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Low temperature is one of the major abiotic stresses that restrict the growth and

development of maize seedlings. Membrane lipid metabolism and remodeling are key

strategies for plants to cope with temperature stresses. In this study, an integrated

lipidomic and transcriptomic analysis was performed to explore the metabolic changes

of membrane lipids in the roots of maize seedlings under cold stress (5◦C). The

results revealed that major extraplastidic phospholipids [phosphatidylcholine (PC),

phosphatidylethanolamine (PE), phosphatidic acid (PA), and phosphatidylinositol (PI)]

were dominant membrane lipids in maize root tissues, accounting for more than

70% of the total lipids. In the transcriptome data of maize roots under cold stress,

a total of 189 lipid-related differentially expressed genes (DEGs) were annotated and

classified into various lipid metabolism pathways, and most of the DEGs were enriched

in the “Eukaryotic phospholipid synthesis” (12%), “Fatty acid elongation” (12%), and

“Phospholipid signaling” (13%) pathways. Under low temperature stress, the molar

percentage of the most abundant phospholipid PC decreased around 10%. The

significantly up-regulated expression of genes encoding phospholipase [phospholipase

D (PLD)] and phosphatase PAP/LPP genes implied that PC turnover was triggered

by cold stress mainly via the PLD pathway. Consequently, as the central product of

PC turnover, the level of PA increased drastically (63.2%) compared with the control.

The gene-metabolite network and co-expression network were constructed with the

prominent lipid-related DEGs to illustrate the modular regulation of metabolic changes

of membrane lipids. This study will help to explicate membrane lipid remodeling and the

molecular regulation mechanism in field crops encountering low temperature stress.

Keywords: maize (Zea mays L.), lipid metabolism, lipidome, transcriptome, cold stress

Abbreviations: PC, phosphatidylcholine; PE, phosphatidylethanolamine; MGDG, monogalactosyldiacylglycerol; DGDG,
digalactosyldiacylglycerol; SQDG, sulfoquinovosyldiacylglycerol; PI, phosphatidylinositol; PE, phosphatidylethanolamine;
PS, phosphatidylserine; PA, phosphatidic acid; DAG, diacylglycerol; PLD, phospholipase D; PLC, phospholipase C.
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INTRODUCTION

Maize (Zea mays L.), originated from subtropical zones, is a
typical thermophilic crop that requires a relatively high growth
temperature, especially in the seedling and vegetative growth
stage (Rodríguez et al., 2014). In northeastern China (around
44◦ north latitude), low temperatures in early spring and sudden
temperature drops in late spring seriously affects the growth and
development of maize seedlings.

Understanding the response of plants to low temperature
stress at the molecular level is of great importance in developing
cold-resistance crops. The plant membrane is the first barrier
to cope with external environmental stimuli, which could be
attributed to its typical fluidity and certain protective properties
(Chinnusamy et al., 2007). When plants are exposed to low
temperatures, the fluidity of the plant cell membrane will
be improved, which will increase the tolerance of the plant
to low temperatures (Chinnusamy et al., 2007; Gao et al.,
2015). The alteration of membrane glycerolipids composition
and saturation has been considered as a major strategy for
plants to respond to temperature stress (Zheng et al., 2011;
Barrero-Sicilia et al., 2017). Low temperature stress increased
the unsaturation of fatty acids, which increased the fluidity
of the plant membrane, reduced the tendency of non-bilayer
phase formation, and enhanced the integrity and function of
the plant membrane (Uemura and Steponkus, 1997; Hou et al.,
2016).

Glycerolipids are essential components of the plant
membrane that include extraplastidic phospholipids such
as phosphatidylcholine (PC), phosphatidylethanolamine
(PE), phosphatidic acid (PA), phosphatidylinositol
(PI), and phosphatidylserine (PS), and plastidic
lipids such as monogalactosyldiacylglycerol (MGDG),
digalactosylmonoacylglycerol (DGMG), phosphatidylglycerol
(PG), and sulfoquinovosyldiacylglycerol (SQDG). Among
the extraplastidic phospholipids, PC is the most abundant
lipid in eukaryotic cells, which accounts for 25–60% of
non-plastidic membrane lipids in plants (Ohlrogge and
Browse, 1995; Li-Beisson et al., 2010). In Arabidopsis, PC
was initially established by transferring P-choline from
CDP choline to sn-1,2-diacylglycerol (DAG) (Tasseva
et al., 2004). PA is the simplest glycerophospholipids in
structure, yet it is a very important phospholipid class.
Although the proportion of PA is not large, it is an
important signaling lipid, and is also known as the key
precursor for the synthesis of major glycerophospholipids
and glyceroglycolipids (Dubots et al., 2012). Glycerolipids
contain various molecular species, in which the length of acyl
chains and the number of acyl double bonds at sn-1 and sn-2
position are different, and lipid remodeling occurs at different
developmental stages or under non-optimal growth conditions
(Testerink and Munnik, 2011).

