼ ðAL;M � AR;MÞ=2. We fix the

gauge by choosing AL;z ¼ AR;z ¼ 0. Besides, we impose

@�AL;� ¼ @�AR;� ¼ 0 to get rid of unphysical polariza-

tion. The linearized equation of motion for the spatial

component Vx (either x ¼ x1, x2, or x3) of the vector field
takes the following form:

@z½e�cz2 ffiffiffiffiffiffiffi�g
p

gxxgzzð@zVxÞ� þ ½e�cz2 ffiffiffiffiffiffiffi�g
p

gxx@�@
�Vx� ¼ 0:

(11)

Now we move to momentum space by performing

the Fourier transformation, Vxðx; �Þ ¼R
d4xei

ffiffi
c

p
p�x ~VðpÞvð�;pÞ and substitute the AdSBH metric

(6) into Eq. (11), so that we reach,

v00 þ
�
3f� 4

�f
� 2�

�

v0 þ
�
!2

f2
� q2

f

�

v ¼ 0; (12)

with p� ¼ ð!; q1; q2; q3Þ and q2 ¼ ðq1Þ2 þ ðq2Þ2 þ ðq3Þ2.
Here, as we have mentioned before, all variables are di-

mensionless and the prime (0) stands for the derivative with
respect to �.
Before solving Eq. (12) it would be instructive to

pursue the analogy to the Schrödinger equation in

quantum mechanics. The change of the field, u ¼
ðe�cz2 ffiffiffiffiffiffiffi�g

p
gxxgzzÞ1=2v, simplifies the equation of motion

in the following form: u00 �Uvð�Þu ¼ 0, with the potential

Uvð�Þ ¼ �2 þ 3

4�2
� f0

f

�

2�þ 1

�

�

� ðf0Þ2
4f2

þ f00

2f

� 1

f

�
!2

f
� q2

�

: (13)

Figure 1 shows this potential for various dimensionless

temperatures in the unit of
ffiffiffi
c

p
. In the case at T ¼ 0 (and

thus f ¼ 1) the downward-convex potential, �2 þ 3=ð4�2Þ,
yields the discrete spectrum, m2 ¼ !2 � q2 ¼ 4n (n ¼
1; 2; . . . ), only for which the wave function is normalizable.

We see that the higher t or smaller �h ¼ 1=ð�tÞ makes the

potential less convex and eventually it becomes monotonic

at t ’ 0:15. With a monotonic potential we cannot expect a

remnant of the original spectrum any longer. In other words

we should anticipate dissociation then. Let us confirm this

in what follows.

At finite temperature the potential is no longer rising in

the large z side and the normalizability does not quantize

the spectrum. We can easily extract the asymptotic solu-

tions of Eq. (12) near the horizon as
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vð�Þ ! cþ�þ þ c��� with

�� ¼ ð1� �=�hÞ�i!�h=4;
(14)

in the vicinity of � ! �h. Here, �þ represents the out-

coming solution and �� the in-falling solution into the

black hole. Near the origin, on the other hand, the solution

has the following asymptotic form:

vð�Þ ¼ A�1 þ B�0; (15)

where �1 and �0 are two solutions of Eq. (11) satisfying

the following UV boundary conditions:

�1 ! ��

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2 � q2
q

�Y1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2 � q2
q

�Þ;

�0 !
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2 � q2
p �J1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2 � q2
q

�Þ;
(16)

around � ! 0. Here, J1 and Y1 are the first-kind and

second-kind Bessel functions, respectively. In the above

we normalized�1 and�0 in such a way that�1ð� ¼ �Þ ¼
1 and �0ð� ¼ �Þ ¼ �2 and also we assumed that

!2 > q2. In the case that q2 >!2 we should replace the

above by �1 !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 �!2
p

�K1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2 � q2
p

�Þ and �0 !
ð2=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

q2 �!2
p

Þ�I1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!2 � q2
p

�Þ. In what follows we will

fix the overall normalization of vð�Þ by adopting the

commonly used prescription, A ¼ 1, so that B should be

unique once the IR boundary condition is specified.

