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MEMBRANE CAPS UNDER HYDROSTATIC PRESSURE*
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Abstract. It is shown that the exact nonlinear theory for a rotationally symmetric

membrane cap deformed by hydrostatic pressure is statically determinant. A small

strain theory is obtained without any assumptions on the relative magnitudes of the

displacements. This small strain theory can be reduced to a single second-order ordi-

nary differential equation for the determination of the radial stress. A linear shallow

cap theory is obtained and solved explicitly for the case of the shallow spherical cap.

1. Introduction. The purpose of this paper is to discuss the stresses, strains, and

displacements which occur in a membrane cap when subjected to a hydrostatic pres-

sure.

The equations governing the rotationally symmetric deformation of a membrane

cap consist of three sets of relations: (1) the strain-displacement equations, (2) the

equilibrium equations, and (3) the constitutive laws. If the membrane cap consists

of a surface which is generated by rotating a curve z = Z(r) about the z-axis the

equations (1), (2), and (3) take the form

e _ 2m' + (u')2 + 2z'w' + (w')2 n ^
r~ 2m2 ' ( ]

u 1 /u\2 ,, „
= 7 + 2 (?) • <LIb>

d f (r + u)(l +u')or 1 2 2 1/2
\ [(1 + u')2 + (z' + w>)2yi2 / ~ ( +(z +w) 1

rmP(z' + w')

/z [(1 + u')2 + (z' + w')2]1/2
0, (1.2a)

-{
dr\

(r + u){z' + w')ar \ rmP{l + u') =

[(1 +u')2 + {z'+ w')2y/2 J [(1 +w')2 + (z' + h'')2]1/2 ' {' '

Sr = er{ar,og), Se = £e{°r,oe)- (1-3)

('= d/dr). u and w are the displacements in the radial and z directions, ar and og are

the radial and circumferential stresses, ir and £g are the radial and circumferential
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strains and h is the thickness of the membrane. P is the pressure per unit undeformed

area whose direction is normal to the deformed surface and

m2 = \ + (z')2. (1.4)

The equations (1.1), (1.2), and (1.3) are the exact nonlinear membrane equations

(cf. Sec. 7). For the boundary conditions on (1.1), (1.2), and (1.3) we will prescribe

either radial displacement

u(a) - n (1.5)

or radial stress

or{a) = a (1.6)

(a is the radius of the base of the cap). In either case we will require that all quantities

be finite at r = 0 and

w(a) = 0. (1.7)

Approximate theories for the deformation of membrane caps have been suggested

by Bromberg and Stoker [1] and Reissner [2], The theory described in [2] has been

used by Goldberg [3] to obtain a numerical solution for the spherical cap.

In [4] it was shown that the exact "normal" pressure theory, i.e., pressure whose

direction is normal to the undeformed surface, can be reduced to a single, second-

order, nonlinear, ordinary differential equation for the determination of a quantity

related to the radial stress. This reduction is possible regardless of the constitutive

laws. The fact that the exact theory can be described by a single equation makes it

possible to obtain an approximate theory for small strains without the necessity of

making ad hoc assumptions on the relative magnitudes of the displacements.

A reduction to a single, second-order, differential equation is evidently not possible

for the relations (1.1), (1-2), and (1.3). However, it will be shown in Sec. 2 that the

theory is statically determinant, i.e., the system can be written as a pair of second-

order differential equations for the determination of ar and og. Thus even in this case

it is possible to obtain a small strain theory without assuming any conditions on the

magnitude of the displacements (cf. Sec. 3). In Sec. 3 it is also shown that the small

strain theory does reduce to a single nonlinear second-order ordinary differential

equation for the determination of ar. In Sec. 4 a nonlinear shallow cap theory is

obtained and in Sec. 5 it is shown that if the applied pressure P is "sufficiently

small" the small strain, shallow cap theory can be reduced to a linear theory. In Sec.

6 this linear theory is solved explicitly for the shallow spherical cap.