An increasing number of studies have shown that membrane
lipids’ metabolism plays important roles in the temperature stress
response of plants (Li et al., 2016; Narayanan et al., 2016; Gu
et al., 2017). Lipids’ remodeling and the enzymes involved in
related processes are particularly critical for plants to adapt

to cold environments (Li et al., 2016; Gu et al., 2017). The
phospholipase PLD (phospholipase D) was activated under low
temperature, which led to an increased accumulation of lipid
signaling molecules PA (Ruelland et al., 2002). The content
of PA can increase rapidly and maintain a high level only
for a few minutes after low temperature exposure (Peppino
Margutti et al., 2017). The resistance of Arabidopsis PLD
mutant to cold was decreased, which might be attributed to
the reduced PA content (Li et al., 2004). In Brassica napus,
the unsaturation of PC and MGDG increased gradually under
a low temperature (Tasseva et al., 2004). In Arabidopsis, the
percentage of PA (34:6) was elevated under a low temperature
(Zheng et al., 2016).

The expression of lipid-metabolism-related genes has been
suggested to be associated with low temperature response
in plants. In rice, over-expression of AtGPAT enhanced the
unsaturated fatty acid content of PG and increased cold tolerance
(Li et al., 2018). In Arabidopsis, the Atdgat1 mutants were found
to be more sensitive to chilling and freezing stresses compared
with wild-type plants (Tan et al., 2018). The expression of
AtDGK2 is induced in various tissues under low temperature
stress, which plays an important role in the cold signaling
process (Gómez-Merino et al., 2004). The knock-out of OsFAD8
further reduced membrane fluidity in rice under cold stress
(Tovuu et al., 2016).

In a previous report, the lipid metabolism in leaves of maize
seedlings under low temperature stress was elaborated by our
group, which showed that maize was an 18:3 plant and cold stress
exerted significant impacts on membrane lipids’ metabolism (Gu
et al., 2017). Since the knowledge of lipids’ metabolism in root
tissues is limited, the lipidomic and transcriptomic analysis of
maize roots under low temperature stress was conducted in
this study. This study will provide an overall understanding of
the lipid metabolism in maize seedlings in adaptation to low
temperature stress.

MATERIALS AND METHODS

Plant Growth, Treatments, and Sampling
The inbred line He344, a major maize variety planted in
Northeast China, was used as experimental material. Maize seeds
of the same size were selected and disinfected with 10% NaClO
for 30 min. After repeated washing with distilled water, the seeds
were put into a 25◦C incubator for dark germination. After
germination, maize seedlings were cultured with 1/2 Hoagland
nutrient solution (pH = 5.5) in a growth chamber. Hoagland
nutrient solution was used for precise temperature control and
sampling of root tissues. The temperature of the chamber was
set at 22◦C, with 16/8 h (light/dark) photoperiodic cycle. About
half of the 2-week-old maize seedlings were moved into a 5◦C
chamber, and the rest of the seedlings were kept in the 22◦C
growth chamber as control. Maize root samples were collected
3 days after cold treatment, and each sample had at least three
replicates. The collected samples were wrapped in silver paper
quickly, rapidly put into liquid nitrogen for freezing, and then
stored at −80◦C.
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RNA-seq Analysis and qRT-PCR
Validation
Total RNA was extracted from root tissues of 2-week-old maize
seedlings after 3 days under 5◦C treatment (samples from
22◦C growth chamber were used as control) using TRIzol
reagent (Invitrogen). The purity and concentration of RNA
samples were examined, and then the library was constructed.
After the database was qualified, it was sequenced by Illumina
platform. The RNA-seq data were mapped to the maize reference
genome B73 RefGen_v3.

Fragments Per Kilobase of exon model per Million mapped
reads (FPKM) of each gene were measured from the length of
the gene and reads count mapped to the genes. The counting
of the read numbers mapped to each gene was performed by
HTSeq v0.6.1. The screening of DEGs (differentially expressed
genes) was performed using the Bioconductor package “edgeR”
in R among the treatment samples. DEG parameters were set
at false discovery rate (FDR) < 0.01 and | Log2 fold-change|
≥ 1. The KOBAS (v2.0.12) software was used to test the
statistical enrichment of the DEGs in the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathways, and a modified
P-value (q-value) ≤ 0.05 was the criteria for significantly
enriched KEGG pathways.

