
Membrane Domains Based on Ankyrin and
Spectrin Associated with Cell–Cell Interactions

Vann Bennett and Jane Healy

HowardHughesMedical Institute, andDepartments of Cell BiologyandBiochemistry,DukeUniversityMedical
Center, Durham, North Carolina 27710

Correspondence: v.bennett@cellbio.duke.edu

Nodes of Ranvier and axon initial segments ofmyelinated nerves, sites of cell–cell contact in
early embryos and epithelial cells, and neuromuscular junctions of skeletal muscle all
perform physiological functions that depend on clustering of functionally related but struc-
turally diverse ion transporters and cell adhesion molecules within microdomains of the
plasma membrane. These specialized cell surface domains appeared at different times in
metazoan evolution, involve a variety of cell types, and are populated by distinct mem-
brane-spanning proteins. Nevertheless, recent work has shown that these domains all
share on their cytoplasmic surfaces a membrane skeleton comprised of members of the
ankyrin and spectrin families. This review will summarize basic features of ankyrins and
spectrins, and will discuss emerging evidence that these proteins are key players in a con-
served mechanism responsible for assembly and maintenance of physiologically important
domains on the surfaces of diverse cells.

S
pectrins are flexible rods 0.2 microns in

length with actin-binding sites at each end

(Shotton et al. 1979; Bennett et al. 1982)
(Fig. 1A). Spectrins are assembled from a

and b subunits, each comprised primarily of

multiple copies of a 106-amino acid repeat
(Speicher and Marchesi 1984). In addition to

the canonical 106-residue repeat, b spectrins

also have a carboxy-terminal pleckstrin homo-
logy domain (Zhang et al. 1995; Macias et al.

1994) and tandem amino-terminal calponin

homology domains (Bañuelos et al. 1998),
whereas a spectrins contain an Src homology

domain 3 (SH3) site (Musacchio et al. 1992),

a calmodulin-binding site (Simonovic et al.

2006), and EF hands (Travé et al. 1995)

(Fig. 1A). Spectrin a and b subunits are

assembled antiparallel and side-to-side into
heterodimers, which in turn are associated

head-to-head to form tetramers (Clarke 1971;

Shotton et al. 1979; Davis and Bennett 1983)
(Fig. 1A). In human erythrocytes, in which

spectrin was first characterized (Marchesi and

Steers 1968; Clarke 1971), actin oligomers con-
taining 10–14monomers are each linked to five

to six spectrin tetramers byaccessory proteins to

form a geodesic domelike structure that has
been resolved by electron microscopy (Byers

and Branton 1985). The principal proteins at

the spectrin–actin junction are protein 4.1,

Editors: W. James Nelson and Elaine Fuchs
Additional Perspectives on Cell Junctions available at www.cshperspectives.org

Copyright# 2009 Cold Spring Harbor Laboratory Press; all rights reserved; doi: 10.1101/cshperspect.a003012
Cite this article as Cold Spring Harb Perspect Biol 2009;1:a003012

1

 on August 22, 2022 - Published by Cold Spring Harbor Laboratory Press http://cshperspectives.cshlp.org/Downloaded from 

http://cshperspectives.cshlp.org/


adducin, tropomyosin, tropomodulin, and
dematin (Bennett and Baines 2001) (Table 1).

Spectrin is coupled to the inner surface of

the erythrocyte membrane primarily through
association with ankyrin, which is in turn

linked to the cytoplasmic domains of the

anion exchanger (Bennett 1978; Bennett and

Stenbuck 1979a,b) and Rh/RhAG ammonium
transporter (Nicolas et al. 2003). The spectrin-

based membrane skeleton and its connections

through ankyrin to membrane-spanning pro-
teins are essential for survival of erythrocytes

in the circulation, and mutations in these pro-

teins result in hereditary hemolytic anemia
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Figure 1. Domain structure and variants of spectrin and ankyrin proteins. (A) Molecular domains of spectrins:
Two a spectrins and five b spectrins are shown. Spectrins are comprised of modular units called spectrin repeats
(yellow). Other domains such as the ankyrin binding domain (purple), Src-homology domain 3 (SH3, blue),
EF-hand domain (red), and calmodulin-binding domain (green) promote interactions with binding targets
important for spectrin function. The pleckstrin homology domain (black) promotes association with the
plasma membrane and the actin binding domain (grey) tethers the spectrin-based membrane skeleton to the
underlying actin cytoskeleton. (B) The spectrin tetramer, the fundamental unit of the spectrin-based
membrane skeleton. The spectrin repeat domains of a and b spectrin associate end-to-end to form
heterodimers. Heterodimers associate laterally in an antiparallel fashion to form tetramers. The tetramers
can then associate end-to-end to form extended macromolecules that link into a geodesic dome shape
directly underneath the plasma membrane. (C) Molecular domains present in canonical ankyrins. The
membrane binding domain of ankyrin isoforms (orange) is comprised of 24 ANK repeats. The spectrin
binding domain (green-blue) allows ankyrins to coordinate integral membrane proteins to the membrane
skeleton. The death domain (pink) is the most highly conserved domain. The regulatory domain (brown) is
the most variable region of ankyrins. The regulatory domain interacts intramolecularly with the membrane
binding domain to modulate ankyrin’s affinity for other binding partners. All ankyrins and spectrins are
subject to alternative splicing, which further increases their functional diversity.
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(Bennett and Healy 2008). The ankyrin-