2. Reduction of the equations. It is convenient to write the strain displacement

equations in the form

m \/2£r+\ = [(1 +u')2 + (z' + w')2]1/2, (2.1a)

r\J2£g + 1 = r + u. (2.1b)

Equation (2.1b) implies that

1 +u' = {ry/2£g + iy. (2.2)
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It is a consequence of (2.1a) that

z' + w'
^ 1/2

[(1 + u')2 + (z' + W')2]1/2
= - 1  (l +u')2 \

(1 + u')2 + (z' + w')2 J

2)1/2 (2.3)
(r^HFo 4- 1 V(ry/:W+l)
msj 2£r + 1

Combining (2.2) and (2.3) with Eq. (1.2a) we find

[ wV2ZVTT J h |

,  2^1/2

(^/2^+Ty
m\J2£r + 1

= 0.

yx.,1)

Using the fact that

I PTc—^T^' r<f^ + 2ife+l ^ 0
(rv^rrT) = >,+i ■ <2-5)

Eq. (2.4) may be simplified to

d \ r{r£'e + 2£e + l)cr, \ /—-
~~T~ {   V -  > - Oemy/lSr
& t m,\J2£r + 1 j

+ 1

| r/>{m2(l + 2£,)(1 + 2£e) - (r£'e + 2gg + l)2}'/2 _ n

VI +2£rN/l + 2£g

A similar procedure may be used to rewrite Eq. (1.2b) in terms of the stresses and

strains. Thus combining (2.1), (2.2), and (2.3) with Eq. (1.2b) we find

1/2

d_
dr

rV2£^T\{ 1 -
(ry^ + Ty

m.sJ2£r + 1
<7r I + ')' ■ 0 (2.7)

/jv/2£TfT 1 ;

This equation can be rewritten

d \ r[m2( 1 + 2£r)(l + 2£e) - (r$ + 2£e + l)2]1/2^

dr I m.\/1 + 2<fr

rf(r^ + 2f0+ 1)

/z \/1 + 2 \J 1 + 2 £g
= 0. (2.8)

In view of the constitutive laws (1.3), Eqs. (2.6) and (2.8) are a pair of second-order,

ordinary differential equations for the determination of o> and oe.

3. Small strain theory. If the strains are small, i.e. |<?r| << 1 and \£g\ « 1, the

appropriate choice for the constitutive equations (1.3) is Hooke's law

E£r = or-vog, (3.1a)

E£e-og-uar (3.1b)

where E is Young's modulus and v is the Poisson ratio.
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The equilibrium equations (2.6) and (2.8) are greatly simplified by the small strain

assumption. Equation (2.6) becomes

J; {^} - mae + ^[m2( 1 + 2(Er + Eg)) - (1 + 2(r£'e + 2Eg))]"2 = 0 (3.2)

and (2.8) is replaced by

^ {^[m2(l + 2(Er + Ee))-( 1 + 2{rE'e + 2Eg))]"2} -£ = 0. (3.3)

We note that neglecting either Er or Eg in relation to m2 - 1 in either (3.2) or (3.3)

would be incorrect since m2 - \ — (z')2 which may itself be small and in fact z' — 0

at r = 0 if the undeformed surface is smooth.

Equation (3.3) implies that

^[m2(l + 2Er)(l +2Ee)-(l + 2(r Eg + 2 Eg))]"2ar = j (3.4)

where r

F(r) = f zP{x)dx. (3.5)
Jo

Combining (3.4) and (3.2) we find

d trar\ mPF
_ (_) _ ma, + _ = 0. (3.6)

It simplifies the notation if we introduce the dimensionless stresses

Z, = J, I, = f. (3.7)
The Hooke's law (3.1) becomes

£r = "Lr — v"Lg, (3.8a)

Eg — X# — uYjr (3.8b)

while (3.4) and (3.6) become

2_ , x ^   ™lF2
1 + 2m2(Er + Eg) - 2r£'e - 4Eg = (3-9)

(§)'-mZ« + ^=a <3J°)