Following the procedure elucidated in great details in

Refs. [39–41] we can compute the Green’s function in

Minkowskian space-time. The IR boundary condition

must be vð� ! �hÞ ¼ c��� (i.e. cþ ¼ 0) to acquire the

retarded Green’s function according to Ref. [39]. We can

make vð�Þ satisfy this IR boundary condition by choosing

B appropriately at � ’ 0 (where A ¼ 1 is chosen so that

vð� ! �Þ ¼ 1); Then, B, which is now a complex number,

is uniquely fixed by the IR boundary condition:

vð�Þ ¼ �1ð�Þ þ Bð!; qÞ�0ð�Þ ! c���ð�Þ as � ! �h:

(17)

As we defined above, we can generally solve �1 and �0

from Eq. (11) from the UV asymptotic forms (16) toward

the IR side. If we have,

�ið�Þ ! aið!; qÞ�þð�Þ þ bið!; qÞ��ð�Þ; (18)

where i ¼ 0, 1, then we can readily conclude Bð!; qÞ ¼
�a1=a0.
Once B is obtained, the bulk/boundary correspondence

(1) allows us to compute the Green’s function, that is given

as

DRð!; qÞ ¼ �Clim
�!�

�
1

�
v�v0

�

¼ �2C

�

Bð!; qÞ �!2 � q2

2

� ln

�
e	E

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j!2 � q2j
q

�

��

; (19)

where C is a constant given as C ¼ N2
c=ð64�2LÞ. The

spectral function is, by its definition,

�ð!; qÞ ¼ � 1

�
ImDRð!; qÞ ¼ 2C

�
ImBð!; qÞ: (20)

Here, we note that only Bð!; qÞ has an imaginary part in

Eq. (19).

We are now ready to come to the numerical calculation.

We plot ImBð!; qÞ by calculating aið!; qÞ numerically as a

function of ! and q at various temperatures and show the

SPFs at q ¼ 0 in Fig. 2. We should remark our convention

that we refer to ImBð!; qÞ as the SPF neglecting an overall

factor.

B. Axial-vector mesons

Next we shall move to the SPFs in the axial-vector

channel. We can follow exactly the same procedure as

the previous one to look into the axial-vector fields, which

we denote as AM ¼ ðAL;M � AR;MÞ=2. We again define the

Fourier mode of the transverse component Ax (where either

x ¼ x1, x2, or x3), i.e. að�;pÞ. The dimensionless equation

of motion is expressed as

a00ð�Þ þ
�
3f� 4

�f
� 2�

�

a0ð�Þ þ
�
!2

f2
� q2

f

�

að�Þ

þ 96�2

Nc�
2f

X2
0að�Þ ¼ 0: (21)

We see that the above (21) is just the same as Eq. (11) for

the vector fields except for the last term involvingX2
0 where

X0 is a solution of Eq. (7). The chiral symmetry breaking

from Mq � 0 and � � 0 is introduced by X0 � 1
2 ðMq�þ

��3Þ near � ¼ 0 and is responsible for the mass splitting
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between the vector and axial-vector channels. We can also

expect the last term becomes negligible as compared to the

third term for large! or q, so that the highly excited radial
states exhibit degeneracy between the vector and axial-

vector mesons [45], which has been observed in the excited

baryon spectrum [48]. As discussed in Sec. II, the quark

mass Mq and the chiral condensate � are not independent

in the soft-wall model and once Mq is fixed, � is uniquely

determined so as to yield a regular solution of X0 in the IR

region under a requirement that the UV initial condition is

forced to be Eq. (8).