binding sites of b spectrins 1–4 are located in
the 15th spectrin repeat, which is folded identi-

cally to other repeats but has distinct surface-

exposed residues (Davis et al. 2008; Ipsaro
et al. 2009; Stabach et al. 2009) (Figs. 1A, 2A).

Mammalian b-5 spectrin and its ortholog

b-H spectrin in Drosophila and Caenorhabditis

elegans are the only b spectrins lacking ankyrin-

binding activity (Dubreuil et al. 1990; Thomas

et al. 1998; McKeown et al. 1998; Stabach and
Morrow 2000).

Ankyrin interacts with b spectrins through

a ZU5 domain (Mohler et al. 2004a; Kizhatil
et al. 2007a; Ipsaro et al. 2009) (Fig. 1B), and

with most of its membrane partners through

ANK repeats (Bennett and Baines 2001)
(Fig. 2C,D). In addition, ankyrins have a

highly conserve “death domain” and a carboxy-

terminal regulatory domain (see the following
discussion). The 24 ANK repeats are stacked

in a superhelical array to form a solenoid

(Michaely et al. 2002). Interestingly, the ANK
repeat stack behaves like a reversible spring

when stretched by atomic force microscopy,

and may function in mechano-coupling in
tissues such as the heart (Lee et al. 2006).

ANK repeats are components of many proteins

and participate in highly diverse protein
interactions (Mosavi et al. 2004) (Fig. 2C).

Table 1. Binding partners of spectrin and ankyrins
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Alpha Beta
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EnNaC (sodium)
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Signaling
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Figure 2.Ankyrins and spectrins organizemacromolecular complexes in diverse types of specializedmembranes.
(A) Ankyrin-G forms a complex with b-IV spectrin, neurofascin (a cell adhesion protein), and ion channels
(KCNQ2/3 and voltage-gated sodium channel) at axon initial segments in Purkinje neurons. (B) In force
buffering costameres of skeletal muscle, ankyrins -B and -G cooperate to target and stabilize key components
of the dystroglycoprotein complex. At the membrane, ankyrin-G binds to dystrophin and b-dystroglycan.
(C) In cardiomyocyte transverse tubules, ankyrins -B and -G coordinate separate microdomains. Ankyrin-B
binds Naþ/Kþ ATPase, Naþ/Ca2þ exchanger (NCX-1), and the inositol triphosphate receptor (IP3R).
Ankyrin-G forms a complex with Nav1.5 and spectrin. (D) Ankyrin-G in epithelial lateral membrane
assembly. Ankyrin-G binds to E-cadherin, b-2 spectrin, and the Naþ/Kþ ATPase. Spectrins are connected
via F-actin bridges bound to a/g adducin and tropomodulin.
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This versatile motif currently is being exploited

using designed ANK repeat proteins (DARPins)

engineered to interact with specific ligands that
can function as substitutes for antibodies

(Stumpp andAmstutz 2007; Steiner et al. 2008).

Spectrin and ankyrin family members are
expressed in most, if not all, animal (metazoan)

cells, but are not present in bacteria, plants, or

fungi. Spectrins are believed to have evolved
from an ancestral a-actinin containing calpo-

nin homology domains and two spectrin

repeats but not other domains (Thomas et al.
1997; Pascual et al. 1997). Ankyrin repeats are

expressed in all phyla, presumably because of a

combination of evolutionary relationships and
in cases of bacteria and viruses by horizontal

gene transfer. However, the spectrin-binding

domain of ankyrin is present only in metazoans
(Fig 1B). It is possible that evolution of ankyrins

and spectrins could have been one of the adap-

tations required for organization of cells into
tissues in multicellular animals.

The human spectrin family includes

two a subunits and five b subunits, whereas
Drosophila and C. elegans have a single a

subunit and two b subunits (Bennett and

Baines 2001). Vertebrate ankyrins are encoded
by three genes: ankyrin-R (ANK1) (the iso-

form first characterized in erythrocytes and

also present in a restricted distribution in
brain and muscle), ankyrin-B (ANK2), and

ankyrin-G (ANK3). Vertebrate ankyrins evolv-

ed from a single gene in early chordates (Cai
and Zhang 2006). C. elegans ankyrin is enco-

ded by a single gene termed unc-44 (Otsuka

et al. 1995), whereas the Drosophila genome
contains two ankyrin genes: ankyrin (Dubreuil

and Yu 1994) and ankyrin2 (Bouley et al. 2000).