In order to further validate the reliability of the RNA-seq
results, qRT-PCR analysis was implemented. The cDNA was
compounded using the ReverTra Ace qPCR RT Master Mix
(TOYOBO, Osaka, Japan). Real-time quantitative RT-PCR was
accomplished in 96-well plates with a SYBR Select Master
Mix RT-PCR system. ZmACTIN and ZmGAPDH were used
as internal control, and the qRT-PCR primers are listed in
Supplementary Table 1. The results of qRT-PCR were reckoned
by 2−1 1 ct method, and the data from the maize samples grown
in 22◦C were used as the calibrators (Czechowski et al., 2005;
Zhang et al., 2014).

Membrane Lipid Extraction and Analysis

The method was modified according to a previous report
(Narayanan et al., 2016). A total of 3 ml isopropanol (0.01%BHT)
was added to a 50 ml glass tube and the glass tube was placed
in the nitrogen blowing instrument and preheated to 75◦C.
About 200 mg maize root samples were rapidly added to the
preheated glass tube and kept at 75◦C for 15 min. Distilled
water (0.6 ml) and chloroform (1.5 ml) were added to the tube,
vortexed, and shaken for 1 h in a shaking table, and then the
extract was transferred to a new glass tube. Next, 4ml chloroform:
methanol (2:1) mixture was added to the glass tube, vortexed,
and shaken for 30 min on a shaking table. The extraction
procedure was repeated 3–4 times, and then the mixed liquids
were compounded and washed with KCl (1 ml). The upper
liquid was discarded, and the remaining liquid was blown to full
evaporation with a nitrogen blowing instrument, and then stored
at −20◦C. Lipids were analyzed by Electrospray Ionization-Mass
Spectrometry (ESI-MS/MS), which was accomplished at Kansas
Lipidomics Research Center (KLRC, United States).

The precursor (Prec) and neutral loss (NL) scans were applied
to obtain polar lipid profiles. The samples were introduced

into the electrospray ionization source for further generation
of lipid molecular ions, including PC, lysoPC, PE, and lysoPE
positive [M + H]+ ions, MGDG, DGDG, PG, PI, PA, and
PS positive (M+NH4)+ ions, and lysoPG negative (M−H)]−

ions. A series of peak values of lipid content were detected by
electrospray ionization. The peaks on the spectra were quantified
in comparison to a group of internal standards. The data for each
lipid molecular species were normalized and displayed as mol%
of the total lipids analyzed.

Co-expression Analysis of Lipid Related
DEGs
Pearson correlation coefficient was calculated according to
the expression data of DEGs (differentially expressed genes,
| Log2FC| ≥ 1). After removing the self-pairing and duplication,
the relevant cut-off value of 0.9 was applied, and the co-
expression network was constructed with the reserved gene pairs.
The constructing and visualizing of the co-expression network
was carried out with the Cytoscape software.

Statistical Analysis
All statistical analyses were conducted with SPSS statistics 19.0
(SPSS Inc.), and significance levels of the data were calculated
by Student’s t-test method. ∗P < 0.05 and ∗∗P < 0.01 represent
different significance levels.

RESULTS

Changes of Membrane Lipids in Maize
Roots Under Cold Stress
To explore the changes of membrane lipid species in the roots
of maize seedlings under low temperature conditions, polar
lipids extracted from maize roots samples under 5◦C (and 22◦C
control) were analyzed by lipidomic approach. A total of 12
different types of lipids were detected, including six phospholipid
classes (PC, PE, PA, PI, PS, and PG), three classes of lyso-
phospholipids (LPC, LPE, and LPG), two galactolipids (MDGD
and DGDG), and one sulfolipid (SQDG).

As shown in Figure 1, phospholipids are the main membrane
lipids in maize root tissues, accounting for more than 70%
of the total lipids. Among all phospholipids, PC is the most
abundant lipid, accounting for around 40% of the total lipids,
while the remaining phospholipids account for about 30%.
Under low temperature (5◦C) stress, the molar percentage of PC
decreased around 10% (9.5%) compared with the control (22◦C).
A significantly enhanced accumulation of PA was observed
under cold treatment, with a 63.3% increase compared with the
control. The molar percentage of PE was found increased by
14.5%, whereas the proportion of PI and PS were not altered
significantly. The level of the exclusive plastidic phospholipid
PG was also increased, which was 17.1% higher than the
control. The galactolipids MGDG and DGDG each accounted
for about 6% of the total polar lipids, while the sulfolipid SQDG
content was extremely low. Under low temperature stress, the
content of MGDG decreased significantly, while DGDG and
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FIGURE 1 | Changes of glycerolipids species in maize roots under cold stress (5◦C). PC, phosphatidylcholine; PE, phosphatidylethanolamine; PA, phosphatidic acid;

