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Membrane mucins of the intestine at a glance
Thaher Pelaseyed and Gunnar C. Hansson*

ABSTRACT
Membrane mucins cover most mucosal surfaces throughout the
human body. The intestine harbors complex population of
microorganisms (the microbiota) and numerous exogenous
molecules that can harm the epithelium. In the colon, where the
microbial burden is high, amucus barrier forms the first line of defense
by keeping bacteria away from the epithelial cells. In the small
intestine where the mucus layer is less organized, microbes are kept
at bay by peristalsis and antimicrobial peptides. Additionally, a dense
glycocalyx consisting of extended and heavily glycosylated
membrane mucins covers the surface of enterocytes. Whereas
many aspects of mucosal barriers are being discovered, the function
of membrane mucins remains a largely overlooked topic, mainly

because we lack the necessary reagents and experimental animal
models to investigate these large glycoproteins. In this Cell Science at
a Glance article and accompanying poster, we highlight central
concepts of membrane mucin biology and the role of membrane
mucins as integral components of intestinal mucosal barriers. We
also present the current consensus concerning the role of membrane
mucins in host–microbe interactions. Moreover, we discuss how
regulatory circuits that govern membrane mucins in the healthy gut
display strong overlap with pathways that are perturbed during chronic
inflammation. Finally, we review how dysregulation of intestinal
membrane mucins may contribute to human diseases, such as
inflammation and cancer.
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Introduction
Membrane mucins are large and extended glycoproteins that are
attached to the cell membrane through a single-pass transmembrane
domain. The family of membrane mucins constitutes MUC1,
MUC3, MUC4, MUC12, MUC13, MUC15, MUC16, MUC17,
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MUC21 and MUC22 (see poster and Table 1). Membrane mucins
are expressed at all mucosal surfaces, such as the eye, lungs and the
gastrointestinal tract and in reproductive organs like the cervix but,
here, we will mostly focus on those expressed in the intestine (see
poster).

General features of membrane mucins
Membrane mucins are characterized by a specific domain with
multiple and repetitive amino acid sequences rich in Pro, Thr and Ser
residues, i.e. thePTSdomain.Within this domain amino acidsThr and
Ser are extensively O-glycosylated as the membrane mucin travels
through the secretory pathway (Lang et al., 2007). TheO-glycosylated
proline-, threonine- and serine-rich (PTS) domain forms the typical
mucin domain that is also a characteristic feature of secreted mucins,
such as MUC2, MUC5AC, MUC5B and MUC6. All membrane
mucins, exceptMUC4,MUC21 andMUC22, hold a sea urchin sperm
protein, enterokinase and agrin (SEA) domain in their extracellular
region (see poster). MUC4 is an interesting exception to the other
membrane mucins because it has an extracellular domain assembly
comprising three unique domains. These are the (i) nidogen (NIDO)
domain, the (ii) adhesion-associated domain in MUC4 and other
proteins (AMOP) domain, and the (iii) von Willebrand factor type D
(vWD) domain. This configuration is only found in the sushi domain-
containing 2 (Susd2) protein. Susd2 lacks a PTS domain
(Duraisamy et al., 2006) and has homologs in frog as well as
invertebrates, such as C. elegans and D. melanogaster. See text
Box 1 for the evolutionary origins of membrane mucins.
The SEA domain of membrane mucins is autocatalytically

cleaved at a G/S[I/V]VV consensus sequence during protein folding
in the endoplasmic reticulum (ER) (Ligtenberg et al., 1992). The
cleaved SEA domain is folded into a globular structure formed by
four α-helices that cradle four parallel β-sheets, held together by
strong non-covalent forces that are resistant to thermal and chemical
denaturation (Macao et al., 2006; Pelaseyed et al., 2013b). When a
SEA domain-containing membrane mucin finally reaches the

plasma membrane, it is a heteromeric glycoprotein comprising a
long, heavily O-glycosylated extracellular fragment that is non-
covalently linked through the SEA domain to a shorter fragment
containing a transmembrane domain and a cytoplasmic tail domain.