Mammalian ankyrins -B and -G are co-
expressed in most cells, although they have dis-

tinct functions (Mohler et al. 2002; Abdi et al.

2006). Ankyrins -B and -G are closely related
in their ANK repeats, and spectrin-binding

domains, but diverge in their carboxy-terminal

regulatory domains. Regulatory domains are
natively unstructured and extended (Abdi et al.

2006). These flexible domains engage in intra-

molecular interactions with the membrane-
binding and spectrin-binding domains (Hall

and Bennett 1987; Davis et al. 1992; Abdi et al.

2006) that modulate protein associations and

provide functional diversity between otherwise
conserved ankyrins.

In addition to the standard versions of

ankyrins and spectrin subunits depicted in
Figure 1, many variants of these proteins are

expressed with the addition and/or deletion

of functional domains because of alternative
splicing of pre-mRNAs. For example, b spec-

trins can lack PH domains (Hayes et al. 2000),

and giant ankyrins have insertions of up to
2000 residues (Kordeli et al. 1995; Chan et al.

1993; Pielage et al. 2008; Koch et al. 2008),

whereas other ankyrins lack either the entire
membrane-binding domain (Hoock et al.

1997), or both membrane- and spectrin-

binding domains (Zhou et al. 1997). The inser-
tions in 440 kDa ankyrin-B and 480 kDa

ankyrin-G (Fig. 1B) have an extended confor-

mation that potentially could have specialized
roles in connections between the plasma mem-

brane and cytoskeleton of axons where these

giant ankyrins reside (Chan et al. 1993;
Kordeli et al. 1995) (Fig. 1B). Interestingly, the

inserted sequences in Drosophila giant ankyrins

interact with microtubules at the presynaptic
neuromuscular junction (Pielage et al. 2008)

(see the following section).

MEMBRANE-SPANNING
PROTEIN PARTNERS

Diverse families of membrane-spanning pro-

teins, including ion channels, pumps, and

exchangers as well as cell adhesion molecules
have independently acquired ankyrin-binding

activity multiple times in metazoan evolution

(Table 1). These proteins include the anion
exchanger (AE1) (Bennett and Stenbuck

1979b; Stefanovic et al. 2007), voltage-gated

sodium channels (Srinivasan et al. 1988;
Garrido et al. 2003; Lemaillet et al. 2003),

Na/K ATPase (Nelson and Veshnock 1987),

Na/Ca exchanger (Li et al. 1993; Mohler et al.
2005; Cunha et al. 2007), IP3 receptors

(Mohler et al. 2003; Mohler et al. 2005; Kline

et al. 2008), Rh ammonium transporter
(Nicolas et al. 2003; Lopez et al. 2005; Sohet
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et al. 2008), KCNQ2/3 channels (Pan et al.

2006; Chung et al. 2006; Rasmussen et al.

2007), Kv3.1 channels (Devaux et al. 2003;
Xu et al. 2007), and cell adhesion mole-

cules including L1 CAMs (Davis and Bennett

1994; Zhang et al. 1998), CD44 (Bourguignon
et al. 1992), E- and N-cadherin (Kizhatil et al.

2007a), and b-dystroglycan (Ayalon et al.

2008) (Table 1). The ankyrin-binding sites
have been defined in many of these proteins as

relatively short stretches of 10–20 amino acids

that do not contain a single defining motif
(Fig. 3A). However, once ankyrin-binding

activity appears in a protein family, the

binding sites remain highly conserved. For
example, the ankyrin-binding sites of human

L1CAMs are nearly identical to the binding

site of the L1 homolog of C. elegans (Chen
et al. 2001), whereas sites of voltage-gated

sodium channels and KCNQ2/3 channels are

absent in Drosophila and but are conserved
between humans and zebra fish (Pan et al.

2006).

Some membrane proteins such as NMDA
receptors (Wechsler and Teichberg 1998),

the neuronal glutamate transporter EAAT4

(Jackson et al. 2001), and the epithelial sodium
channel (EnaC) (Rotin et al. 1994; Zuckerman

et al. 1999) can associate directly with spectrin

independently of ankyrin. Spectrin has also
been reported to coimmunoprecipitate with

the presynaptic voltage-sensitive calcium

channel (Sunderland et al. 2000), although a

direct interaction between these proteins
has not been shown. Together, ankyrins and

spectrins display a remarkable capacity for

interactions with physiologically important
membrane proteins.

AXON INITIAL SEGMENTS AND
NODES OF RANVIER

Axon initial segments (Fig. 2A) and nodes of

Ranvier are highly enriched in 480/270 kDa

alternatively spliced variants of ankyrin-G
(Kordeli et al. 1995), b-4 spectrin (Berghs

et al. 2000; Lacas-Gervais et al. 2004), as well

as ankyrin-binding proteins including voltage-
gated Na channels and 186 kDa neurofascin

(Davis et al. 1996). Axon initial segments

are of special importance as the integrator
sites of neurons in which inputs from dendritic

synapses (sometimes on the order of several

hundred thousand) are transduced into action
potentials. These action potentials result in

both signaling to other neurons or target cells

when propagated down the axon, and to
modulation of synaptic function when back-

propagated into dendritic shafts (Waters et al.