Now we fix Mq as the charm mass,

Mq ¼ Mcharm ¼ 1:30 GeV; (22)

to derive the associated chiral condensate � by the shoot-

ing method numerically. In our calculation we obtain � ’
�ð3:1 GeVÞ3, which seems overestimation but within a

reasonable range of order. Using these Mq and � we can

get a regular numerical solution of the background scalar

field X0ð�Þ. One noticeable fact to be mentioned is that,

since X0 is regular for an appropriate choice of Mq and �
both near the horizon �� �h and near the boundary � ¼ 0,
the boundary conditions for að�Þ are (almost) the same as

those for vð�Þ as follows:

að�Þ ! cþ�þ þ c���; (23)

near � ! �h, and near the UV boundary we have

að�Þ ¼ A�0
1 þ B�0

0; (24)

where �0
1 and �0

0 are two solutions of Eq. (21)

satisfying Eq. (16) with !2 � q2 replaced by !2 � q2 þ
ð24�2=NcÞM2

q.

Hereafter we will trace the same analysis from Eq. (13)

to Eq. (20) in the previous subsection. In the picture of the

Schrödinger equation the corresponding potential for the

axial-vector case is given by

Uað�Þ ¼ �2 þ 3

4�2
� f0

f

�

2�þ 1

�

�

� ðf0Þ2
4f2

þ f00

2f

� 1

f

�
!2

f
� q2

�

þ 96�2

Nc�
2f

X2
0 : (25)

We show the profile ofUað�Þ in Fig. 3. It is clear in view of

Figs. 1 and 3 that the axial-vector potential becomes less

downward-convex earlier than the vector case, and the

shape looks monotonic already around t ’ 0:10. Thus, we
can anticipate that the axial-vector spectral peaks should

melt much earlier than the vector ones. In fact, t ’ 0:10
corresponds to T ¼ 0:10

ffiffiffi
c

p ¼ 0:16 GeV, which is below

the deconfinement temperature Tc ¼ 0:191 GeV, meaning

that the axial-vector mesons should melt at the phase

transition.

Now let us derive the axial-vector SPFs. The solution

satisfying the in-falling boundary condition determines a

complex value of Bð!; qÞ,
að�Þ ¼ �0

1ð�Þ þ Bð!; qÞ�0
0ð�Þ ! c���ð�Þ as � ! �h:

(26)

Through the same procedure as elaborated in the previous

subsection, we estimate the SPFs for the axial-vector me-

sons by evaluating ImBð!; qÞ numerically. We show our

numerical results for the axial-vector SPFs with q ¼ 0 in

Fig. 4. Here, we depict ImBð!; qÞ divided by 10 to make its

scale similar to Fig. 2. The overall factor takes a different

value depending on the vector and axial-vector channels

because of our normalization convention A ¼ 1.
Therefore, under the choice of A ¼ 1, it is not a physically
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meaningful comparison to take the absolute magnitude of

spectral heights seriously.

C. Discussions for vector and axial-vector mesons

Here, let us make a comparison between the vector

(Fig. 2) and axial-vector (Fig. 4) channels. For low tem-

peratures, the lowest-lying peaks are located at !2 ¼ 3:92
for the vector case and!2 ¼ 4:72 for the axial-vector case.
If we fix c ¼ 2:43 GeV2 to reproduce mJ=c ¼ 3:1 GeV,

then we have the mass in the axial-vector channel as

m�c1
¼ 3:4 GeV, that is in agreement with the experimen-

tal value 3.51 GeV.

It is an apparent feature seen in Figs. 2 and 4 that the

spectral peaks become more collapsed, and the peak posi-

tions move smaller as t increases. We also note that the

second lowest-lying states melt far earlier than the lowest-

lying states both in the vector and axial-vector cases. This

is quite natural because higher excited states are less stable

generally. In terms of the potentials illustrated in Figs. 1

and 3 a larger !2 causes stronger absorption into the black

hole by the term,�!2=f2, which is negative large near the
horizon. Furthermore, as seen from the t ¼ 0:07 curve in

Fig. 2, the lowest-lying state moves smaller only slightly,

while the excited states shift more drastically. These quali-

tative properties of the SPFs are consistent with the lattice

QCD observations for the heavy quarkonia.

