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on a conjectural cancellation of divergences between worldsheet instantons and membrane

instantons. The HMO cancellation mechanism is important since it shows in a precise,
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1 Introduction

The partition functions on the three-sphere of N ≥ 2 Chern-Simons-matter theories can

be reduced by localization to matrix models [1–3] which have been much studied in the

last years. Surprisingly, these matrix models contain an enormous amount of information.

When studied in the large N limit, this information can be decoded in terms of M-theory

AdS duals. For example, the leading large N free energy can be seen to reproduce the

gravity action evaluated on-shell, as first found in [4] in the case of ABJM theory [5]

(see [6] for a review and a list of relevant references).

Although most of the work done on these models has focused on the leading order

contribution at large N , from the point of view of M-theory and quantum gravity the

most interesting information is contained in the subleading corrections. For example, the

subleading logarithmic correction in N corresponds to a one-loop correction in quantum

supergravity, as it has been shown in [7]. There are two types of corrections in the large N

expansion: the perturbative corrections in 1/N , and the non-perturbative or exponentially
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small corrections. The perturbative corrections can be computed in closed form in a large

class of N = 3 theories [8], and they can be resummed in terms of an Airy function,

as first shown in [9] for ABJM theory. The non-perturbative corrections can be in turn

divided in two types: the ones due to worldsheet instanton corrections in the AdS dual,

and the ones due to more general membrane instanton corrections in M-theory [10]. The

appearance of worldsheet instanton corrections was anticipated in [11], in the case of ABJM

theory. They appear naturally in the ’t Hooft expansion of the matrix model, at strong

’t Hooft coupling, and were determined in a systematic, recursive way in [4], in a weak

string coupling expansion.

The study of membrane instanton corrections is more challenging, since these are non-

perturbative effects both in the string dual and in the large N matrix model. In [12] some

information about these instantons (like their action) was obtained from the study of the

large genus asymptotics of the ’t Hooft expansion, but no concrete recipe was given to

calculate them. In [8], a new method was introduced to study the ABJM matrix model

and its close cousins, based on an equivalence with a quantum Fermi gas. In the Fermi gas

approach, the Planck constant is naturally identified with the inverse string coupling, and

the semiclassical limit of the gas corresponds to the strong string coupling limit. One of

the main virtues of the Fermi gas approach is that it makes possible to calculate membrane

instanton effects systematically, at least in the WKB expansion. This opened the way for

a quantitative determination of non-perturbative effects in the M-theory duals to Chern-

Simons-matter theories.

In a recent paper [13], Hatsuda, Moriyama and Okuyama (HMO) made various crucial

observations on the structure of non-perturbative corrections in ABJM theory, where the

inverse string coupling is essentially given by the Chern-Simons level k. First of all, they

noticed that the worldsheet instanton contributions to the free energy can be resummed at

finite k by using a Gopakumar-Vafa representation. The resulting expressions are divergent

for integer k.1 Since the free energy is finite for any value of k, these divergences have to

disappear in the final answer, and [13] suggested that they cancel against similar divergences

in the contributions of membrane instantons, in such a way that the total sum of all

non-perturbative effects at integer k is finite. We will call this the HMO cancellation

mechanism. This mechanism is beautiful and natural, and we believe is of deep conceptual

importance for the understanding of M-theory. It shows, in a precise and quantitative

way, that the genus expansion based on strings is essentially meaningless: in the non-

perturbative completion of type IIA string theory at finite, integer k through M-theory,

only the combination of membrane instantons and worldsheet instantons makes sense.

In some cases, the HMO mechanism gives a set of constraints for the membrane in-

stanton corrections at finite k. Using these constraints, as well as the first few terms of

the semiclassical expansion at small k obtained in [8], an expression for the one-instanton

membrane correction was proposed in [13] which passes many consistency checks. It repro-

duces for example the low order, non-perturbative corrections to the free energy, for small

integer values of k.

1This had been already noticed in 2011 in unpublished work by the second author and Pavel Putrov.
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The purpose of the present note is twofold. It was pointed out in [8] that the Hamil-

tonian problem appearing in the Fermi gas approach to ABJM theory can be studied with

a pair of TBA equations first considered in [14, 15] and studied in detail in [16]. This

observation was exploited in [13, 17, 18], where the TBA equations were solved for finite k

but small chemical potential. This makes it possible to compute the partition function of

ABJM theory for finite k and small N . On the other hand, the Fermi gas can be studied

in the WKB approximation, at small k, and this provided many valuable insights into the

problem [8]. Our first goal in this paper is to develop a semiclassical or WKB expansion

directly in the TBA equations. This leads to an algorithm which calculates the grand

potential of the ABJM model systematically, as a power series in k, and arbitrary chemical

potential. This method is more powerful than the original WKB expansion of the Fermi

gas studied originally in [8], and one can easily push the computation to higher orders.

Our second goal is to use this information to further explore the cancellation mechanism

proposed in [13]. We verify that the expression for the membrane one-instanton correction

proposed in [13] agrees with the WKB expansion to high order, and we propose analytic

expressions for the full two-instanton correction and for some higher-order terms in the

non-perturbative expansion. Our proposal for the two-instanton correction passes all the

consistency tests, and in particular agrees with the results for the grand potential at k = 1, 3

obtained in [13]. Our WKB results confirm then the HMO cancellation mechanism and

are very helpful in obtaining conjectural expressions at finite k.

The organization of the paper is as follows. In section 2 we review some general

results on non-perturbative effects in ABJM theory. In section 3 we explain how the

Fermi gas approach of [8] can be reformulated in terms of the TBA system considered

by Al. Zamolodchikov in [16]. In section 4 we study in detail the WKB expansion of

the TBA system and explain how it leads to the semiclassical expansion for the grand

potential considered in [8]. In section 5 we give an application of the WKB expansion to the

calculation of membrane instantons: we test the conjecture for one-membrane instanton

corrections in [13], and we propose an exact formula for the two-membrane instanton

contributions. Finally, we conclude with some open problems. In the first appendix we list

some useful results for the integration of generalized hypergeometric functions, and in the

second appendix we list WKB expansions for some low order contributions of membrane

instantons.

2 Perturbative and non-perturbative aspects of ABJM theory

The quantity we will focus on in this paper is the partition function of ABJM theory on

the three-sphere, Z(N, k), which is given by the matrix integral [1]

ZABJM(N)

=
1

N !2

∫
dNµ

(2π)N
dNν

(2π)N

∏
i<j

[
2 sinh

(µi−µj

2

)]2[
2 sinh

(νi−νj
2

)]2
∏

i,j

[
2 cosh

(µi−νj
2

)]2 exp

[
ik

4π

N∑

i=1

(µ2i − ν2i )

]
.