2005). In myelinated axons, action potentials
are propagated at periodic interruptions in the

myelin sheathe known as nodes of Ranvier.
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Figure 3. Ankyrins bind to natively unstructured regions of many proteins. (A) Known binding sites of ankyrin
proteins. All of these regions lie in regions predicted to be intrinsically unstructured (http://iupred.enzim.hu/
IUPs.html). Abbreviations: NaV, voltage-gated sodium channels; KCNQ2, voltage-gated potassium channels;
RhBG, rhesus blood group antigen; AE1, anion exchanger. (B) A theoretical model of how the ankyrin
membrane binding domain could bind to unstructured peptides. This pocket is 240 angstroms in length
with a variety of surface exposed residues.
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Myelin and nodes of Ranvier are adaptations of

vertebrates that allow rapid nerve conduction

using small caliber axons.
Targeted knockout of ankyrin-G in the post-

natal cerebellum in mice results in severe ataxia,

and loss of ability to fire action potentials as
well as clustering of voltage-gated Na channels

(Nav1.6) at axon initial segments of Purkinje

neurons (Zhou et al. 1998; Jenkins and Bennett
2001). In addition, b-4 spectrin is absent and

neurofascin is no longer restricted to ankyrin-

G-deficient initial segments (Jenkins and
Bennett 2001). These result in Purkinje neurons

that have been recapitulated in cultured

hippocampal neurons, where knockdown of
ankyrin-G results in mis-localization of b-4

spectrin, voltage-gated sodium channels, as

well as neurofascin (Yang et al. 2007; Hedstrom
et al. 2007).

b-4 spectrin knockout mice show dimin-

ution of themembrane undercoat and increased
membrane blebbing at nodes of Ranvier (Lacas-

Gervais et al. 2004). Ankyrin-G recruits b-4

spectrin to nodes and initial segments (Jenkins
and Bennett 2001; Yang et al. 2007), and is still

present in the absence of b-4 spectrin. b-4

spectrin thus plays an important role in stabi-
lizing these excitable membranes, following

establishment by ankyrin-G alone at initial seg-

ments or by ankyrin-G in collaboration with
axonal neurofascin and Schwann cell gliomedin

at nodes of Ranvier (Eshed et al. 2005;

Dzhashiashvili et al. 2007).
KCNQ2/3(Kv7) channels modulate activity

of voltage-gated Na channels, and mutations in

these channels results in hyperexcitability phe-
notypes including epilepsy (Maljevic et al.

2008; Neubauer et al. 2008). KCNQ2/3
channels colocalize with voltage-gated Na
channels at nodes of Ranvier and axon initial

segments (Devaux et al. 2004; Pan et al. 2006;

Rasmussen et al. 2007). KCNQ2/3 channels
have ankyrin-binding sites in their cytoplasmic

domains, and require ankyrin-G for targeting

to axon initial segments (Pan et al. 2006;
Chung et al. 2006; Rasmussen et al. 2007).

Strikingly, knockdown of ankyrin-G in cul-

tured hippocampal neurons results in loss of
voltage-gatedNa channels from initial segments

and conversion of these domains into dendrites

(Hedstrom et al. 2008). Ankyrin-G thus is

required for preservation of the entire axon
initial segment. It will be of interest to deter-

mine the role of ankyrin-G in the establish-

ment of initial segments as well as whether
ankyrin-G operates downstream of axonal

polarity pathways.

Axon initial segments receive direct input
through axo-axonic synapses of interneurons,

which modulate neuronal output and may

have roles in diseases such as epilepsy and
schizophrenia (Howard et al. 2005). Loss of

the neurofascin enrichment at the initial

segment in ankyrin-G-deficient Purkinje
neurons results in disruption of a class of

synapses formed by interneurons that intercon-

nect Purkinje neurons in the cerebellum (Ango
et al. 2004). Ankyrin-G thus is responsible for

stabilizing transcellular connections as well as

organizing the composition of initial segments.
Spectrin and ankyrin are likely to function

in other axonal domains. For example, para-

nodes are specialized zones immediately adja-
cent to the nodal gap in myelinated axons that

contain shaker-type potassium channels and

are characterized ultrastructurally by promi-
nent axo-glial junctions. Paranodes contain a

membrane skeleton distinct from nodes that

includes b-2 spectrin, ankyrin-B, and protein
4.1 B (Ogawa et al. 2006). a-2 Spectrin is

present in paranodes where it associates with

b-2 spectrin, and also at the nodal gap where
it partners with b-4 spectrin. a-2 Spectrin

mutations in zebra fish result in abnormal

development of nodes of Ranvier, and are
responsible for stabilizing initial clusters of

voltage-gated Na channels (Voas et al. 2007).