PI, phosphatidylinositol; PS, phosphatidylserine; PG, phosphatidylglycerol; MGDG, monogalactosyldiacylglycerol; DGDG, digalactosyldiacylglycerol; SQDG,

sulfoquinovosyldiacylglycerol; LPC, Lyso-PC; LPA, Lyso-PA; LPG, Lyso-PG. Values (mol%) are means 5 ± standard deviation (SD) (n = 5). “*” indicated that the value

was significantly different from the control (P < 0.05).

SQDG increased slightly. Under low temperature stress, the
level of lyso-phospholipids altered to varying degrees, and the
content of LPG increased more than 1.5 times in comparison
with the control.

Alterations in Molecular Species of
Membrane Lipids in Maize Roots Under
Cold Stress
The molecular species of lipids samples from maize roots were
analyzed by ESI-MS/MS and were presented as the numbers of
carbon atoms and double bonds (total number of carbon atoms:
total number of double bonds) of two fatty acid chains on each
lipid class. Themolecular species in phospholipids are dominated
by C34 and C36 species, of which C34:2 and C36:4 account
for a relatively high proportion in phospholipids (Figure 2).
Compared with the control, C34:2 had no significant changes,
while the content of C36:4 significantly decreased 11.9% in
PC. In the plastidic phospholipid PG, the molar percentage of
C34:2 decreased by 18.7%, while that of C36:4 increased 19.9%
compared with the control. In PA, the molar percentage of C34:2
and C36:4 both increased significantly. The levels of C34:2 and
C36:4 altered with an opposite trend in PI under cold treatment.
In PS, the molar percentages of C34:1, C36:4, and C36:6 were
all raised under cold stress, while the molar percentage of C36:2
decreased compared with the control (Figure 2).

As shown in the lower panel of Figure 2, C36 molecular
species are dominant in galactolipids MGDG, which is consistent
with the previous finding that maize is an 18:3 plant (Gu
et al., 2017). Under low temperature stress, the molar percentage
of C36:6 MGDG was significantly lowered than that of the

control. In DGDG, the percentage of C36:6 and C36:5 molecules
decreased under cold stress.

Transcriptomic Analysis of Maize Roots
Under Cold Stress
To investigate the transcriptional regulation of the membrane
lipids’ metabolism in maize roots under cold stress, the
transcriptomic analysis was conducted. A total of 55.14 GB
clean data were produced by six runs; the clean data of each
run reached 8.14 GB at least. The percentage of Q30 base was
94.52%, and it was mapped to the maize reference genome (B73
RefGen_v3). The principal components analysis (PCA) showed
that the three replicates of each sample were clustered together,
which indicates that the three repeats of the same sample are
consistent (Supplementary Figure 2).

As shown in Figure 3, in the comparison group (5 vs 22◦C), a
total of 2769 DEGs were annotated in KEGG pathway, and were
classified into five categories. The results showed that most of
the DEGs were enriched in the metabolic processes (Figure 3A),
which implied the metabolic processes were greatly affected
under cold stress.

In the metabolic pathway, a total of 208 DEGs were
annotated in lipid metabolic pathways, and most of them were
involved in fatty acid metabolism, suggesting that those pathways
were significantly influenced under cold stress (Figure 3B).
The lipid-related DEGs were categorized into 13 pathways as
shown in Figure 3C, and the most enriched pathway was
the “Glycerophospholipid metabolism” pathway. There were
45 DEGs in the “Glycerophospholipid metabolism pathway,”
including 28 up-regulated and 17 down-regulated DEGs,
respectively. In the “Fatty acid elongation” and “Biosynthesis
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FIGURE 2 | Changes in molecular species of major membrane lipids in maize roots under cold stress (5◦C). PC, phosphatidylcholine; PE, phosphatidylethanolamine;

PA, phosphatidic acid; PI, phosphatidylinositol; PS, phosphatidylserine; PG, phosphatidylglycerol; MGDG, monogalactosyldiacylglycerol; DGDG,

digalactosyldiacylglycerol; SQDG, sulfoquinovosyldiacylglycerol. Values (mol%) are means 5 ± standard deviation (SD) (n = 5). “*” indicated that the value was

significantly different from the control (P < 0.05). “**” Indicated that the value was extremely different from the control.