(2.1)
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This matrix integral can be calculated in the ’t Hooft expansion

N → ∞ , λ =
N

k
fixed (2.2)

by using techniques of matrix model theory and topological string theory [4, 23]. In par-

ticular, one can obtain explicit formulae for the genus g free energies appearing in the 1/N

expansion

F (λ, gs) =

∞∑

g=0

g2g−2
s Fg(λ) , (2.3)

where

gs =
2πi

k
. (2.4)

The genus g free energies Fg(λ) obtained in this way are exact interpolating functions, and

they can be studied in various regimes of the ’t Hooft coupling. When expanded at strong

coupling, they have the structure

Fg(λ) = F p
g (λ) + F np

g (λ) . (2.5)

The first term represents the perturbative contribution in α′, while the second term is

non-perturbative in α′,

F np
g (λ) ∼ O

(
e−2π

√
2λ
)
. (2.6)

The type IIA dual of ABJM theory involves the space AdS4 × CP
3 [5], and this geom-

etry supports worldsheet instantons wrapping a CP
1 ⊂ CP

3 [11]. The non-perturbative

piece (2.6) was interpreted in [4] as the contribution of these worldsheet instantons.

Besides the non-perturbative effects in α′, one can use the connection between the

large-order behavior of perturbation theory and instantons to deduce the structure of non-

perturbative effects in the string coupling constant. In [12] a detailed analysis showed that

these effects would have the form

exp
(
− kπ

√
2λ

)
(2.7)

at large λ. It was also proposed in [12] that the source of these effects are D2-branes

wrapped around three-cycles in the target space. An appropriate, explicit family of gen-

eralized Lagrangian submanifolds with the topology of RP3 ⊂ CP
3 was proposed as an

explicit candidate for these cycles. We will refer to these non-perturbative effects as mem-

brane instanton effects: they can be interpreted as M2-instantons in M-theory [10], where

the M2-brane wraps a three-cycle inside S
7/Zk which is the lift of the three-cycle in CP

3.

Notice that these membrane instanton effects are invisible in ordinary string perturbation

theory.

Further information on the membrane intantons can be obtained by using the Fermi

gas approach introduced in [8]. In this approach, one first notices (see also [19]) that the

matrix integral (2.1) can be written as

Z(N, k) =
1

N !

∑

σ∈SN

(−1)ǫ(σ)
∫

dNx

(2πk)N
1

∏
i 2 cosh

(
xi

2

)
2 cosh

(xi−xσ(i)

2k

) . (2.8)
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This in turn can be interpreted as the canonical partition function of a one-dimensional

Fermi gas with a non-trivial one-particle density matrix

ρ(x1, x2) =
1

2πk

1
(
2 cosh x1

2

)1/2
1

(
2 cosh x2

2

)1/2
1

2 cosh
(
x1−x2
2k

) . (2.9)

The one-particle Hamiltonian Ĥ of this system is then defined as

ρ̂ = e−Ĥ , 〈x1|ρ̂|x2〉 = ρ(x1, x2) , (2.10)

and the Planck constant is

~ = 2πk . (2.11)

The semiclassical or WKB expansion is then around k = 0, and it corresponds to the strong

string coupling expansion in the type IIA dual.

The Fermi gas approach suggests to look instead to the grand partition function (see

also [20])

Ξ(µ, k) = 1 +

∞∑

N=1

Z(N, k)zN , (2.12)

where

z = eµ (2.13)

plays the rôle of the fugacity and µ is the chemical potential. The grand potential is then

defined as

J(µ, k) = log Ξ(µ, k) . (2.14)

The canonical partition function is recovered from the grand-canonical potential as

Z(N, k) =

∮
dz

2πi

Ξ(µ, k)

zN+1
. (2.15)

At large N , this integral can be computed by applying the saddle-point method to

Z(N, k) =
1

2πi

∫
dµ exp

[
J(µ, k)− µN

]
. (2.16)

As shown in [8], the grand potential is the sum of a perturbative and a non-perturbative

piece,

J(µ, k) = Jp(µ, k) + Jnp(µ, k) . (2.17)

The perturbative piece is a cubic polynomial in µ:

Jp(µ, k) =
C(k)

3
µ3 +B(k)µ+A(k) . (2.18)

The coefficients C(k), B(k) where computed in [8] for ABJM theory (in fact, the analogs

of these coefficients for other N = 3 theories can be also computed in closed form). The

coefficient A(k) can be computed in a WKB expansion around k = 0 [8], and the all-orders

– 5 –
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result was conjectured in [21]. In this paper we will be interested in the non-perturbative

piece Jnp(µ, k). In general one has the following result:

Jnp(µ, k) = JM2(µ, k) + JWS(µ, k) + · · · . (2.19)

Let us explain this structure in more detail. The first term JM2(µ, k) has the following

expansion for µ≫ 1,

JM2(µ, k) =
∑

ℓ≥1

(
aℓ(k)µ

2 + bℓ(k)µ+ cℓ(k)
)
e−2ℓµ. (2.20)

This type of contributions to the grand potential was first found in [8] and it was interpreted

there as due to membrane instantons, i.e. to M2-branes wrapping a three-cycle M ⊂ S
7/Zk

which is a lift of a three-cycle in CP
3. The positive integer ℓ is the winding number of the

wrapping. We will refer to the ℓ-th term in the infinite series (2.20) as the the contribution of

the ℓ-membrane instanton. The coefficients aℓ(k), bℓ(k) and cℓ(k) are non-trivial functions

of k. Using the WKB expansion of the quantum Fermi gas, it was shown in [8] that they

have a perturbative expansion around k = 0 of the form

aℓ(k) =
1

k

∞∑

n=0

aℓ,nk
2n. (2.21)

A similar expansion holds for bℓ(k) and cℓ(k), with coefficients bℓ,n, cℓ,n, respectively. The

WKB expansion was obtained in [8] up to order n = 2. One goal of this paper will be to

obtain a more efficient method to calculate the WKB expansion.