The strains may be eliminated from Eq. (3.9) using (3.8), so that (3.9) becomes

yyj 2 r2

m2-\+(2m2(l-v)+4v)lr + (2m2(l-v)-4)Ze-2rl'e+2vrl'r = r2h2£2y. (3.11)

lg may be eliminated between Eqs. (3.10) and (3.11). The final result is

m2_l+ 2(m2 + (2 _ m2>)lr + 2{m2 _ 2 _ m2u) ^ +

/ 1 /rY_
- 2 r

1 ( PF

I + \h2E2Zrm \ m

m2F2t!"r' = SW'

(3.12)
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Equation (3.12) is a single second-order differential equation for the determination

of Xr. Once Xr is determined from (3.12), is determined from (3.10), £r and £g

are determined from (3.8), u is determined from (2.1b), and w from (2.1a).

4. The shallow cap theory. Equation (3.12) is greatly simplified if the cap is shal-

low. In order to make this assumption explicit we write

Z(r) = SC(r) (4.1)

where 0 < d << 1. It is convenient to redefine the pressure and radial stress by

P = S3p, (4.2)

X r = S2Sr- (4.3)

Equation (4.2) implies

F = d3f = S3 [ tp(z) dz. (4.4)
Jo

Of course, implicit in Eq. (4.2) is the assumption that the applied pressure is small.

The shallow cap theory is obtained by placing Eqs. (4.1)-(4.4) into Eq. (3.2) and

keeping the lowest-order terms in S. In any case, it is found that

r2S'r' + 3 rS'r + lr2h2E2S2 = (4-5)

The dimensionless circumferential stress X# can be obtained from Eq. (3.10). In

particular, if we define

Xe = S2Se, (4.6)

Eqs. (4.1)-(4.4) and (3.10) yield

Se = {rSry. (4-7)

as the lowest-order term in S. If we define

£r = 52er, £e = d2ee, (4.8)

Eqs. (3.8) imply

er=Sr-1sSg, eg=Sg- vSr. (4.9)

The displacements u and w are determined from (1.1). Define U and W by

u = d2U, w = 8W. (4.10)

Combining (4.10) and (1.1) we find

U = reg, (4.11)

W' = -C ~[(C)2 -2U' + 2er]1'2 (4.12)

up to higher-order terms in S.

The edge conditions on (4.5) are determined by either (1.5) (the displacement

condition) or (1.6) (the stress condition). In particular, if we define

H = S2M, (4.13)

| = (4.14)
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the boundary condition (1.5) can be written

M
{rS'r + {\-v)Sr)r=a = —. (4.15)

and (1.6) becomes

Sr{a)=S. (4.16)

We also require that S'r(0) = 0.

5. The linear shallow cap theory. We are interested in solutions of Eq. (4.5) which

have the property that Sr —► 0 as p —» 0. If this is to be the case, Eq. (4.5) requires

that

= «')'■ (5-1)
p^o r2h2E2S2

Equivalently,

f ~ C' + v = - C'fl-^l (5.2)
rhESr * ' V C

where |v/£'| « 1 when p is sufficiently small. Thus we find

Sr rhEC( l-(v/C')) (5'3)

or, keeping only terms up to first order in v/C,

& = ;sfc(, + ?)' (5-4»
Combining (5.2) and (5.4) with Eq. (4.5) and keeping first-order terms, we obtain a

linear equation for the determination of Sr,

r2 (rtfe(1 + ?)) +3r(Mfc(l + ?)) +i>-a (5-5)
6. The shallow spherical cap. The shallow cap theory is easily specialized to the

spherical cap. For simplicity we will treat the constant pressure case so that (cf. (4.4))

f=\r2P- (6.1)

The equation of the spherical cap is

z = \Jb2 - r2 - \Jb2 — a2, 0 < r < a, (6.2)

so that
- Hrla) (6.3)

[1 -<S2(r/fl)2]l/2

where d = a/b « 1. In any case

C = -r/a. (6.4)

In (6.4) higher-order terms in S have been neglected.