As seen from Figs. 2 and 4, the dissociation takes place

around T ’ 0:15
ffiffiffi
c

p ’ 0:23 GeV for the vector lowest-

lying peak and around T ’ 0:10
ffiffiffi
c

p ’ 0:16 GeV for the

axial-vector one, where c ¼ cJ=c ¼ 2:43 GeV2 as dis-

cussed before. The deconfinement transition occurs at

Tc ¼ 0:492
ffiffiffi
c

p ¼ 0:19 GeV as mentioned in Sec. III.

Thus, in our soft-wall QCD model, the vector charmonium

J=c melts above the critical temperature; T ’ 1:2Tc, while

the dissociation temperature of the axial-vector charmo-

nium �c1 is much lower; T ’ 0:8Tc, which indicates that

�c1 does not survive above Tc and melts suddenly at the

deconfinement transition. It is obvious in our argument that

the chiral symmetry breaking induced by X0 causes this

difference between the vector and axial-vector SPFs.

D. Scalar and pseudoscalar mesons

Here, we go on to the SPF for the scalar and pseudosca-

lar fields, whose lowest-lying peak can be identified as �c0

and �c0. As discussed in Sec. II, we can introduce the dual

fields of the scalar and pseudoscalar mesons by decompos-

ing the bifundamental scalar field as X ¼ e2i�ðx;zÞ½X0ðzÞ þ
Sðx; zÞ�, where X0 is the background part, S is the scalar

field and � the pseudoscalar field. We will denote the

Fourier modes of S and � as s and �, respectively, in
what follows below.

Before addressing the SPFs, we need to consider the

holographic renormalization and counter terms [49–51] to

give regular results near the boundary as well as physically

meaningful SPFs in the scalar channel. The action with

respect to the scalar and pseudoscalar fields in the qua-

dratic order of S2 and �2 is given by

S ¼
Z

z¼0
d4x

e�cz2

z3
ð�S0S� 4X2

0�
0�Þ þ Seom (27)

after the integration by parts, in which the functional

derivative of Seom leads to the equations of motion. The

first term is UV divergent at z ! 0 and requires the renor-

malization counter term that is constructed in such a way

that the covariance holds;

Sren ¼
Z

z¼0
d4xe�cz2 ffiffiffiffiffiffiffiffi�	

p
X2; (28)

where 	 is the determinant of the induced metric defined as

	�
 ¼ diagð�fz�2; z�2; z�2; z�2Þ and thus
ffiffiffiffiffiffiffiffi�	

p � z�4

near z ¼ 0. The renormalized action is defined as Sþ
Sren [49–51]. Once we comply with this renormalized

procedure, we can follow the same procedure as in the

previous case for the vector and axial-vector mesons. In

this way we find the dimensionless equation of motion for

the scalar and pseudoscalar fields;

s00ð�Þ þ
�
f� 4

�f
� 2�

�

s0ð�Þ þ
�
!2

f2
� q2

f
þ 3

�2f

�

sð�Þ ¼ 0;

(29)

�00ð�Þþ
�
f� 4

�f
� 2�þ 2X0

0

X0

�

�0ð�Þþ
�
!2

f2
� q2

f

�

�ð�Þ ¼ 0:

(30)

Here, the dependence on the quark mass and the chiral

condensate is introduced into the pseudoscalar solution
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through the second (first-derivative) term in Eq. (30), while

the scalar equation of motion does not have such a term.

This difference should be attributed to distinct mass spectra

and dissociation temperatures between the scalar and pseu-

doscalar mesons like the vector and axial-vector cases.

Here again, we shall trace the same procedures as those

from Eq. (13) to Eq. (20). The potentials for the scalar and

pseudoscalar fields in the picture of the Schrödinger equa-

tion are read from the equations of motion as

Usð�Þ ¼ �2 þ 15

4�2
� f0

2f

�

2�þ 3

�

�

� ðf0Þ2
4f2

þ f00

2f

�
�
!2

f2
� k2

f

�

; (31)

U�ð�Þ ¼ �2 þ 15

4�2
� f0

2f

�

2�þ 3

�

�

� ðf0Þ2
4f2

þ f00

2f

�
�
!2

f2
� k2

f

�

� 3

�2f
: (32)