The second term in (2.19), JWS(µ, k), is the contribution of worldsheet instantons

wrapping CP
1 ⊂ CP

3. It has the following expansion for µ≫ 1,

JWS(µ, k) =

∞∑

m=1

dm(k)e−
4mµ
k . (2.22)

In [13] a very useful formula was proposed for JWS(µ, k): by using the fact [4, 23] that the

ABJM matrix integral is dual to topological string theory on local P1 × P
1, one can write

JWS(µ, k) =
∑

n,g,d≥1

ngd

(
sin

2πn

k

)2g−2 (−1)dn

n
e−

4dnµ
k . (2.23)

In this formula, ngd is the weighted sum of the Gopakumar-Vafa invariants [22] of local

P
1 × P

1,

ngd =
∑

d1+d2=d

ngd1,d2 . (2.24)

Notice that, from the point of view of M-theory, both types of instantons are due to M2-

branes wrapping three-cycles: membrane instantons correspond to a three-cycle M which

descends to a three-cycle wrapped by D2-branes in the type IIA target (if the proposal

of [12] is correct, this three-cycle is an RP
3 ⊂ CP

3); worldsheet instantons correspond to

M2-branes wrapping the three-cycleW = S
3/Zk, which descends to CP1 ⊂ CP

3. Therefore,

– 6 –
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M W

RP
3

CP
1

S
7/Zk

CP
3

Figure 1. From the M-theory point of view, there are two types of non-perturbative effects in

ABJM theory: M2-branes can wrap a cycle M ⊂ S
7/Zk which descends to an RP

3 ⊂ CP
3 cycle in

the type IIA target; or they can wrap a cycle W which descends to CP
1 ⊂ CP

3. The most general

M2-brane configuration wraps ℓ times the cycle M and m times the cycle W.

from the point of view of M-theory, there are two types of three-cycles, M and W, and

the most general M2-brane configuration wraps ℓ times the cycle M and m times the cycle

W, see figure 1. We should then expect that the most general contribution to Jnp(µ) is of

the form

Jnp(µ, k) =
∑

ℓ,m≥1

fℓ,m(k, µ) exp

[
−
(
2ℓ+

4m

k

)
µ

]
. (2.25)

The contribution JM2(µ, k) corresponds to m = 0, while the contribution JWS(µ, k) corre-

sponds to ℓ = 0. The existence of such bound states, labeled by two integers (ℓ,m), was

first indicated in [13] in order to interpret their data on the grand potential. From the

point of view of M-theory they are completely natural, since they correspond to the most

general set of supersymmetric cycles in the geometry.

Can we compute the contribution of these non-perturbative states? In the case of

worldsheet instantons, the expressions (2.23) and (2.24) reduce the problem to the deter-

mination of the Gopakumar-Vafa invariants of local P1 × P
1. This can be done in many

different ways, and there is no difficulty in calculating JWS(µ, k) to any desired order. The

calculation of JM2(µ, k) can be done order by order in k and at all possible orders in the

membrane instanton number by using the WKB method of [8]. In the remaining of the

paper, we will develop a more efficient method, based on the TBA equations of [16], to

calculate this perturbative expansion around k = 0. However, there is no known procedure

to determine the contribution of bound states appearing in (2.25), not even at small k.

This is probably the most important open problem in this subject, as we will mention in

the final section of the paper.

– 7 –
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3 The Fermi gas/TBA approach to ABJM theory

3.1 Fredholm determinants and TBA

We will now summarize some results from [16, 24] which are needed in this paper.

In [16], the following integral kernel is considered

K(θ, θ′) =
1

2π

exp
(
− u(θ)− u(θ′)

)

2 cosh θ−θ′

2

. (3.1)

This defines a homogeneous Fredholm integral equation of the second kind, of the form

∫ ∞

−∞
K(θ, θ′)f(θ′) = λf(θ) . (3.2)

Let λa be the possible eigenvalues appearing in (3.2), and let us introduce the Fredholm

determinant

Ξ(z) =
∏

a

(1 + zλa) . (3.3)

We will regard Ξ as a grand canonical partition function. The grand potential is then

given by

J(z) = log Ξ(z) (3.4)

and it has the expansion

J(z) = −
∞∑

ℓ=1

(−z)ℓ
ℓ

Zℓ (3.5)

where Zℓ is given by the integral

Zℓ =

∫ ∞

−∞

ℓ∏

i=1

e−2u(θi)

2 cosh θi−θi+1

2

dθi
2π

(3.6)

with the periodicity condition

θℓ+1 = θ1 . (3.7)

We now introduce the iterated integral

Rℓ(θ) = e−2u(θ)

∫ ∞

−∞

e−2u(θ1)−···−2u(θℓ)

cosh θ−θ1
2 cosh θ1−θ2

2 · · · cosh θℓ−θ
2

dθ1 · · · dθℓ , ℓ ≥ 1 , (3.8)

and

R0(θ) = e−2u(θ). (3.9)

Notice that ∫ ∞

−∞
dθ Rℓ(θ) = (4π)ℓ+1Zℓ+1 (3.10)

and the generating series

R(θ|z) =
∑

ℓ≥0

(
− z

4π

)ℓ
Rℓ(θ) (3.11)

– 8 –
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satisfies ∫ ∞

−∞

dθ

4π
R(θ|z) =

∑

ℓ≥0

(−z)ℓZℓ+1 =
∂J

∂z
. (3.12)

It was conjectured in [16] and proved in [24] that the function R(θ|z) can be obtained

by using TBA-like equations which first appeared in the context of two-dimensional N = 2

theories [14, 15]. We first define

R+(θ|z) =
1

2

(
R(θ|z) +R(θ| − z)

)
,

R−(θ|z) =
1

2

(
R(θ|z)−R(θ| − z)

)
.

(3.13)

Let us now consider the TBA system

2u(θ) = ǫ(θ) +

∫ ∞

−∞

dθ′

2π

log
(
1 + η2(θ′)

)

cosh(θ − θ′)
,

η(θ) = −z
∫ ∞

−∞

dθ′

2π

e−ǫ(θ′)

cosh(θ − θ′)
.

(3.14)

Then, one has that
R+(θ|z) = e−ǫ(θ),

R−(θ|z) = R+(θ|z)
∫ ∞

−∞

dθ′

π

arctan η(θ′)

cosh2(θ − θ′)
.

(3.15)

This conjecture has been proved in [24] for general u(θ). In general, the system (3.14) has

to be solved numerically, although an exact solution exists for u(θ) = eθ in terms of Airy

functions [25].

3.2 From the ABJM Fermi gas to TBA

Let us now find the relation between the Fermi gas approach to ABJM theory and the

TBA system considered above (see also [17, 18]). We start from the expression (2.8) for

the partition function. We can now regard the density matrix as an integral kernel with

the structure of (3.1). The Fredholm determinant of this kernel is nothing but the grand

partition function of the Fermi gas. We can then use the results of [16, 24] to write a

TBA-like equation determining its grand potential. Let us consider the quantities

ρℓ+1(x, x) = 〈x|ρℓ+1|x〉 = e−2υ(x)

2πk

∫ ∞

−∞

dx1 · · · dxℓ
(2πk)ℓ

e−2υ(x1) · · · e−2υ(xℓ)

2 cosh
(
x−x1
2k

)
· · · 2 cosh

(
xℓ−x
2k

) (3.16)

where

υ(x) =
1

2
log

(
2 cosh

x

2

)
. (3.17)

If we now change variables

xi = kθi (3.18)

and compare with (3.8), we find

ρℓ+1(x, x) =
1

(4π)ℓ+1k
Rℓ(x) (3.19)