FIGURE 3 | Lipid-related DEGs annotated in KEGG pathways under cold stress (5◦C). DEGs, differentially expressed genes; KEGG, Kyoto Encyclopedia of Genes

and Genomes. (A) The distribution of metabolism-related DEGs identified in the maize roots transcriptome; (B) the statistics of KEGG pathway enrichment of DEGs

related to lipid metabolism; (C) the DEGs involved in different lipid metabolic pathways. The number of the genes in each category were displayed on the x-axis.

Frontiers in Plant Science | www.frontiersin.org 5 April 2021 | Volume 12 | Article 639132

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


Zhao et al. Cold Stress and Maize-Root Membrane Lipids

of unsaturated fatty acids” pathway, most genes were up-
regulated (Figure 3C).

Differential Responses of Lipids Related
DEGs in Maize Roots Under Cold Stress
Maize lipid-related genes were further screened from maize
root transcriptome data according to the previously published
Arabidopsis lipids-related gene databases (Beisson et al., 2003;
Troncoso-Ponce et al., 2013). A total of 189 lipid-related DEGs
were annotated and recruited, most of which were involved
in the “Eukaryotic phospholipid synthesis” (12%), “Fatty acid
elongation” (12%), and “Phospholipid signaling” (13%) pathways
(Supplementary Figure 2).

In order to demonstrate the differential regulation of lipid-
related DEGs in each metabolic pathway, the bar chart
representing the up/down regulated DEGs is shown in Figure 4.
The left panel represents up-regulated genes, and the right panel
represents down-regulated genes. In each category, the green
columns represent the total DEGs, and the red columns represent
the significant DEGs (Log2FC ≥ 1 or ≤−1). As shown in
Figure 4, most of the DEGs involved in “Phospholipid signaling,”
“Fatty acid elongation,” “Eukaryotic phospholipid signaling,”
and “Triacylglycerol & Fatty acid degradation” pathways were
significantly up-regulated, and the number of the significantly
up-regulated DEGs (Log2FC ≥ 1) was among 10–14. A number
of DEGs involved in “Eukaryotic galactolipid & Sulfolipids
synthesis,” “Phospholipid signaling,” and “Oxylipin metabolism”
were found significantly down-regulated (Log2FC ≤ −1), which
demonstrated differential regulation of major lipids’ metabolism
pathways under cold stress.

Analysis of Significant DEGs Involved in
Lipid Metabolism Under Cold Stress
Among the lipid related DEGs, some significantly up-
regulated DEGs were involved in the major lipid metabolism
pathway. As shown in Figure 5, in the endoplasmic
reticulum (ER) TAG (triacylglycerol) de novo synthesis
pathway (the Kennedy pathway), genes encoding glycerol-
3-phosphate acyltransferase (GPAT) and lysophosphatidic
acyltransferase (LPAAT) were significantly up-regulated
under low temperature, including four GPATs (the most
up-regulated isoform GRMZM2G070304, Log2FC = 9.28),
two LPAAT (GRMZM2G079109, Log2FC = 3.43), and one
DGAT1 (GRMZM2G130749, Log2FC = 2.09). In the PC and
PE de novo biosynthesis pathway, the related genes were also
significantly up-regulated, including CCT (choline phosphate
cytidylyltransferase, Log2FC = 2.69) and CEK (choline kinase,
Log2FC = 1.11). One DEG encoding PAH (PA phosphatase) was
significantly up-regulated (GRMZM2G099481, Log2FC = 4.27).

Phosphatidylcholine and PE could be hydrolyzed by PLD
and non-specific phospholipase C (NPC) to generate PA and
DAG. In the “PC turnover and DAG formation” process,
two PLD (GRMZM2G054559 and GRMZM2G179792) were
found significantly up-regulated (Log2FC > 4) under low
temperature stress, while two NPC were found significantly
down-regulated (Figure 6 and Supplementary Table 2).

Another major pathway for PC degradation is mediated by
phospholipase A (PLA) to form phospholipase C (PLC). Two
PLA1 genes were drastically up-regulated (Log2FC is 4.66 and
5.65), which suggested enhanced degradation of PC under
cold stress. Monogalactosyldiacylglycerol synthase (MGD) and
digalactosyldiacylglycerol synthase (DGD) are key enzymes
responsible for the biosynthesis of plastidic galactolipids MGDG
and DGDG. Under low temperature stress, two DGDs were
up-regulated, and the most significant one had a Log2FC of 2.56.