Remarkably, the potential for the pseudoscalar field is

independent of the background solution X0 since all the

terms depending on X0 are put together into a form of the

equation of motion (7). The difference between the scalar

and pseudoscalar fields is only the last term in Eq. (32). We

depict these potentials in Figs. 5 and 6. The results look

very similar and turn monotonic around t ’ 0:12.
Then we find that the behavior of the solutions in the

near-horizon region is again given by ��. In the opposite

side of the UV limit we have two solutions for the scalar

and pseudoscalar fields. That is,

sð�Þ ¼ As�
00
1 þ Bs�

00
0 ; �ð�Þ ¼ A��1 þ B��0;

(33)

where �0 and �1 are defined in Eq. (16) and �00
0 and �00

1

are the solutions of the equation of motion (29) with

the boundary conditions; �00
0 ð� ¼ �Þ ¼ � and �00

1 ð� ¼
�Þ ¼ �3.
Here, let us note that, strictly speaking, the scalar field

corresponding to the scalar source at the boundary is

sð�Þ=�, and thus the boundary solutions behave asymptoti-

cally as 1 and �2 like the other channels. Therefore the

SPFs are characterized by the imaginary part of the com-

plex coefficients Bs and B�. To calculate the retarded

Green’s function we fix Bs and B� requiring the in-falling

boundary condition near the horizon.

We numerically calculate ImBs and ImB� and make

plots as a function of ! at q ¼ 0 in Figs. 7 and 8. Here,

we present ImB� divided by 103 since the normalization
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A ¼ 1 gives an irrelevant overall factor again. The lowest-

lying peak at small temperature for the scalar and pseudo-

scalar channels is located at!2 ¼ 5:85. The model outputs

for the meson masses are thus m�c0
	 m�c

¼ 3:8 GeV,

which is not good as compared with m�c
¼ 3:0 GeV and

m�c0
¼ 3:4 GeV. The scalar spectral peaks are located

around !2 ¼ ð4nþ 6Þc with n ¼ 0; 1; 2; . . . for low tem-

peratures, as is consistent with the results in Ref. [52].

Here, we see that the pseudoscalar spectral peaks are found

at nearly the same positions as the scalar mesons.

The lowest-lying peaks are gradually collapsed and

moving smaller as the temperature increases, while the

excited peaks dissociate much earlier and shift more dras-

tically. These spectral patterns are qualitatively similar to

the vector and axial-vector cases. We can observe that the

lowest-lying spectral peaks melt out around t ’ 0:13, i.e.
T ¼ 0:13

ffiffiffi
c

p ¼ 0:20 GeV for the scalar and pseudoscalar

channels both, which is slightly above the deconfinement

temperature; T ’ 1:05Tc. If we take a closer look at the

respective SPFs, we notice that the scalar meson melts only

slightly earlier than the pseudoscalar meson. The differ-

ence is, however, hardly perceivable and we can say that

the scalar and pseudoscalar channels are degenerate re-

gardless of the chiral symmetry breaking.

V. MORE DISCUSSION ON THE VECTORMESONS

We have seen that only the vector meson, i.e. J=c ,

survives above Tc (up to T ’ 1:2Tc in our model), the

axial-vector �c1 suddenly disappears at T ¼ Tc, and the

scalar �c0 and pseudoscalar �c immediately melt around

T ’ 1:05Tc. Therefore, it should be worth while taking a

more serious look at the vector SPFs only. In this section

we analyze the vector SPFs by deducing the relation be-

tween the mass shift �m and the width broadening � with

changing t. We also discuss the evolution of the SPFs at

finite momentum q. Finally, we briefly mention on the

dependence on the polarization direction.

A. Mass shift and width broadening

According to our previous work [29], a functional an-

satz, a!b=½ð!�!0Þ2 þ �2� can fit the SPFs pretty well.