– 9 –
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where we have denoted

Rℓ(x) ≡ Rℓ

(
θ =

x

k

)
. (3.20)

The function Rℓ(θ) is calculated with the TBA system (3.14) and the potential

u(θ) =
1

2
log

(
2 cosh

kθ

2

)
(3.21)

which depends explicitly on k. The grand potential is given by

∂J

∂z
=

1

4πk

∫ ∞

−∞
dxR(x|z) . (3.22)

Notice that the function R(x|z) can be written as

R(x|z) = 4πk

z

〈
x

∣∣∣∣
1

eĤ−µ + 1

∣∣∣∣x
〉
. (3.23)

The quantity appearing in (3.23) is essentially the full quantum-corrected version of the

Fermi momentum pF (x) of the Fermi gas. Indeed, (3.23) can be computed by using the

Wigner map, which associates to any quantum operator O a function OW(x, p) in phase

space (see [8] for details):

R(x|z) = 1

πz

∫ ∞

−∞
dp

(
1

eĤ−µ + 1

)

W

=
2

πz
pF (x) . (3.24)

There is an important property of the TBA system of [16] which is worth discussing in

some detail. Notice that the functions ǫ(θ), η(θ) make it possible to calculate both R(x|z)
and R(x| − z). The last quantity is given by

R(x| − z) =
4πk

z

〈
x

∣∣∣∣
1

eĤ−µ − 1

∣∣∣∣x
〉
, (3.25)

and it corresponds to the same one-particle Hamiltonian (2.10) but with Bose-Einstein

statistics. If we now take into account the expression (3.3), we deduce that for Bose-

Einstein statistics there is a physical singularity at

z = λ−1
0 > 0 (3.26)

where λ0 is the largest eigenvalue of the non-negative Hilbert-Schmidt operator ρ(x1, x2).

This singularity corresponds of course to the onset of Bose-Einstein condensation in the

gas, and as a consequence the functions R±(x|z) will have singularities in the x-plane

for z ≥ λ−1
0 . But this is precisely the regime in which we are interested, since large N

corresponds to µ≫ 1. Of course, the singularity at large positive z cancels once one adds

up R+ and R−.

The appearance of this Bose-Einstein condensate has prevented the direct study of

the large N limit of ABJM theory with the TBA equations (3.14), even numerically: the

standard iteration of the integral equations does not converge when z is large enough. In

the papers [17, 18] they study in fact the small z regime of (3.14) at finite k in order to

extract the small z expansion of the grand partition function and therefore the canonical

partition functions Z(N, k) for small N . The large N limit is then extracted from these

small N results by numerical extrapolation [13, 18]. We will now propose another approach

to study the TBA equations.
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4 The semiclassical TBA system

4.1 General aspects

As we showed in the last section, the TBA system is equivalent to the Fermi gas picture.

In particular, after setting θ = x/k, the function R(x|z) is the Fermi momentum of the

gas. As shown in [8], one can do a systematic computation of all quantities in the Fermi

gas in a WKB expansion, i.e. in a perturbative expansion in k. This suggests studying the

TBA equation in a scaling regime where k is small and one can construct a perturbative

expansion around k = 0. To do this, we set θ = x/k and write (3.14) as

U(x) = ǫ(x) +

∫ ∞

−∞

dx′

2πk

log
(
1 + η2(x′)

)

cosh
(
x−x′

k

) ,

η(x) = −z
∫ ∞

−∞

dx′

2πk

e−ǫ(x′)

cosh
(
x−x′

k

)
(4.1)

where

U(x) = 2u

(
θ =

x

k

)
. (4.2)

The second equation in (3.13) becomes

R−(x|z) = R+(x|z)
∫ ∞

−∞

dx′

πk

arctan η(x′)

cosh2
(
x−x′

k

) . (4.3)

In the case of ABJM theory, where the potential is given by (3.21), we have

U(x) = log

(
2 cosh

x

2

)
(4.4)

and it is independent of k. Notice that in [16, 24] one considers a general potential u(θ),

with no k parameter to start with, but we can study a one-parameter deformation of the

problem by considering a potential u(kθ), in such a way that U(x) in (4.2) is independent

of k. The original problem is then obtained when k = 1.

The advantage of the k-dependent equations (4.1), (4.3) is that they admit a system-

atic, perturbative expansion around k = 0, where they can be solved algebraically. This

can be seen from the fact that, when k → 0, the kernel becomes a δ-function:

lim
k→0

1

2πk cosh
(
x
k

) =
1

2
δ(x) , (4.5)

and the integral equations become algebraic equations. The most convenient form of the

TBA system for the small k expansion involves finite difference equations, and it was

already considered (for k = 1) in [16] and specially in [24]. In more complicated models,

the system of TBA integral equations, when written in terms of difference equations, is

usually called the functional Y system. This form of the TBA system can be easily obtained

by Fourier transform. If we denote

F [f(x); p] = f̂(p) =
1√
2π

∫ ∞

−∞
dxf(x)eipx, (4.6)
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we obtain, from the first equation in (4.1),

2 cosh

(
πkp

2

)(
Û(p)− ǫ̂(p)

)
= F

[
log

(
1 + η2(x)

)
; p
]
. (4.7)

The first factor in the l.h.s. of (4.7) is the displacement operator

e
ikπ
2

d
dx + e−

ikπ
2

d
dx . (4.8)

Doing the same thing in the second equation of (4.1) we find that the two integral equations

are equivalent (provided some mild analyticity conditions are satisfied, see [24]) to the two

difference equations,

ǫ

(
x+

πik

2

)
+ ǫ

(
x− πik

2

)
= U

(
x+

πik

2

)
+U

(
x− πik

2

)
− log

(
1 + η2(x)

)
,

η

(
x+

πik

2

)
+ η

(
x− πik

2

)
= −ze−ǫ(x).

(4.9)

Equivalently, in terms of R+(x), we have

1 + η2(x) = R+

(
x+

πik

2

)
R+

(
x− πik

2

)
exp

{
U

(
x+

πik

2

)
+U

(
x− πik

2

)}
,

−zR+(x) = η

(
x+

πik

2

)
+ η

(
x− πik

2

)
.

(4.10)

The equation (4.3) giving R− reads now,

R−
(
x+ πik

2

)

R+

(
x+ πik

2

) − R−
(
x− πik

2

)

R+

(
x− πik

2

) = 2ik
η′(x)

1 + η2(x)
. (4.11)

When k = 1, these equations have been written down in [24].

The TBA equations, in the form (4.10), (4.11), can be solved systematically in an

expansion around k = 0. Let us denote

r(x) = R+(x) , t(x) =
R−(x)

R+(x)
. (4.12)

We introduce the ansatz

r(x) =

∞∑

n=0

rn(x)k
2n,

η(x) =
∞∑

n=0

ηn(x)k
2n,

t(x) =

∞∑

n=0

tn(x)k
2n.