The function of the conserved SEA domain is currently
unknown. Notch receptors that mediate intercellular signaling
harbor an extracellular domain called the negative regulatory region
(NRR), which shares high structural homology with canonical SEA
domains found in membrane mucins. However, the NRR domain
lacks the characteristic autoproteolytic G/S[V/I]VV cleavage site
(Gordon et al., 2009; Pei and Grishin, 2017). Instead, NRR adopts
an autoinhibited conformation that conceals a proteolytic cleavage
site that is revealed once Notch binds its ligand on an opposing cell,
resulting in cleavage of Notch through a disintegrin and
metalloprotease (ADAM) proteases and in subsequent signaling
(Gordon et al., 2015). Mechanical forces can induce cleavage
through ADAM proteases in the NRR, which is in line with findings
showing that the SEA domain of MUC1 unfolds in response to
mechanical forces (Pelaseyed et al., 2013b). In mouse, the
endogenous ADAM17 protease can also act directly on
membrane mucins. MUC1, for example, is cleaved by ADAM17
on the surface of uterine epithelial cells to allow embryo
implantation (Thathiah et al., 2003).

MUC4 has a cleavage site located between Asp and Pro in the
Gly–Asp–Pro–His (GDPH) sequence within the vWD domain that
is typical for von Willebrand factor-derived proteins (Lidell et al.,
2003). The cleavage of GDPH takes place in the ER but is probably
autocatalytic and protease independent (Soto et al., 2006).
Interestingly, the vWD domain is also found in secreted mucins,
such as MUC2, MUC5AC and MUC5B, with MUC2 and
MUC5AC having an autocatalytically cleaved GDPH motif
(Ambort et al., 2012; Ridley et al., 2014; Trillo-Muyo et al.,
2018). One of the vWD domains in these mucins mediates their
oligomerization, suggesting that membrane mucins with a vWD
domain participate in interactions with secreted mucins.

The SEA domain-containing membrane mucins MUC1, MUC3,
MUC12, MUC13, MUC16 and MUC17 display a common domain
organization, i.e. an extracellular fragment starting with an
N-terminal signal sequence (SS) is followed by a PTS and SEA
domain. A transmembrane domain is then followed by a cytoplasmic
tail (CT) domain (see poster). MUC1, MUC3, MUC13 and MUC17
also contain EGF-like domains that flank the SEA domain on the
extracellular fragment (Parry et al., 2001; Williams et al., 2001; Gum
et al., 2002; Duraisamy et al., 2006). It has been suggested that EGF-
like domains of membrane mucins function as ligands that can
activate EGF receptor signaling (Carraway et al., 1999).

The fact that all surface membrane mucins are cleaved, non-
covalently attached heteromers is intriguing and not yet fully
understood. Membrane mucins cover epithelial surfaces that are
subjected to environmental insults, suggesting that membrane
mucins can simply shed their mucin domains to protect against
biochemical and mechanical factors that, otherwise, might disrupt
the epithelial monolayer. After shedding, the remaining membrane-
attached mucin fragment could participate in intracellular signaling
through specific intracellular motifs and sequences.

Glycosylation of membrane mucins
One of the hallmark features of mucins is glycosylation. Membrane
mucins comprise PTS domains, in which >80% of all Ser and
Thr residues carry O-linked glycans (see poster). Here, MUC17
serves as an example with its 4073 amino acid-long PTS
domain with >2000 Thr and Ser residues, resulting in >1600