In this way we can numerically read the peak position

!0ðtÞ (leading to the mass shift defined by �mðtÞ ¼
!0ð0Þ �!0ðtÞ) and the width �ðtÞ determined as a function

of t.
In Fig. 9, we plot the mass shift squared ð�mÞ2 and the

width � associated with the lowest-lying peak in the vector

and axial-vector SPFs. It is an intriguing finding from

Fig. 9 that, even though the SPFs shown in Figs. 2 and 4

look similar at a glance, the qualitative behavior of the

mass shift is completely different. In the case of the vector

meson �m2 is saturated as t increases, while � continues

growing. The relation between �m and � has been inves-

tigated in the QCD sum rule [53], which is seemingly

inconsistent with Fig. 9 but a careful consideration clarifies

consistency [54]. In the previous work in Ref. [29] we

proposed a definition for the dissociation temperature by

means of the saturating behavior of �m2 around t ¼ 0:14.
This working definition works for the vector meson, while

the axial-vector peak keeps becoming lighter (i.e. larger

�m2) and broader (i.e. larger �) and thus there is no

saturation observed. It is an interesting question whether

our prediction about the relation between�m2 and � in the

axial-vector channel can be confirmed or not in other

models such as the QCD sum rule.
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B. Finite momentum

In this subsection we briefly discuss the momentum

dependence of the SPFs. There are several lattice QCD

results on the J=c SPFs at finite momentum [55,56].

Although it is not clear whether the lattice simulation

achieves accuracy enough to be reliable, the general ten-

dency is that the spectral peaks are attenuated as q get

larger.

Here, we present the results only for the vector channel

because only J=c survives above Tc in the soft-wall

model, which is our finding in this paper. We plot the

numerical results in Fig. 10 for q2 ranging from 0 to 12

with t ¼ 0:10 fixed. We choose this temperature to make it

easier to grasp the qualitative feature of the fairly promi-

nent peaks in the SPFs, though we know that t ¼ 0:10 is

below Tc. The conclusion is, of course, unaltered even if

we carry the analysis out on the case at T > Tc as long as

the peak remains.

It is apparent that the spectral peak is gradually col-

lapsed as q increases. This result is quite nontrivial and

peculiar to the nonperturbative regime since in the pertur-

bative evaluation a larger q makes the spectral peak less

sensitive to the medium effect [57]. It has been studied in

Ref. [58] that, in the strongly correlatedN ¼ 4 super Yang-
Mills theory, J=c melts at high q, or in a frame where J=c
is at rest, it melts under the hot wind of quark-gluon plasma

(QGP) matter. This conclusion has been confirmed in the

top-down holographic QCD model later [59]. The discus-

sions in Refs. [58,59] did not originate from the shape of

the SPFs, however. Our present results add another con-

firmation of the hot screening scenario, and maybe the first

evidence directly inferred from the shape of the SPFs.

C. Polarization dependence

We finally discuss the vector solution of the equation of

motion (12). We can easily see that the equation of motion

takes slightly different forms depending on whether the

polarization is Vx or V0. One may think that this difference

should be interpreted as distinct behavior of the transverse

and longitudinal modes in a medium. In fact, usually, if we

see some vectorlike collective excitations with finite mo-

mentum q that is directed to q3 for the moment, a linear

combination of 0th and 3rd components describes the

longitudinal mode, which becomes distinguishable from

the transverse modes.

In this sense, it is surprising that Eq. (12) takes com-

pletely the same form regardless of the choice of x ¼ x1,
x2, or x3, that is, Eq. (12) is insensitive to whether V� is

parallel or perpendicular to q. This is a very strong state-

ment. Usually, the transverse and longitudinal polariza-

tions become degenerated only when q ¼ 0 because the

rotational symmetry is restored then [60]. (See also

Ref. [61] for the hydrodynamic limit of the longitudinal

mode.)

We point out that the above-mentioned statement can

translate into the interpretation that there is no jet in the

strong-coupling regime [62]. In our case the equation of

motion and thus all the physical results are given as a

function of q2 only and Vx’s are completely equivalent

for x ¼ x1, x2, and x3. This means that the rotational

symmetry of the system is not broken at all even though

a finite momentum q is inserted. One can intuitively under-

stand this as quick realization of the equipartition of in-

serted momentum over the system. Such a picture is very

similar to the finding of Ref. [62] that no jet can exist in a

strong-coupling N ¼ 4 supersymmetric Yang-Mills me-

dium. Actually, if we assume the vector dominance, we can

apply our results of the vector SPFs directly for the prob-

lem of the dilepton production, which may be an interest-

ing direction regarding the future extension of our work.