(4.13)

We then make a Taylor expansion in k of the displaced functions in (4.10), and we solve

order by order in k for rn, ηn. Once η is known, t(x) can be obtained from

t(x) =
2

π

ζ

sin ζ
tan−1(η) , ζ =

kπ

2
∂ . (4.14)
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The solution for these functions at leading order in the k expansion is immediate,

r0 =
2

z

ξ√
1− ξ2

,

η0 = − ξ√
1− ξ2

,

t0 = − 2

π
sin−1(ξ) ,

(4.15)

where we have introduced the variable

ξ =
z

2
e−U(x). (4.16)

It is easy to see that, at each order in k2n, we obtain from (4.10) two linear equations for

rn and ηn, which are solved in terms of derivatives of lower rn′ , ηn′ with n′ < n and of the

potential U(x). The procedure can be easily automatized in a computer code to obtain the

functions rn, ηn to any desired order.

It is now straightforward to write down a power series expansion for R−(x), R(x). If

we denote the coefficient of k2n in this expansion as R−,n(x), Rn(x), we find

R−,n(x) = rn(x)t0(x) +Bn(x) ,

Rn(x) = rn(x)
(
1 + t0(x)

)
+Bn(x) ,

(4.17)

where

Bn(ξ) =

n−1∑

m=0

rm(ξ)tn−m(ξ) . (4.18)

At leading order we find, for example,

R0 = r0(1 + t0) =
4

πz

ξ√
1− ξ2

arccos(ξ) . (4.19)

Notice that both r0(x) and η0(x) have a branch cut, as functions of ξ, along [1,∞). How-

ever, R0(ξ) is holomorphic on the half-plane Re(ξ) > −1, as it can be easily seen from the

representation

R0(ξ) =
4

πz

ξ√
ξ2 − 1

log
(
ξ +

√
ξ2 − 1

)
. (4.20)

This is the semiclassical manifestation of the phenomenon we pointed out at the end of the

previous section: the functions η, R+ have a branch cut for

z > 2 exp
(
minU(x)

)
, (4.21)

due to the appearance of a Bose-Einstein condensate. However, this branch cut cancels in

the function R0, since this function corresponds to Fermi statistics and there is no possible

source of singularities for positive z in that case.

We can test the result for R0 with a semiclassical calculation of (3.24) in the Fermi

gas. At leading order in the WKB expansion, we have
(

1

eĤ−µ + 1

)

W

≈ 1

eH(x,p)−µ + 1
, (4.22)
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where

H(x, p) = log

(
2 cosh

p

2

)
+U(x) , (4.23)

and

R0 =
1

πz

∫ ∞

−∞
dp

1

ξ−1 cosh
(p
2

)
+ 1

, (4.24)

which indeed can be explicitly computed and it agrees with (4.19)

4.2 Semiclassical TBA for ABJM theory

So far, we have considered the semiclassical TBA equations for a general potential U(x).

In the case of ABJM theory, we have

exp

{
U

(
x+

πik

2

)
+U

(
x− πik

2

)}
=

z2

4ξ2
− 4 sin2

(
kπ

4

)
(4.25)

and it is useful to express everything in terms of ξ. It is then straightforward to study the

semiclassical TBA system at higher order. For example, at next-to-leading order we find

the equations

2η0η1 =
z2

4ξ2

[
π2

4

(
(r′0)

2 − r0r
′′
0

)
+ 2r0r1

]
− π2r20

4
,

−zr1 = 2η1 −
π2

4
η′′0

(4.26)

with the solution

r1(ξ) =
π2ξ3

(
z2(2ξ2 + 3)− 80ξ2

)

16z3(1− ξ2)7/2
,

η1(ξ) = −π
2ξ
(
z2(4ξ2 + 1) + 16ξ2(ξ4 − 4ξ2 − 2)

)

32z2(1− ξ2)7/2
.

(4.27)

It is easy to see from the recursion that the functions

(1− ξ2)3n+1/2rn(ξ) , (1− ξ2)3n+1/2ηn(ξ) , (1− ξ2)3n−1/2tn(ξ) (4.28)

are polynomials in ξ. Moreover, we have found that the explicit solution for Rn(ξ) has no

singularity at ξ = 1 and it is holomorphic in the half-plane Re(ξ) > −1, as expected from

general principles. This involves a non-trivial cancellation of poles at ξ = 1 in the sum of

terms (4.17) giving Rn(ξ), and it can be regarded as a check of the procedure.

Although we have not studied in detail the structure of the functions rn(ξ), ηn(ξ), some

patterns can be easily observed. As we will see in a moment, it is useful to use, instead of

the variable ξ, the variable u, defined by

u =
4ξ

z
. (4.29)

The dominant terms in rn, ηn for z → ∞ and u fixed seem to have the general structure

rn(u, z) ∼
z6n−2u6n−1

(
1− z2u2

16

)3n+ 1
2

π2n

(2n)!214n−2
,

ηn(u, z) ∼ − z6n−1u6n+1

(
1− z2u2

16

)3n+ 1
2

π2n

(2n)!214n
.

(4.30)
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This has been guessed by looking at the first orders in the explicit solution, but we have not

found an analytic proof. As we will see in the next section, however, the above structure

for rn implies the conjecture for the form of the one-membrane function a1(k) conjectured

in [13].

4.3 The grand potential

Our ultimate goal is to compute the WKB expansion of JM2(µ, k), therefore we have to

compute the grand potential. This follows from (3.22). We will denote

Jz ≡
∂J

∂z
. (4.31)

It is convenient to split this quantity w.r.t. the parity of z,

∂J

∂z
= J+

z + J−
z , (4.32)

where

J±
z =

1

4πk

∫ ∞

−∞
dxR±(x) . (4.33)

After changing variables from x to

u =
4ξ

z
= sech

(
x

2

)
, (4.34)

as defined in (4.29), we find

kJ±
z =

1

π

∫ 1

0

du

u

1√
1− u2

R±(zu/4) . (4.35)

The WKB expansion of R±(x) leads to the WKB expansion of the grand potential consid-

ered in [8],

Jz(µ, k) =
∑

n≥0

Jz,n(µ)k
2n−1. (4.36)

The integrals appearing in the calculation of Jz,n can be evaluated in terms of generalized

hypergeometric functions. For J+
z,n, the answer involves the functions 2F1, while for J−

z,n

we also find the functions 3F2. The result can then be expanded at large z, and from this

expansion, together with (2.20), one reads the small k expansion of aℓ(k), bℓ(k) and cℓ(k),

for any ℓ. In the appendix we collect some useful results on hypergeometric integration

which are needed in these calculations, as well as the resulting small k expansion of these

coefficients for ℓ = 1, 2, 3.