Ankyrin-binding activity of its membrane
partners is not “hardwired,” but is subject to

regulation. Phosphorylation of neurofascin at

the FIGQY tyrosine in its ankyrin-binding site
abolishes ankyrin-binding (Garver et al. 1997;

Whittard et al. 2006) and results in gain of

function in binding to doublecortin (Kizhatil
et al. 2002). FIGQY-phosphorylated neuro-

fascin is excluded from the node of Ranvier

but is concentrated in paranodes (Jenkins
et al. 2001). Ankyrin-binding activity of the
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voltage-gated sodium channel is markedly

enhanced by phosphorylation by casein kinase

2 (Bréchet et al. 2008). Interestingly, casein
kinase 2 is concentrated at nodes of Ranvier

and axon initial segments, and could provide

a local activation signal for stabilizing voltage-
gated sodium channels at these sites (Bréchet

et al. 2008).

NEUROMUSCULAR JUNCTIONS

Spectrin and ankyrin stabilize neuromuscular

junctions through both presynaptic and post-
synaptic mechanisms. Presynaptic b spectrin is

required for normal transmitter release and to
stabilize Drosophila neuromuscular junctions

following initial establishment of these synapses

(Featherstone et al. 2001; Pielage et al. 2005).
Interestingly, two groups independently ident-

ified presynaptic giant ankyrin-2 isoforms

through different unbiased forward genetic
screens for mutations affecting the Drosophila

neuromuscular junction (Koch et al. 2008;

Pielage et al. 2008). The phenotypes of ankyrin-
mutant junctions included retraction of synap-

tic boutons, loss of axonal microtubules, and

misorganization of synaptic cell adhesion mol-
ecules. Thedefects in synaptic stability increased

with distance from the neuron cell body

and were accompanied by accumulation of
synaptic vesicles in axons, suggesting a role of

ankyrins in axonal transport in addition to

their local function at the synapse (Koch et al.
2008).

Spectrin and ankyrin-G are localized in

specialized postsynaptic domains in mamma-
lian neuromuscular junctions that are distinct

from the acetylcholine receptor and are

enriched in voltage-gated sodium channels
(Flucher and Daniels 1989; Wood and Slater

1998; Kordeli et al. 1998; Bailey et al. 2003).

Ankyrin-B also is located at the periphery of
mammalian neuromuscular junctions (Ayalon

et al. 2008). Experiments in flies and mice

show that postsynaptic spectrin and ankyrins
are required to stabilize neuromuscular junc-

tions. Knockdown of postsynaptic spectrin in

theDrosophila by siRNA results inmisorganiza-
tion of active zones and abnormal growth

of the neuromuscular junction (Pielage et al.

2006). Similarly, knockdown of postsynaptic

ankyrin-B in adult mouse muscle results in
shrinkage of the neuromuscular junction from

its adult form back to the size of neonatal junc-

tions (Ayalon et al. 2008).

COSTAMERES

Costameres (Fig. 2B) are specialized domains
formed at the junction of the plasmamembrane

and Z-discs of peripheral myofibrils in skeletal

muscle and cardiomyocytes (Pardo et al. 1983;
Rybakova et al. 2000; Ervasti 2003; Bloch et al.

2004). Costameres function as force buffers
that transmit force across the plasma

membrane from sarcomeres to the extracell-

ular matrix, and protect the muscle plasma
membrane from damage during contraction.

The dystrophin-glycoprotein complex (DGC)

provides a transmembrane connection at costa-
meres through association of dystrophin with

g-actin and dystroglycan, and dystroglycan

with extracellular laminin (Ervasti, 2003;
Rybakova et al. 2000). The dystrophin-

glycoprotein-complex is absent from the

plasma membrane in Duchenne muscular dys-
trophy, which results in membrane damage and

contributes to death of muscle cells (Ervasti

et al. 1990; Cohn and Campbell 2000; Dalkilic
and Kunkel 2003).

Ankyrin-B and ankyrin-G cooperate in

localization of dystrophin and b-dystroglycan
at costameres and are required to prevent

exercise-induced injury (Ayalon et al. 2008).

Ankyrin-B is required for transport of b-
dystroglycan to the plasma membrane, whereas

ankyrin-G retainsb-dystroglycan at costameres.

Loss of ankyrin-B in skeletal muscle is accom-
panied by loss of microtubules, both at the neu-

romuscular junction (see previous discussion)

as well as costameres (Ayalon et al. 2008).
Ankyrin-B binds directly to dynactin-4/p62
of the dynactin complex, and may capture

fast-growing ends of microtubules at costa-
meres and neuromuscular junctions to establish

transport routes from the trans-Golgi network

for newly synthesized b-dystroglycan (Ayalon
et al. 2008).
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CARDIOMYOCYTE T-TUBULE
MICRODOMAINS

Rhythmic contraction of mammalian hearts

requires nearly synchronous waves of calcium

release and reuptake throughout the intra-
cellular space of ventricular cardiomyocytes.