Box 1. The evolution of membrane mucins
The evolutionary origins of mucins cannot be traced by merely exploring
genomes of organisms for the characteristic PTS domain, as amino acid
sequences of PTS domains are poorly conserved between species. The
characteristic trademark of mucins lies, instead, in the frequency of Pro,
Thr and Ser residues within long, often recurring sequences or tandem
repeats (Lang et al., 2004). Additional domains, such as AMOP, SEA
and vWD, have also been looked at when investigating exon sequences
in different organisms for the existence of membranemucins (Lang et al.,
2007). Whereas SEA domains are found in Drosophila melanogaster
and Caenorhabditis elegans, SEA domain-containing proteins with a
PTS domain emerged first in vertebrates, such as frog (Xenopus
tropicalis) and zebrafish (Danio rerio) (Lang et al., 2007). Orthologues of
the human MUC1 gene are found among mammals, but MUC1 is not
present in other vertebrates, such as chick, frog or fish (see poster)
(Spicer et al., 1995). HumanMUC3,MUC12 andMUC17 are clustered in
tandem on human chromosome locus 7q22. Most likely, this locus, with
its three membrane mucin genes and their corresponding exon-intron
organizations, is conserved from human down to frog (Lang et al., 2007).
In analogy with the human 7q22 locus, the locus comprising murine
Muc17 is flanked by those of the acetylcholinesterase Ache and the E3
ubiquitin-protein ligase Trim56. This also supports the existence ofMuc3
and Muc12 in mouse, in which they have not yet been fully sequenced
(Lang et al., 2007). MUC17 paralogs have been identified in opossum
and MUC17-like proteins are expressed in zebrafish (Lang et al., 2007).
The NIDO–vWD–AMOP domains of MUC4 appeared first in Xenopus
through fusion with a characteristic N-terminal PTS domain.
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O-glycosylation sites. O-glycosylation is initiated by addition of
N-acetylgalactosamine (GalNAc) to Ser or Thr residues, followed
by stepwise extension of this first epitope into more-complex and
branched glycan chains that forces the long membrane mucin
protein to adopt the extended and linear conformation that is often
evident in electron micrographs (Ito, 1965). The dense glycan
chains also protect the protein backbone from digestive enzymes
and microbial proteases (van der Post et al., 2013; Bergstrom et al.,
2017). In addition, O-glycosylation has been reported to regulate
apical targeting of membrane mucins (Kinlough et al., 2011).
Most membrane mucins also carry several N-linked glycans

on Asn residues. MUC17 carries nine Asn residues flanking
the extracellular SEA domain, which potentially undergo
N-glycosylation. N-glycosylation occurs in the lumen of the ER,
and is required for correct folding and export of membrane mucins
through interactions with mannose-binding lectin chaperones in
the ER. Impaired N-glycosylation in the ER results in protein
misfolding followed by degradation (Lamriben et al., 2016).
There are regional differences in glycosylation caused by

selective and differential expression of glycosyltransferases along
the digestive tract, and differences between healthy or
diseased states (Robbe et al., 2003; Holmen-Larsson et al., 2013;
Johansson et al., 2015). Microbiota also induce expression of
glycosyltransferases, such as sialyltransferases, as shown when
comparing glycosyltransferase expression and O-glycosylation of
mucins between germ-free and conventional microbiota-harboring
mice (Johansson et al., 2015; Arike et al., 2017). Microbial
regulation of host protein glycosylation is crucial for the etiology of
intestinal disease, such as inflammatory bowel disease (IBD), the
collective term for Crohn’s disease and ulcerative colitis. There,
altered bacterial communities affect MUC2 glycosylation and may
decimate its capacity to act as a barrier protecting the epithelium
(Larsson et al., 2011). These external and intrinsic regulatory
processes can also affect glycosylation of membrane mucins
expressed along the length of the intestine.

The interactome of membrane mucins
The CT domains of membrane mucins hold sequences and motifs
involved in protein interaction, targeting and signaling through
phosphorylation. The CT domain of MUC1 contains several
conserved Ser, Thr and Tyr phosphorylation sites that modulate
interactions with various binding partners (Spicer et al., 1995;
Schroeder et al., 2001; Wang et al., 2003; Singh et al., 2007). For
example, the proto-oncogene tyrosine-protein kinase Src, the
members of the epidermal growth factor receptor (EGFR) ErbB2
and ErbB3, glycogen synthase kinase 3 beta (GSK3β) and protein