Equations (6.1) and (6.4) can be combined with Eq. (5.5) to yield the linear

equation
2 d2 (v\ d (v\ 2hE ,, .
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where we have introduced the new independent variable

p = r/a. (6.6)

Equation (6.5) can be rewritten in the form

p2v + pv - (1 + X2p2)v = 0 (6.7)

(• = d/dp) with

X2 = —. (6.8)
pa

The solution of (6.7) which is finite at p = 0 is

v = AI\(Xp) (6.9)

where I\ is the modified Bessel function of order one and A is a constant to be

determined by the boundary condition (4.15) or (4.16). The dimensionless radial

stress is given by (cf. (5.4))

Sr = J2{\--ph^P))- (6.10)

Sg is determined from (4.7),

Se = j-(pSr)=^{\-AXI[{Xp)). (6.11)

The displacements are determined from (4.11) and (4.12),

U_2p

a X2
(1 -u)-A{XI[{kp)--ph{Xp) (6.12)

W = p-[p2 + 2ApIx{Xp)Y12. (6.13)

As a special case we have considered the case (7(a) = 0, i.e., zero displacement at

the boundary. For the boundary conditions, Eq. (6.12) implies

A = XI[{X) - vhW (6-14)

In Figs. 6.1 and 6.2, X2Sr, X2Se, X2U/a, and -AfV are plotted for various values of A

and v = 0.3.

If the displacement boundary condition is inhomogeneous, i.e., U(a) = M, Eq.

(6.12) implies
_ \-v - MX2!a

XI[{X) - uIx{X) ( ^

while the boundary condition (4.18)

^ _ 1 _ SX2/2
11 (A) ' ( ^

The relations (6.15) or (6.16) enable us to state simple criteria for the membrane to

be in tension. In particular, (6.16) implies that both Sr and Sg are nonnegative if

SA2 XI[{X)-vh{X)
2 XI [{X) [ '
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X = 8

A = 4

X = 2

t-¥ p > * p

Fig. 6.

o£u _a^

1.0-

Fig. 6.2.

(note that A/[(A) - f/i(A) > 0). The relation (6.15) implies that both Sr and Sg are

nonnegative if

— >(i-y)~ (6,8)
a min(/1(A),/1'(A))
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We note that when X is large (p small)

min(/1(A),/1'(A)) = /1'(A). (6.19)

If the condition (6.17) or (6.18) is violated, the solution will contain either radial

or circumferential compressions. Since membranes have no resistance to bending,

it is not to be expected that they would support compressions. Thus, if condition

(6.17) or (6.18) is violated, it is likely that there are other solutions which are not

rotationally symmetric.

7. Appendix, equilibrium equations. The strain-displacement equations (1.1) and

the constitutive laws (1.3) were obtained in [4], The equilibrium equations are (cf.

[4])

-I
dr \ [(iilo!+V+»W2} ~ aMl + "')2 + '■ + ""'I2'"2 + T - °' <7'la>

The quantities P\ and P2 are determined from the relation

P\er + P2k = rmPh (7.2)

where P is the force per unit undeformed area and n is the unit vector in the direction

normal to the deformed surface. er and k are the unit vectors in the radial and z

directions (cylindrical coordinates).

A point on the undeformed surface whose position is given by

R = rer -(- zk (7.3)

has the position

R* = (r + w)er + (z + w)k (7.4)

after deformation. Thus the unit normal n is given by

<9R* <9R*
x

^ _ dr dd
dR* d R*

x
dr dd

(7.5)

It is a consequence of (7.4) that

= (1 + u')tr + (z' + w')k, (7.6a)

5R* , . ...
— = (r + u)eg, (7.6b)

where eg is the unit vector in the circumferential direction. Equation (7.5) implies

(1 +u')k- (z' + w')er

[(1 +u')2 + {z' + w')2]1/2' 1 ' 1
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Combining (7.7) and (7.2) we find

rmpjz' + w')

1 [(1 +u')2 + {z' + w')2]1/2'

p _ r/nP(l +tQ . ,
2 [(l + M')2 + (z' + W)2]'/r 1 '

The equilibrium equations (1.2) follow from (7.1) and (7.8).
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