This is achieved though precise placement of

membrane transporters and signalingmolecules
related to import and export of calcium

within microdomains of T-tubules (Fig. 2C).

T-tubules are invaginations of the plasmamem-
branes that form a complex three-dimensional

network juxtaposed to the sarcoplasmic reti-

culum (Brette and Orchard 2007). Ventricular
myocyte T-tubules contain threemicrodomains

that can be resolved by high resolution light

microscopy: A domain containing L-type
voltage-gated calcium channels complexed

with ryanodine receptors in the sarcoplasmic

reticulum, a second domain enriched in the
Na/Ca exchanger, and a third domain enriched

in voltage-gated sodium channels (Scriven et al.

2000). Voltage-gated sodium channels are res-
ponsible for activating voltage-gated calcium

channels, which admit a small amount of

calcium and activate calcium release from the
sarcoplasmic reticulum. The Na/Ca exchanger
contributes to calcium homeostasis by export

of calcium back across the T-tubule. Evidence
will be reviewed below indicating that ankyrin-

B is required for the Na/Ca exchangermicrodo-

main, and ankyrin-G is required for the domain
enriched in voltage-gated sodium channels.

The Na/Ca exhanger (NCX1) binds to

ankyrin-Bandcolocalizeswithankyrin-B incar-
diomyocyte T-tubules (Li et al. 1993; Mohler

et al. 2005; Cunha et al. 2007). In addition,

NCX1 and ankyrin-B also colocalize with the
Na/K ATPase in the T-tubule membrane and

with the IP3 receptor in the sarcoplasmic reti-

culum (Mohler et al. 2005). Haploinsufficiency
of ankyrin-B in mice results in selective loss of

T-tubule-localized sodium/calcium exchanger,

Na/K ATPase as well as IP3 receptor from adult
cardiomyocytes (Mohler et al. 2003; 2005).

Moreover, ankyrin-B-deficient cardiomyocytes

show increased contractility and increased
calcium transients (Mohler et al. 2003; 2005).

These observations suggest that ankyrin-B-

dependent colocalization of NCX1 and Na/K
ATPase could result in functional coupling
between these transporters, with Na/K ATPase-

driven export of sodium ions entering the cell in

exchange for calcium ions. The IP3 receptor in
the ankyrin-B complex has been proposed to

function in coupled calcium export from

the sarcoplasmic reticulum directly through
NCX1 (Mohler et al. 2005). The physiological

importance of the ankyrin-B-microdomain

in T-tubules is supported by findings that
ankyrin-B-deficient mice and humans heter-

ozygous for loss-of-function mutations of

ankyrin-B show stress-induced sudden cardiac
death and cardiac arrhythmia symptoms

(Mohler et al. 2003; 2004b).

Nav1.5 and ankyrin-G and are both lo-
calized to T-tubules and intercalated discs of

adult cardiomyoctes (Mohler et al. 2004c).

Although high-resolution double-labeling for
these proteins has not been reported, several

findings strongly indicate that Nav1.5 and

ankyrin-G are molecular partners in the heart.
E1053K mutation of the ankyrin-binding site

of Nav1.5 eliminates ankyrin-G-binding as

well as ability of Nav1.5 to accumulate at the
cell surface of cardiomyocytes (Mohler et al.

2004c). Interestingly, this Nav1.5 mutation is

associated with Brugada syndrome, which is a
cardiac arrhythmia associated with loss-

of-function mutations of Nav1.5. Nav1.5

requires interaction with ankyrin-G through
ank repeats 14 and 15 for expression at the cell

surface of neonatal cardiomyocytes (Lowe

et al. 2008).

EPITHELIAL LATERAL MEMBRANES

The lateral membrane domain of epithelial

cells (Fig. 2D) is of considerable physiological

importance because of its roles in salt and
water homeostasis and protection of epithelial

tissues from mechanical stress. Moreover, loss

of this specialized domain is a hallmark of
metastatic cancer cells. Early immunofluores-

cence studies identified ankyrin and spectrin

in a polarized pattern localized to lateral mem-
branes of cultured epithelial cells as well as in
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tissues (Drenckhahn et al. 1985; Nelson and

Veshnock 1986; Drenckhahn and Bennett

1987). More recently, studies using siRNA
have revealed that ankyrin-G and b-2 spectrin

collaborate in formation of the lateral mem-

brane of bronchial epithelial cells (Kizhatil
and Bennett 2004; Kizhatil et al. 2007b). Cells

depleted of either protein maintain apical–

basal polarity, but fail to form new lateral
membrane following initiation of cell–cell

contact and remain flattened rather than

columnar. Moreover, ankyrin-G and b-2
spectrin-depleted cells are incapable of de

novo membrane biogenesis during mitosis

(Kizhatil et al. 2007b). Ankyrin-G requires b-2
spectrin as a partner because ankyrin-G

mutants lacking b-2 spectrin-binding activity

are not active in restoring the lateral membrane
(Kizhatil et al. 2007b). Ankyrin-G andb-2 spec-

trin thus work together in bulk delivery of

proteins and phospholipids to the lateral
membrane.

b spectrins associated with intracellular

membranes were initially believed to be distinct
from those associated with the plasma mem-

brane. Beck and colleagues reported spectrin

immunoreactivity associated with the Golgi
(Beck et al. 1994), which was later attributed

to b-3 spectrin (Stankewich et al. 1998).