kinase Cδ (PKCδ), all interact with MUC1, together with other
partners that lack kinase activity, such as adaptor protein complex 2
(AP-2), β-catenin and growth factor receptor-bound protein 2
(Grb2) (Kinlough et al., 2004; Funes et al., 2006; Singh and
Hollingsworth, 2006). MUC3, MUC12 and MUC17 contain class I
PDZ binding motifs, i.e. x[S/T]ɸ (where x represents any amino
acid and ɸ indicates any hydrophobic amino acid) in their
cytoplasmic tail domains, making them ligands for PDZ domain-
containing proteins involved in assembly of protein and signaling
complexes (Malmberg et al., 2008). MUC3 interacts with the trans-
Golgi-resident PDZ protein Golgi-associated PDZ and coiled-coil
motif-containing protein (GOPC, also known as CAL) and
functions as a part of a larger protein complex that consists of the
Q-SNARE protein syntaxin 6 (STX6) and the small GTPase Rho-
related GTP-binding protein RhoQ (RHOQ, also known as TC10).
Together, they mediate cargo trafficking from the trans-Golgi to the
lysosome for degradation (Cheng et al., 2010) (see poster). Another
target for GOPC-facilitated degradation is the cystic fibrosis
transmembrane conductance regulator (CFTR) anion channel that
transports bicarbonate and fluids into the gut lumen to unfold mucus
(Gustafsson et al., 2012). Overexpression of either MUC3 or CFTR
rescues either of these GOPC-binding partners from lysosomal
degradation, demonstrating a direct link between membrane mucins
and CFTR function in epithelial cells with yet unknown
consequences (Pelaseyed and Hansson, 2011). MUC17 binds to
three out of four PDZ domains in PDZ domain-containing protein 1
(PDZK1) that organizes protein complexes, as exemplified by
PDZK1 augmenting CFTR channel activity by assembling dimers
of the anion channel (Wang et al., 2000). Mouse MUC17, which
normally resides at the apical membrane of small intestinal
enterocytes, localizes to intracellular vesicles in Pdzk1 knockout
mice (Pdzk1 KO), suggesting that PDZK1 regulates apical targeting
or retention of MUC17 at the plasma membrane (Malmberg et al.,
2008). Intriguingly, cholinergic stimulation of cultured epithelial
cells or mouse duodenal cells results in activation of the CFTR and
its relocalization to the apical membrane, alongside removal of
MUC17 from apical surfaces followed by colocalization with
PDZK1 (Pelaseyed et al., 2013a). The CT domain of human
MUC17 contains two phosphorylation sites that are conserved in the
mouse MUC17; however, the consequence of MUC17
phosphorylation is not yet understood (Schneider et al., 2019).
Interaction between membrane mucins and multivalent PDZ
proteins supports the idea that membrane mucins are components
of regulated protein complexes, including ion channels, cytoskeletal
proteins and regulatory kinases, which act in concert in response to
stimuli. The diversity of membrane mucin interaction partners

Table 1. Expression of transmembrane mucin in epithelial tissues

Protein Tissue location References

MUC1 Ocular surface, lung, mammary gland, stomach, kidney,
female reproductive tract, gallbladder, immune cells

Uhlén et al., 2005; Govindarajan and Gipson, 2010;
Johansson and Hansson, 2016

MUC3 Small intestine, colon Uhlén et al., 2005; Johansson and Hansson, 2016
MUC4 Ocular surface, lacrimal glands, oral cavity, salivary glands,

lung, mammary gland, stomach, colon
Uhlén et al., 2005; Govindarajan and Gipson, 2010;
Johansson and Hansson, 2016

MUC12 Colon, rectum Uhlén et al., 2005; Johansson and Hansson, 2016
MUC13 Small intestine, colon, rectum Uhlén et al., 2005; Johansson and Hansson, 2016
MUC15 Thyroid, kidney, urinary bladder, female reproductive tract, placenta, colon Uhlén et al., 2005; Johansson and Hansson, 2016
MUC16 Ocular surface, lung, female reproductive tract Uhlén et al., 2005; Govindarajan and Gipson, 2010;

Johansson and Hansson, 2016
MUC17 Small intestine, colon Uhlén et al., 2005; Johansson and Hansson, 2016
MUC21 Esophagus, thymus, lung, skin, cervix, colon Uhlén et al., 2005; Johansson and Hansson, 2016
MUC22 Esophagus Uhlén et al., 2005; Johansson and Hansson, 2016
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testifies to the fact that membrane mucins have important biological
functions at mucosal surfaces, as discussed below.