The synthesis of fatty acids is accomplished in plastids.
A number of genes involved in the de novo synthesis and
desaturation of fatty acids were up-regulated under cold stress,
including FAB2, FAT, and LACS. A set of fatty acid desaturase
(FADs) were also involved in the fatty acid desaturation in
both phospholipids and galactolipids metabolism pathways.
Under low temperature stress, two genes encoding FAD8 were
significantly up-regulated, and the Log2FC was 4.66 and 5.65,
respectively. A group of lipases that catalyze the hydrolysis of
phospholipids and galactolipids to release free fatty acids were
also up-regulated, including three diacylglycerol lipase (DGLs)
(Log2FC is 4.3 and 6.05).

To verify the gene expression in transcriptome data, ten lipid-
related genes were selected for quantitative RT-PCR analysis.
The results showed that under low temperature stress, the
expression of genes such as ZmLPP, FATB, and ZmFAD8
increased significantly, which is consistent with the trends in
transcriptome data (Supplementary Figure 3).

The Co-expression Analysis of
Lipid-Related Genes
Pearson correlation coefficient was calculated according to the
expression data of DEGs, and the constructing and visualizing
of the co-expression network was carried out with the Cytoscape
software. A total of 62 lipid-related genes involved in different
lipids’ metabolic processes were screened in the transcriptome
data, and the co-expression analysis was performed. The results
indicated that the expression of 19 genes was closely correlated
(Figure 7). Most of the genes were co-expressed with multiple
genes. The expression of ZmGPAT10 (GRMZM2G020320) was
found to be correlated with 22 genes, including ZmPAP1
(GRMZM2G024144, r = 0.96), ZmFAD8 (GRMZM2G074401,
r = 0.99), ZmDGD (GRMZM2G092588, r = 0.99), and ZmPETC
(GRMZM2G155357, r = 0.99).

The transcriptome data was screened using the online
transcription factor database1. A total of 42 transcription factor
families were identified, comprising of 553 transcription factors,
among which the most abundant transcription factor families
were SLD, WRKY, and NAC (Supplementary Figure 4).

A co-expression analysis among transcription factors and
lipid-related genes was conducted and revealed that there were
201 TFs related to the TAG/PC de novo synthesis pathway.
Among them, important regulatory genes related to lipid
biosynthesis and seed development were discovered, including
AP2/ERF(25), bHLH(14), B3(5), andMYB(12). At the same time,
there are 110 TFs related to PC turnover andDAG formation, and

1http://planttfdb.cbi.pku.edu.cn/
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FIGURE 4 | Functional categorization of lipid-related genes from maize roots transcriptome under cold stress (5◦C). Left columns represent up-regulated genes,

and right columns represent down-regulated genes. In each category, the green colored column represents the total differentially expressed genes (DEGs), and the

red colored column represents the significantly differentially expressed genes (DEGs with Log2FC ≥1 or ≤–1). The number of the genes in each category were

displayed on the x-axis (the ones on the upper x-axis indicate the DEGs with Log2FC ≥1 or ≤–1).

FIGURE 5 | Co-expression of lipid related genes. Different colors represent different genes. The co-expression network was constructed with the reserved gene

pairs. The constructing and visualizing of the co-expression network was carried out with the Cytoscape software.
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FIGURE 6 | Differentially expressed genes (DEGs) involved in major lipid metabolism pathways in maize roots under cold stress (5◦C). The heatmaps were

constructed to illustrate the differential expression profiles of significant lipid related DEGs. The number in each color block represents the Log2(fold-change) of the

corresponding genes, and the negative number represents down-regulated DEGs. The color scale was provided. Red color indicates higher expression level, and

green color indicates lower expression level.

174 TFs related to fatty acid desaturation and formation, which
all contain different numbers of TFs, such as AP2/ERF, bHLH,
B3, and MYB. This result indicated that these genes might play
important roles in lipid metabolism in coping with cold stress
(Supplementary Figure 5).

The Gene-Metabolite Network of Lipids
Metabolism in Maize Roots Under Cold
Stress
Based on the combined analysis of the transcriptomic and
lipidomic data, a scenario diagram was constructed to illustrate
the gene-metabolite network. As shown in Figure 7, the
metabolic pathways of glycerolipids were described, and the
differential gene expression profiles and lipid changes were
marked with colored heatmap icons.