However, the cross-reacting protein in Golgi
was subsequently determined to be syne-1

(also termed nesprin), which has spectrin-

repeats but is otherwise distantly related to b

spectrins (Gough et al. 2003). b-3 spectrin is

very similar to b-2 spectrin, but has a more

restricted pattern of expression primarily in
the nervous system and especially the cerebel-

lum (Sakaguchi et al. 1998). b-3 spectrin thus

may have roles in intracellular transport
similar to b-2 spectrin but is not a specialized

component of the Golgi apparatus. Recently,

mutations in b-3 spectrin were identified
as the cause of a form of spinocerebellar

ataxia (SCA5) (Ikeda et al. 2006), indicating

an important role in maintenance of certain
neurons.

E-cadherin is a key cell adhesion molecule

that is required to form the first lateral
membrane domains in development and is

a ubiquitous component of lateral mem-

branes in epithelial tissues. E-cadherin has

recently been reported to bind to ankyrin-G
through a highly conserved site in its cyto-

plasmic domain and to require ankyrin-binding

activity for efficient exit from the trans Golgi
network (Kizhatil et al. 2007a). Moreover,

both ankyrin-G and b-2 spectrin are required

for accumulation of E-cadherin at the lateral
membrane in both epithelial cells and pre-

implantation embryos. E-cadherin thus works

together with ankyrin-G and b-2 spectrin to
coordinate membrane assembly with extra-

cellular interactions of at sites of cell–cell

contact. Coupling of E-cadherin to a versatile
adaptor protein such as ankyrin-G could

promote corecruitment of diverse proteins

to sites of cell–cell contact. For example,
ankyrin-G associates with other lateral mem-

brane proteins including the Na/K ATPase

(Nelson and Veshnock, 1987) and the RhBG
ammonium transporter (Lopez et al. 2005). It

will be important to determine if ankyrin-

binding activity is shared by other proteins
residing in the lateral membrane.

Spectrin–actin complexes are stabilized by

accessory proteins such as adducin, which
recruits spectrin to the fast-growing end of

actin filaments (Gardner and Bennett 1987; Li

et al. 1998; Kuhlman et al, 1996), and tropomo-
dulin, which caps the slow-growing ends of

actin filaments (Littlefield and Fowler 2008).

Adducin and tropomodulin are both required
to stabilize spectrin–actin networks on the

lateral membrane of epithelial cells (Abdi and

Bennett 2008; Weber et al. 2007). Depletion of
either protein by siRNA results in loss of

lateral membrane height. Moreover, depletion

of adducin increases long-range mobility of
E-cadherin on the lateral membrane (Abdi

and Bennett 2008). Adducin is phosphorylated

and inactivated by protein kinase C (Matsuoka
et al. 1998), suggesting the possibility of signals

that modulate the stability of the spectrin-

actin network in the lateral membrane.
Interestingly in this regard, pleiotrophin is a

cytokine that promotes adducin phosphoryl-

ation and increased proliferation of epithelial
cells (Pariser et al. 2005).
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CORE MECHANISMS AND EVOLUTION OF
MEMBRANE DOMAINS

Having gone into details of individual mem-

brane domains, it is worthwhile to consider

common requirements and the special features
of ankyrins and spectrins that satisfy these

core needs. All of the domains considered in

this review depend on corecruitment of func-
tionally related but structurally distinct mem-

brane partners. For example, axon initial

segments are enriched in voltage-gated Na
channels, KCNQ2/3 channels, and 186 kDa

neurofascin (Fig. 2A), lateral membranes have

E-cadherin and the Na/K ATPase (Fig. 2D),
and ankyrin-B-based cardiomyocyte T-tubule

domains contain the Na/K ATPase together

with the Na/Ca exchanger (Fig. 2C). These pro-
teins all have independently evolved ability to

bind to ankyrin. A shared feature of many

ankyrin-binding sites is that they are either
predicted or shown to be extended peptides

lacking secondary structure. For example the

anion exchanger site is an 11 amino-acid loop
based on the crystal structure (Stefanovic et al.

2007), the cytoplasmic domains of E-cadherin

and L1 CAMS are established to be natively
unstructured by biophysical methods (Huber

et al. 2001; Zhang et al. 1998), and sites

of Nav channels, KCNQ2/3 channels, RhBG
ammonium transporter, and b-dystroglycan

are predicted to be unstructured (Fig. 3A).