VI. SUMMARY

In this paper we derived the SPFs of meson states in the

vector, axial-vector, scalar, and pseudoscalar channels at

finite temperature using the soft-wall AdS/QCDmodel. We

pointed out that the SPFs in these channels have several

qualitative features as follows:

(i) Only J=c survives above the deconfinement transi-

tion up to T ’ 1:2Tc and �c1 completely melts at the

transition. The scalar �c0 and pseudoscalar �c are

almost degenerate in our model and melt soon above

Tc.

(ii) In a deconfined state represented by the AdSBH

metric, which is not energetically favored at T <
Tc in equilibrium but could exist as a meta-stable

state for a wider range of T, the relation between the
mass shift squared �m2 and the width � is charac-

teristic to J=c and �c1. In the vector channel �m2

looks almost linearly proportional to � at small

temperatures until it is saturated at the dissociation.

In the axial-vector channel, in contrast, both �m2

and � keep growing up with increasing temperature.

 0

 2

 4

 6

 8

 10

 12 0
 2

 4
 6

 8
 10

 12
 14

 16

 0

 5

 10

 15

Im B (ω,q)
t =0.10

q
2

ω
2

Im B (ω,q)

FIG. 10 (color online). Spectral functions ImBð!; qÞ as a

function of ! and q for a fixed temperature t ¼ 0:10, where
!, q, and t are all dimensionless in the unit of

ffiffiffi
c

p
.

FUJITA et al. PHYSICAL REVIEW D 81, 065024 (2010)

065024-10

A Self-archived copy inKyoto University Research Information Repositoryhttps://repository.kulib.kyoto-u.ac.jp



(iii) The spectral peaks diminish at finite momentum, as

is consistent with the scenario of the J=c suppres-

sion under a hot wind of QGP matter.

(iv) All the results on the vector and axial-vector-meson

properties respect the rotational symmetry regard-

less of the presence of the momentum insertion.

This should be interpreted as the equipartition of

the momentum in a medium in the strong-coupling

regime.

For more realistic studies to investigate the nonpertur-

bative aspect of QCD, we need to construct a better model

than the soft-wall QCD model that we adopted in this

work. In the process of concrete computations, in fact,

we realized that the conventional soft-wall model does

not satisfy the requirement that the bifundamental scalar

field should be X0 �Mqzþ�z3 near the UV boundary

(z� 0) but leads to a logarithmic correction z3 logðzÞ. The
presence of z3 logðzÞ in the solutions of the equation of

motion brings huge uncertainty in evaluating the chiral

condensate � numerically for a given quark mass Mq.

In addition to this problem of the asymptotic solution,

there is another problem, that is, the conventional soft-wall

model cannot describe the chiral phase transition. In reality

what should be expected is that chiral symmetry is restored

at the deconfinement transition simultaneously and then

the vector and axial-vector channels become identical. In

our case the quark mass is significantly heavy and breaks

chiral symmetry badly, and thus we can consider that the

lack of chiral restoration does not affect our results.

Nevertheless, it is not clear a priori if not only Mq but

also� have a substantial effect on the discrepancy between

the vector and axial-vector mesons. To circumvent all these

problems we will be able to use the modified soft-wall

model [44,45] or the top-down approaches such as the D3/

D7 and Sakai-Sugimoto models [63].

There are many directions in which the present work can

be extended in the future. One example is the application to

the dilepton production problem for which the vector SPF

is the essential ingredient. We could maybe use more

realistic holographic models mimicking the QCD equation

of state [64]. It is also an interesting generalization to

introduce not only the temperature effect but also the

baryon density or the baryon chemical potential. Then,

the Chern-Simons coupling mixes the vector and axial-

vector mesons [65], which leads to an additional spectral

broadening [66].
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