Phosphatidylcholine is the most abundant phospholipids in
maize root tissues, which is initially synthesized by transferring
P-choline from CDP-choline to DAG in ER. The de novo
production of DAG is through the Kennedy Pathway catalyzed
by GPAT, LPAT, and PAH, which were all up-regulated at the
transcriptional level under low temperature stress as observed in

the cold transcriptome. The ER generated PC is also an essential
precursor to generate PA and DAG. Both PLD and NPC were
involved in hydrolyzing PC (and/or PE) to produce PA and
DAG. Under low temperature treatment, two PLD genes were
found significantly up-regulated, whereas two NPCs were found
down-regulated (Figure 6 and Supplementary Table 2), which
might suggest that the PLD pathway was responsible for PC
turnover in maize roots under cold stress. Furthermore, two
genes encoding PLA1, which mediates PC degradation to form
PLC, were drastically up-regulated. These findings suggested
enhanced PC turnover under cold stress, which might explain
the decreased PC content as revealed by lipidomic analysis. The
enhanced accumulation of PA could be attributed to the activated
PC hydrolyzation via PLD pathway.

The membrane lipids in plastid/chloroplasts have a distinct
composition, which are dominated by galactolipids MGDG and
DGDG. Under low temperature conditions, one DGD1 and
FAD8 (Figure 7), which were involved in DGDG synthesis
and desaturation, respectively, were obviously up-regulated.
However, the molar percentage and unsaturation of DGDG did
not change a lot in metabolic aspects. The plastidic lipids MGDG
decreased significantly under cold stress, which might be due to
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FIGURE 7 | Gene-metabolite network illustrating membrane lipid metabolism in maize under cold stress. The glycerolipids synthesis pathways were depicted and

the involved genes and lipid metabolites were symbolized. The relative change of lipid molecular species and the relative expression levels of selected genes were

marked as heatmap icons. The color scale is provided. Red color indicates higher expression level, and green color indicates lower expression level. The red arrows

represent activated steps by cold. ER, endoplasmic reticulum; OE, outer envelope. IE, inner envelope.

the enhanced conversion to DGDG by the action of DGD, and
both DGDG andMGDG could undergo degradation through the
cold triggered DGLs.

DISCUSSION

Membrane lipid metabolism and remodeling are key strategies
for plants to cope with temperature stresses (Moellering et al.,
2010; Li et al., 2016). In a previous study, we provided evidence
that maize is an 18:3 plant with dominating C36:6 (two 18: 3
acyl chains) molecular species in their galactolipids DGDG and
MDGD (Gu et al., 2017). In this study, a combined lipidomic
and transcriptomic strategy was used to explore the lipidomic
changes and the transcriptional regulation in root tissues of maize
seedling under cold stress. As shown in Figure 8, the changes of
glycerolipids profiles, the differential expression of lipid-related
genes, and co-expression network of transcription factors and
lipid genes were interactively investigated.

A number of lipidomic studies have shown that membrane
glycolipid profiles are largely influenced by cold stress, however,
most of the research was conducted in the above-ground tissues
of the plants (Degenkolbe et al., 2012; Zheng et al., 2016).

The extraplastidic phospholipids classes (PC, PE, PA, and PI)
are the most abundant lipid species. Under low temperatures,
a significant decrease of PC was observed. In the parallel
transcriptomic analysis, the eukaryotic PC de novo biosynthesis
pathway and PC degradation and signaling pathway were
activated by cold stress as manifested by the up-regulation of
genes involved in those pathways. Nevertheless, the dropped
PC level suggested that PC degradation mediated by PLD and
PLA was dominant under low temperature stress. PC is known
as the major “bilayer lipid,” which is crucial in maintaining
the membrane integrity under stress conditions (Li et al., 2015;
Lin et al., 2016; Zheng et al., 2016). The reduction of PC
under cold stress might result in a certain degree of membrane
damage in plant cells.

Phosphatidic acid is the major central lipids’ intermediate and
signaling molecule. In addition to the PA generated through the
phosphorylation of DAG by PAH in the ER, a large proportion
of PA could be produced by hydrolysis of phospholipids,
including PC and PE, through the PLD and PLC/DGK pathways
(Laxalt and Munnik, 2002; Ruelland et al., 2002; Arisz et al.,
2009; Benning, 2009). PA plays important roles in a variety
of cellular processes involving plant growth, reproduction, and
signal transduction under abiotic stresses (Ruelland et al., 2015;
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FIGURE 8 | Schematic diagram of transcriptomic and lipidomic analysis strategies.