A possible binding site for unstructured
peptides could be the ankyrin groove that runs

the 240-angstrom length of the repeat stack

(Michaely et al. 2002) (Fig. 3A,B). A groove of
this length with variation in surface-exposed

residues could potentially accommodate mul-

tiple types of partners. Interestingly, ANK
repeats can bind to more than one partner at a

time and thus are capable of forming homo-

and hetero-complexes (Michaely and Bennett,
1995).

Natively unstructured domains of proteins

are widely used in protein recognition (Dyson
and Wright 2005). One advantage of such a

code is that unstructured proteins can multi-

task and also engage endocytic machinery and
other adaptor proteins depending on cellular

requirements. Another advantage is that the

affinity for ankyrin can vary: The Kd for

ankyrin is 10 nM for the anion exchanger,
50 nM for neurofascin, and 500 nM for

E-cadherin. This variable affinity allows for

flexibility depending on the physiological
context. Finally, intrinsically unstructured

proteins represent the most rapidly evolving

part of the genome (Brown et al. 2002), and
have the potential to adjust readily to new

physiological demands such as the rapid acqui-

sition of myelination.
Another emerging theme as we learn more

about ankyrin-based membrane domains is

that they assemble through direct targeting of
components along microtubules to specific

sites. A similar direct targeting pathway has

been proposed for assembly of gap junction
subunits at adherens junctions (Shaw et al.

2007). Direct targeting is in contrast to many

current models that invoke endocytosis and
transcytosis as primary mechanisms for

sorting. Ankyrins can bind directly to microtu-

bules (Bennett and Davis 1981), and also can
serve as adaptors for the dynactin complex,

which can stabilize the fast-growing ends of

microtubules, at least in skeletal muscle
(Ayalon et al. 2008). Ankyrins also stabilize

microtubules at the presynaptic neuromuscular

junction, and also may have roles in axonal
transport (Pielage et al. 2008; Koch et al.

2008). A current mystery is how newly syn-

thesized membrane proteins are coupled to
the appropriate microtubules, especially in

epithelial cells and neurons where multiple

types of microtubules coexist.
In addition to their roles in stabilizing pro-

teins at the plasma membrane and in directed

transport, ankyrin and spectrin may also
establish specialized membrane domains. For

example, ankyrin-G and b-2 spectrin are

required for biogenesis of epithelial lateral
membranes (Kizhatil and Bennett 2004;

Kizhatil et al, 2007b). Ankyrin-G also is

required to form axon initial segments, which
lose all initial segment markers and develop

dendritic properties in ankyrin-G-knockdown

cells (Hedstrom et al. 2008). Clues to how
ankyrins and b spectrins could participate in
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bulk transport of proteins and phospholipids

in assembly of membrane domains come from

the findings that b-2 spectrin interacts with
membrane phospholipids through multiple

sites (An et al. 2004; Muresan et al. 2001), and

with PI lipids through its PH domain
(Hyvönen et al. 1995). Moreover, spectrins

also interact with microtubule-based motors,

either directly (Takeda et al. 2000), or through
dynactin (Muresan et al. 2001; Holleran et al.

2001; Holleran et al. 1996). The combination

of ankyrin, with its diversity in protein
recognition, and b spectrin, with its capacity

to connect membrane compartments with

microtubule-based motors, seems well suited
for segregation and transport of membrane

proteins and lipids to specialized domains. A

central unanswered question is the identity of
the initial polarity signals that define the site

of delivery for ankyrin/spectrin cargo.

SUMMARY AND PERSPECTIVES

Ankyrins and spectrins were first discovered as
partners in plasma membrane of erythrocytes,

but now are established to be required for

specialized membrane domains in many types
of cells. Spectrins can both form a two-

dimensional actin-based network on the

plasma membrane that restricts membrane-
spanning proteins, as well as participate in

microtubule-dependent transport of mem-

brane lipids and proteins. Ankyrins serve as
membrane adaptors that connect spectrin to

diverse membrane-spanning proteins through

recognition by ANK repeats. Currently charac-
terized ankyrin-binding sites are short 10–20

amino acid stretches that do not have a single

shared motif but are intrinsically unstructured
or configured as a loop. Ankyrins, in many

cases operating with spectrins, are involved in

coordinate assemblyof avarietyof ion transpor-
ters and cell adhesion molecules at axon initial

segments and nodes of Ranvier in myelinated

nerves, the neuromuscular junction, T-tubule
microdomains in cardiomyocytes, costameres

in striated muscle, and the lateral membrane

domain of epithelial cells. Cardiac arrhythmias
result frommutation or deficiency of ankyrin-B

or mutation of ankyrin-G-binding site of the

cardiac voltage-gated sodium channel. It is

likely that additional human diseases will turn
out to result from defects in organization of

membrane proteins. Important questions for

future work include elucidation of the polarity
signals that define where these domains are

localized in cells as well as resolving their assem-

bly mechanisms involving sorting and preferen-
tial transport. It is clear that future resolution of

the core mechanisms for roles of ankyrins and

spectrins in membrane domains will have per-
vasive implications for physiology as well as

clinical medicine.
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