As a simple example of this procedure, let us calculate the leading order correction to

the grand potential, Jz,0. We have

J+
z,0 =

1

π

∫ 1

0

du√
1− u2

√
1− z2u2/16

=
1

2π
K

(
z2

16

)
, (4.37)
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and

J−
z,0 =

1

π2

∫ 1

0
du sin−1

(
uz

4

)
1√

1− u2
√
1− z2u2/16

= − z

4π2
3F2

(
1, 1, 1;

3

2
,
3

2
;
z2

16

)
,

(4.38)

where we used (A.5) and (A.8). The above results for J±
z,0 agree with the calculation in [8].

We have also checked that the results for Jz,1 and Jz,2 agree with the results in [8].

It is interesting to notice that, in order to read off the coefficients aℓ(k), bℓ(k), it is

enough to calculate J+
z : by using the structural result (2.20) and assuming that the branch

cut of the log is along the positive real axis, we find that

JM2,+
z =

∑

ℓ≥1

[
(2πi log z − π2)ℓaℓ(k) + πi

(
ℓbℓ(k)− aℓ(k)

)]
z−2ℓ−1. (4.39)

It is easy to verify that the leading order term in the expansion of (4.39) at large z comes

from integrating the leading term of rn(u, z) in (4.30). By using (A.3) we find

∫ 1

0

du√
1−u2

u6n−2

(
1− z2u2

16

)3n+ 1
2

=
1

2

Γ(3n−1/2)Γ(1/2)

Γ(3n)
2F1

(
3n− 1

2
, 3n+

1

2
, 3n;

z2

16

)
. (4.40)

At large z we have the logarithmic behavior,

2F1

(
3n− 1

2
, 3n+

1

2
, 3n;

z2

16

)
= i(−1)n212n+2 Γ(3n)

Γ(−1/2)Γ(3n− 1/2)
z−6n−1 log(−z2) + · · ·

(4.41)

If we put everything together and we compare the result with (4.39), we find that the

ansatz (4.30) leads to the following perturbative expansion for the coefficient a1(k):

a1(k) = − 4

π2k

∑

n≥0

(−1)n

(2n)!

(
πk

2

)2n
= − 4

π2k
cos

(
πk

2

)
. (4.42)

This is precisely the result conjectured in [13] for this coefficient.

5 Predictions for membrane instantons

5.1 The HMO cancellation mechanism

The Gopakumar-Vafa representation (2.23) of JWS(µ, k) shows that it has double poles at

all integer values of k. Since the original matrix integral is not singular for any value of k,

there must be some way of canceling these divergences. The proposal of HMO in [13] is

that, in the total non-perturbative grand potential, and order by order in e−µ, there should

be no divergences. This means that, in the sum (2.25) over all bound states (ℓ,m) which

contribute to a given order in e−µ, singularities must cancel. This is the HMO cancellation

mechanism.

In general, since the contribution of generic bound states is not known, it is difficult

to verify this cancellation mechanism in detail. However, some non-trivial information can

be obtained by looking at low orders in the expansion. The case studied in detail in [13] is
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the case of one-membrane instanton, i.e. of contributions to the grand potential which go

like e−2µ. Let us assume that k is an even, positive integer. Then, the only contributions

to the term of order e−2µ come from

(ℓ,m) = (1, 0) and (ℓ,m) = (0, k/2) , (5.1)

i.e. they involve only worldsheet instantons and membrane instantons. In this case, the

HMO cancellation mechanism can be studied in detail. The worldsheet instanton poles at

k = 2m are of the form

dm(k)e−4mµ/k= (−1)m−1

[
4m

π2(k−2m)2
+

4(µ+1)

π2(k−2m)
+

2µ2+2µ+1

mπ2
+ w(m)

]
e−2µ + · · ·

(5.2)

where w(m) can be calculated from the Gopakumar-Vafa invariants of local P1 × P
1. Ac-

cording to the HMO mechanism, the poles have to be cancelled by similar poles in the

membrane instanton contribution. Using these constraints, as well as the first three terms

of the WKB expansion calculated in [8], HMO were able to propose an ansatz for the values

of the coefficients a1(k), b1(k), c1(k) appearing in (2.20),

a1(k) = − 4

π2k
cos

(
πk

2

)
,

b1(k) =
2

π
cos2

(
πk

2

)
csc

(
πk

2

)
,

c1(k) =

[
− 2

3k
+

5k

12
+
k

2
csc2

(
πk

2

)
+

1

π
cot

(
πk

2

)]
cos

(
πk

2

)
.

(5.3)

One can check that these expressions have the right singularity structure to cancel the

divergences in (5.2): near k = 2m, one has

b1(k) = − 4(−1)m−1

π2(k − 2m)
+O(k − 2m) ,

c1(k) = (−1)m−1

[
− 4m

π2(k − 2m)2
− 4

π2(k − 2m)
+

1

3m
− 2m

3

]
+O(k − 2m) .

(5.4)

Once the membrane instanton and the worldsheet instanton contributions are added for

even integer k = 2m, the poles cancel and we find a finite contribution

(−1)m−1

[
4µ2 + 2µ+ 1

mπ2
+ w(m) +

1

3m
− 2m

3

]
e−2µ. (5.5)

This result reproduces a numerical calculation of the terms of order e−2µ in J(µ, k) for

k = 2, 4, 6, and confirms the ansatz (5.3).

The conjecture (5.3) shows that there is a simple, hidden structure in the contribution

of membrane instantons to the grand potential. Thanks to our semiclassical TBA expan-

sion, we can now compute the series expansion of these coefficients to higher order in k, as

listed in the appendix. Our results confirm the expressions in (5.3). In the case of a1(k),

as we showed in the last section, this follows from the ansatz (4.30).
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5.2 The second membrane instanton

In order to provide further tests of the HMO cancellation mechanism with the current

techniques, we have to look at exponentially small terms which only receive contributions

from states of the form (ℓ, 0) and of the form (0,m). As we saw in the previous section,

following [13], this is what happens for the terms ∼ e−2µ when k is even. Similarly, when

k is odd, the exponentially small term e−4µ has contributions only from the states

(ℓ,m) = (2, 0) and (ℓ,m) = (0, k) , (5.6)

and it involves the two-membrane instanton. This case was only partially analyzed in [13].