Meringer et al., 2016; Tan et al., 2018). Previous research had
shown that the increase of PA content was beneficial in reducing
the damage of reactive oxygen species to Arabidopsis under cold
stress (Moellering et al., 2010; Li et al., 2016). In this study, we
found that the accumulation of PA significantly improved in
maize roots under cold stress, which suggested that the increase
of PA content may help to alleviate the damage of maize seedlings
under cold stress. As illustrated in the gene-metabolite network
(Figure 7), the up-regulated PLD genes and down-regulated
NPCs suggested that the PLD pathway was responsible for PC
turnover in maize root under cold stress. In a previous study, we
found that PA produced by the action of PLD was significantly
enhanced and contributed to the plastidic lipids’ synthesis in
maize leaves under cold stress (Gu et al., 2017). These findings
implied that generation of PA via the PLD pathway was triggered
by cold in both above-ground and under-ground tissues of
maize seedlings.

In plants, the unsaturation PG was considered to be closely
related to low temperature response (Mikami and Murata,
2003). In tobacco, the increase of saturated fatty acid level
of PG makes plants sensitive to cold stress (Mikami and
Murata, 2003). Fatty acid desaturases FAD8 and catalyzes the
desaturation of FAs that are esterified to PG and result in
high linolenate (18:3) lipid species (Zhao et al., 2019). The

knocked-out FAD8 led to reduced membrane fluidity in rice
under low temperature stress (Tovuu et al., 2016). In this
study, two genes encoding FAD8 annotated in the transcriptomic
data (ZmFAD8.1 and ZmFAD8.2) were significantly up-regulated
under low temperature stress. Moreover, in the parallel lipidomic
analysis, an obvious increase in 36:4 species was observed. This
result indicates that the increased unsaturation of PG may be
beneficial to the adaptation of cold stress for the root tissue of
maize seedlings.

Membrane lipid remodeling occurs when plants encounter
cold stress (Chen and Thelen, 2016). Previous studies have shown
that, as the growing temperature deceased, the content of DGDG
increased and the ratio of MGDG/DGDG decreased, which could
help to enhance the cell membrane stability under stress (Campos
et al., 2003; Moellering et al., 2010). In this study, a significant
decrease of MGDG and a slight increase of DGDG was observed,
resulting in a large reduction in the MGDG/DGDG ratio in
maize seedlings under cold stress. MGD catalyzes the galactose
transfer fromUDP-galactose to DAG framework to formMGDG,
and then the second galactose is diverted from UDP-galactose
to MGDG by DGD for the final formation of DGDG (Wang
et al., 2020). In our transcriptomic data, the expression of two
maize DGDs were up-regulated, and the most apparent one had
a Log2FC of 2.56.
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A number of reports have indicated that the over-expression
of DGAT and DGK could regulate the dynamic balance of
DAG, PA, and TAG in Arabidopsis under cold stress (Moellering
et al., 2010; Li et al., 2016). Over-expression of AtDGAT1
enhances cold tolerance of Arabidopsis (Arisz et al., 2018).
AtDGAT1, AtDGK2, AtDGK3, and AtDGK5 were shown to be
responsible to cold stress tolerance in Arabidopsis (Tan et al.,
2018). In this study, the up-regulation of a member of DGAT
and DGK isoforms suggested DAG-TAG and DAG-PA pathways
were activated under cold stress, which may contribute to cold
adaptation of maize seedlings. The accumulation of TAG is
influenced by a series of transcription factors, including WRI1,
MYB, and bZIP (Song et al., 2013; Liu et al., 2014; Chen
et al., 2020). Researchers have shown that the over-expression of
AtWRI1 gene in maize and rapeseed enhanced TAG production
(Cernac and Benning, 2004; Shen et al., 2010). In this study,
two ZmWRI1 genes (GRMZM2G124524, Log2FC = 1.88 and
GRMZM2G174834, Log2FC = 2.62) were up-regulated under
cold stress. The activation of TAG biosynthesis in maize roots
under low temperature stress might be attributed to increased
fatty acids derived from hydrolytic enzymes, and these excess FAs
may be temporarily stored in TAG.

CONCLUSION

In summary, we observed active changes of membrane lipids
in maize roots under cold stress, including decreased PC and
increased PA contents, and the enhanced transcription of a set
of lipid-related genes. The results revealed the activation and
interaction of phospholipid and galactolipid synthesis pathways
in response to cold, and the modular regulation of metabolite
accumulation and gene expression in the respective processes. It
should be noted that this model is based on combined analysis
of transcriptomic and lipidomic changes, and the possibility
of posttranscriptional regulation on proteins/enzymes could
not be excluded. Since information on the regulation of lipid
metabolism in 18:3 plants is still lacking, there are still a great
deal of unanswered questions that need further investigation.
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