They noted that the contribution of the worldsheet instanton for k = m odd is singular,

and it has the behavior

dm(k)e−4mµ/k =

[
m

4π2(k −m)2
+

2µ+ 1

2π2(k −m)
+

2µ2 + µ+ 1/4

mπ2
+ v(m)

]
e−4µ + · · · (5.7)

The v(m) can be calculated from the Gopakumar-Vafa invariants and they are given, for

m = 1, 3, by

v(1) =
1

3
, v(3) =

37

9
. (5.8)

The poles appearing in (5.7) were also conjectured in [13] to be cancelled by similar poles

in the membrane instanton contribution. Using this cancellation mechanism, as well as our

data for the WKB expansion, we propose the following exact expressions for the coefficients

of the second membrane instanton:

a2(k) = − 1

π2k

(
8 + 10 cos(πk)

)
,

b2(k) =
4

π2k

(
1 + cos(πk)

)
+

1

2π
csc(πk)

(
17 + 24 cos(πk) + 9 cos(2πk)

)
,

c2(k) = − 4

3k
− 5 cos(πk)

3k
+ k

(
49

24
cos(πk)− 7

6

)
+

cot(πk)

π
+ 5k csc2(πk)

+ cos(πk)

(
5 cot(πk)

4π
+

21

4
k csc2(πk)

)
.

(5.9)

It is easy to check that the above expressions reproduce the WKB expansions presented in

the appendix. They also cancel the poles in (5.7). Indeed, one finds that, near k = m odd,

b2(k) = − 1

π2(k −m)
+O(k −m) ,

c2(k) = − m

4π2(k −m)2
− 1

2π2(k −m)
+

1

3m
− 2m

3
+O(k −m) .

(5.10)

The finite piece, after adding both contributions, is
[
4µ2 + µ+ 1/4

mπ2
+ v(m) +

1

3m
− 2m

3

]
e−4µ. (5.11)

For m = 1, 3 we find
[
4µ2 + µ+ 1/4

π2

]
e−4µ and

[
4µ2 + µ+ 1/4

3π2
+

20

9

]
e−4µ, (5.12)
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respectively, which correctly reproduce the terms of order e−4µ in the expression for J(µ, k)

with k = 1, 3 presented in [13]. Notice that, although the coefficient c2(k) is very different

from the coefficient c1(k), their finite parts near the relevant poles have the same form.

5.3 Higher membrane instantons

The HMO cancellation mechanism can be studied in detail for one-membrane instantons

and two-membrane instantons. The contribution of higher membrane instantons mixes

with the contribution of generic bound states and it is difficult to extract information

about the former without a more detailed knowledge of the latter. In particular, we don’t

have enough information about the singularity structure of the membrane coefficients as a

function of k, and so far the only available information is contained in the WKB expansions.

In the case of the aℓ(k) coefficients, however, it is easy to fit these WKB expansions

to a sum of trigonometric functions. We find that, for odd (even) instanton number, the

aℓ(k) are given by a sum of cosines whose argument is an odd (respectively, even) integer

times πk/2. Their explicit expressions, up to instanton number ℓ = 5, are

a3(k) = − 1

π2k

(
88 cos

(
πk

2

)
+

124

3
cos

(
3πk

2

)
+ 4 cos

(
5πk

2

))
,

a4(k) = − 1

π2k

(
364 + 560 cos(πk) + 245 cos(2πk) + 48 cos(3πk) + 8 cos(4πk)

)
,

a5(k) = − 1

π2k

(
6080 cos

(
πk

2

)
+ 4100 cos

(
3πk

2

)
+

9104

5
cos

(
5πk

2

)
+ 536 cos

(
7πk

2

)

+ 136 cos

(
9πk

2

)
+ 24 cos

(
11πk

2

)
+ 4 cos

(
13πk

2

))
.

(5.13)

Finding a natural expression which fits our data for the expansion of the bℓ(k), cℓ(k) with

ℓ ≥ 3 is more challenging, and further information (including more data points in the WKB

expansion) is probably needed.

6 Conclusions and open problems

In this paper we have developed a semiclassical approach to the TBA equations of [16].

When applied to ABJM theory, this reproduces in a more efficient way the WKB approach

developed in [8]. Our results confirm the conjecture made in [13] for the one-instanton

contribution. We have also proposed analytic expressions at finite k for the membrane

instantons at order two, which are in perfect accord with the HMO cancellation mechanism.

In addition, we have obtained some conjectural results at higher instanton number for the

coefficients aℓ(k).

It is obvious from the results in this paper and its predecessors that there is a new

and rich story concerning non-perturbative corrections in the M-theory dual to ABJM

theory. Corrections to the partition function coming from intrinsic M-theory objects can

be now computed in detail, and sometimes we can even guess their exact expression for

arbitrary k. Moreover, the HMO cancellation mechanism shows very clearly that the genus

expansion of type IIA string theory, although it can be resummed with a Gopakumar-Vafa
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representation, is essentially incomplete at strong coupling: only when the contribution of

membrane instantons is taken into account do we find a finite answer for integer values of

k (precisely the values for which we believe that the theory is defined non-perturbatively).

On the other hand, it is fair to say that we are only in a preliminary exploratory

period of all these non-perturbative phenomena. Although the ABJM matrix integral

and the TBA system contain detailed information about these instanton effects, it is not

obvious how to extract it. The techniques proposed in [13, 17, 18] work for finite k, but

they are based on a small z expansion which corresponds to small N . In this paper we

have proposed a WKB expansion which is only valid for small k, but provides analytic

large N results. Clearly, both approaches are insufficient, and they should be combined:

what we need is the large µ expansion of the grand potential at finite k. This will very

likely require a clever analysis of the TBA system which circumvents the problem with the

Bose-Einstein condensate singularity pointed out in section 3.

A method leading to results at large N and finite k would also determine the functions

fℓ,m(µ, k) appearing in (2.25) for general bound states (maybe order by order in e−µ).

In fact, it seems to us that the most important open problem is finding an approach to

calculate the contribution of bound states, about which nothing is known. Even a WKB

approach to the problem would be useful. It was suggested in [8] that worldsheet instantons

appear as quantum-mechanical instantons in the Fermi gas, and bound states might then

appear as exponentially small corrections in µ to a general quantum-mechanical instanton

amplitude. This approach might give a first handle on this problem. Another possibility

is to look for trans-series solutions of the difference equations (4.1), similar to what was

done in [27] for the difference equations arising in matrix models.

In addition to these general issues, there are a multitude of more concrete questions that

come to our mind when we look at the conjectural expressions for the membrane instantons.

Their contribution involves trigonometric functions whose coefficients are rational numbers

and, very often, integer numbers. Is there some sort of Gopakumar-Vafa formula for them?

Is there some duality between membrane instantons and worldsheet instantons? Can we

compute some of these membrane instanton corrections directly in M-theory, by adapting

for example the framework of [26]?

Finally, it was pointed out in [8, 28] that any non-perturbative result in the context

of the Fermi gas of ABJM theory can be interpreted as a non-perturbative result for

topological strings in local P1×P
1. In particular, the grand potential studied in this paper

can be interpreted as the topological string free energy at large radius, and the membrane

instantons computed here lead to corrections to this free energy of order O(e−1/gs). Is

there an interpretation for these effects directly in topological string theory? Are there

“topological” membranes which lead to this sort of effect?

As Bertolt Brecht would put it, “so many stories, so many questions”.
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A Hypergeometric integrals

In the calculation of the grand potential one finds two types of integrals. For J+
z , we have

integrals of the form ∫ 1

0

du√
1− u2

um

(
1− z2u2

16

)3s+ 1
2

. (A.1)

After the change of variable

u2 = t , z2/16 = Z (A.2)

they can be written as

1

2

∫ 1

0
dt (1−t)−1/2t

m−1
2 (1−Zt)−3s−1/2 =

Γ
(
m+1
2

)
Γ
(
1
2

)

2Γ
(
m
2 +1

) 2F1

(
3s+

1

2
,
m+1

2
; 1+

m

2
;Z

)
.

(A.3)

For J−
z , we have to do integrals of the form

∫ 1

0

du√
1− u2

um−1 sin−1
(
uz
4

)
(
1− z2u2

16

)3s+ 1
2

. (A.4)

Using that

1

x

sin−1(x)√
1− x2

= 2F1

(
1, 1,

3

2
;x2

)
(A.5)

we can write the above integral as

z

4

∫ 1

0

du√
1− u2

um
(
1− z2u2

16

)−3s

2F1

(
1, 1;

3

2
;
z2u2

16

)
. (A.6)

To calculate this integral, we need two ingredients. First of all, we use the identity 132 in

p. 436 of [30], with n = 1 (we correct a minor misprint in the statement of the identity):

(1− x)−3s
2F1

(
1, 1,

3

2
;x

)

=
(1)3s(
1
2

)
3s

[
2F1

(
1, 3s+ 1;

3

2
;x

)
− 1

6s

3s−1∑

k=0

(1/2− 3s)k
(1− 3s)k

(1− x)−k−1

]
.

(A.7)

After using this identiy, and the change of variables (A.2), the integral (A.6) can be reduced

to an integral of the form

∫ 1

0
dt tap+1−1(1− t)bq+1−ap+1−1

pFq(a1, · · · , ap; b1, · · · , bq;Zt)

=
Γ(ap+1)Γ(bq+1 − ap+1)

Γ(bq+1)
p+1Fq+1(a1, · · · , ap, ap+1; b1, · · · , bq, bq+1;Z)

(A.8)

with p = 2, q = 1, as well as to a sum of integrals of the form (A.1) with half-integer s.
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The asymptotic behavior as z ≫ 1 of the hypergeometric functions involved in these

expressions can be easily found by using for example the Barnes representation. For the

function 2F1, it is given by (see for example [29], eq. (9.7.7)):

2F1(α, α+ n; γ; z) =
Γ(γ)(−z)−α

Γ(γ − α)Γ(α+ n)

n−1∑

i=0

(n− i− 1)!(α)i(1− γ + α)i
i!

(−z)−i

+
Γ(γ)(−z)−α

Γ(γ − α− n)Γ(α)

∞∑

i=0

(α+ n)i(1− γ + α+ n)i
i!(n+ i)!

[
ψ(i+ 1) + ψ(n+ i+ 1)

− ψ(α+ n+ i)− ψ(γ − α− n− i) + log(−z)
]
z−i−n.

(A.9)

B WKB expansions

Here we list the WKB expansion of the membrane instanton coefficients aℓ(k), bℓ(k), cℓ(k)

for ℓ = 1, 2, 3.

k a1(k) = − 4

π2
+
k2

2
− π2k4

96
+

π4k6

11520
− π6k8

2580480
+

π8k10

928972800
− π10k12

490497638400

+
π12k14

357082280755200
− π14k16

342798989524992000
+O(k18) , (B.1)

k a2(k) = −18

π2
+ 5k2 − 5π2k4

12
+
π4k6

72
− π6k8

4032
+

π8k10

362880
− π10k12

47900160
+

π12k14

8717829120

− π14k16

2092278988800
+O(k18) , (B.2)

k a3(k) = −400

3π2
+ 70k2 − 371π2k4

24
+

1159π4k6

576
− 16373π6k8

92160
+

74113π8k10

6635520
− 62408051π10k12

122624409600

+
43949569π12k14

2550587719680
− 5465453813π14k16

12242821054464000
+O(k18) . (B.3)

k b1(k) =
4

π2
− 5k2

6
+

67π2k4

1440
− 19π4k6

48384
+

247π6k8

38707200
+

89π8k10

1226244096
+

1430857π10k12

669529276416000

+
1637π12k14

30607052636160
+

118522319π14k16

87413742328872960000
+O(k18) , (B.4)

k b2(k) =
33

π2
− 77k2

6
+

119π2k4

72
− 1199π4k6

15120
+

251π6k8

120960
− 607π8k10

119750400
+

311813π10k12

130767436800

+
56863π12k14

261534873600
+

4740503π14k16

213412456857600
+O(k18) , (B.5)

k b3(k) =
2560

9π2
− 188k2 +

4769π2k4

90
− 258689π4k6

30240
+

159091π6k8

172800
− 262188523π8k10

3832012800

+
160190711489π10k12

41845579776000
− 15646173899π12k14

133905855283200
+
14718859878607π14k16

1365839723888640000
+O(k18) . (B.6)

k c1(k) =

(
4

π2
− 2

3

)
+

1

12
(π2 − 1)k2 +

(
− 13π2

360
− π4

576

)
k4 +

(
55π4

96768
+

π6

69120

)
k6

+

(
− 671π6

38707200
− π8

15482880

)
k8 +

(
π10

5573836800
− 3659π8

12262440960

)
k10

+

(
− 713927π10

66952927641600
− π12

2942985830400

)
k12 +O(k14) , (B.7)
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k c2(k) =

(
25

2π2
− 3

)
+

(
7

24
+

5π2

6

)
k2 +

(
− 47π2

60
− 5π4

72

)
k4 +

(
641π4

8640
+

π6

432

)
k6

+

(
− 3443π6

1209600
− π8

24192

)
k8 +

(
29π8

4561920
+

π10

2177280

)
k10

+

(
− 26897π10

4572288000
− π12

287400960

)
k12 +O(k14) , (B.8)

k c3(k) =

(
1642

27π2
− 200

9

)
+

(
437

36
+

35π2

3

)
k2 +

(
− 10987π2

576
− 371π4

144

)
k4

+

(
182071π4

32256
+

1159π6

3456

)
k6 +

(
− 3294323π6

3686400
− 16373π8

552960

)
k8

+

(
769550747π8

8758886400
+
74113π10

39813120

)
k10+

(
− 43661410369π10

7084965888000
− 62408051π12

735746457600

)
k12+O(k14) .

(B.9)
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2D polymers, Nucl. Phys. B 388 (1992) 609 [hep-th/9204094] [INSPIRE].
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