Membrane mucins of the intestines
In humans, the intestinal tract constitutes the largest surface area that is
in contact with the harsh environment of the outside world. Our
intestines are lined with a rapidly renewing monolayer of epithelial
cells, which is turned over every three to five days (Cheng and
Leblond, 1974). Valuable intestinal stem cells at the base of intestinal
crypts differentiate into specialized epithelial lineages that,
collectively, contribute to mucosal barriers against chemical and
microbial challenges. Therein, intestinal stem cells (ISCs) differentiate
into specialized epithelial lineages that, collectively, contribute to
mucosal barriers against chemical and microbial challenges. Paneth
cells within the small intestine secrete antimicrobial peptides that
safeguard the neighboring stem cells. Goblet cells produce, store and
secrete mucus that protects epithelial surfaces (Johansson et al., 2008;
Vaishnava et al., 2008). Transporting epithelial cells – termed
enterocytes in the small intestinal and colonocytes in the colon –
account for 70–80% of all intestinal epithelial cells, and participate in
nutrient uptake and ion exchange. Enterocytes are characterized by
their apical brush border membrane, shaped by ∼1000 microvilli that
cover the surface of each cell. Each microvillus is 1–2 µm long, has a
diameter of 100–150 nm and is capped with extended membrane
mucins that are likely to be the main glycoprotein component of the
glycocalyx (see poster). This morphological term was first used and
described in the late 1950s for the surface of red blood cells (Bartlett,
1958). The glycocalyx that decorates the surface of intestinal
epithelial cells was first observed in bat and later in cat intestines (Ito
and Winchester, 1963; Ito, 1965).

The role of membrane mucins in shaping apical membrane
domains
Membrane mucinMUC17 is highly expressed in the small intestine,
whereas expression levels are lower in the colon (Uhlén et al.,
2015). Recent advances in single-cell RNA sequencing of mouse
small intestine show that MUC17 is almost exclusively expressed in
enterocytes, with lowest levels in progenitor enterocytes and highest
in mature differentiated enterocytes (Haber et al., 2017). The distinct
spatiotemporal expression pattern ofMUC17 is shared with a cluster
of proteins, such as Cdhr2, Cdhr5, Ebp50, Ezrin and Ush1c (see
poster). These proteins are responsible for assembly, elongation and
formation of stable bundles of packed microvilli that are, in turn,
decorated with membrane mucins. Microvilli are evolutionarily
conserved actin-based membrane protrusions that shape the
membrane of enterocytes by generating a brush border membrane
(see poster on how membrane mucins shape microvilli) (Pelaseyed
and Bretscher, 2018). The cellular cues that initiate microvilli
formation have not yet been defined but it is known that microvilli
assembly requires: (i) actin cytoskeleton treadmilling towards the tip
of the microvillus (Meenderink and Tyska, 2019), (ii) continuous
cycles of phosphorylation and dephosphorylation of ezrin – a
crosslinker between the membrane and F-actin cytoskeleton; a
process that, in turn, requires phosphatidylinositol (4,5)-
bisphosphate (PIP2) and an ezrin-specific kinase to assemble
microvilli (Viswanatha et al., 2012; Pelaseyed et al., 2017) (see
poster). Assembled microvilli are then tightly packed via an inter-
microvillar adhesion complex (IMAC) that comprises Cdhr2,
Cdhr5, Myo7b and Ush1c, an ensemble of proteins that form
stable crosslinks between microvilli (Crawley et al., 2014). Once
stable packing of microvilli through the adhesion complex occurs,
membrane mucins are likely to be locked in place at the tip of

microvilli until the cell is shed. The stable retention of the
glycocalyx has been shown by using in vivo labeling of surface
glycoproteins covering enterocytes (Schneider et al., 2018).

The correlation between MUC17 and microvillar components,
and the fact that each microvillus is decorated with a certain number
of membrane mucins, suggest a functional association between
membrane mucins and microvilli that is not yet fully understood.
A recent publication suggests that the densely O-glycosylated
domains of membrane mucins at the plasma membrane generate
physical forces that bend the membranes to form microvillus
protrusions (Shurer et al., 2019).

The brush border membrane of enterocytes constitutes a crucial
interface with the gut lumen. The fact that this surface is covered
with membrane mucins alludes to their function in host–microbe
interactions. To determine how membrane mucin expression and
microvillar architecture are interconnected will be crucial in order to
understand how epithelial barriers contribute to intestinal
homeostasis.

Microbial interactions with membrane mucins
The gut lumen harbors trillions of microorganisms that contribute to
our well-being by priming our immune system, promoting intestinal
maturation, extracting nutrients from ingested food and generating
metabolites that are important for intestinal homeostasis (Ley et al.,
2005). Membrane mucins present dense arrays of glycans to the
luminal content of the gut. On one hand, the numerous multivalent
glycan moieties in the mucin domain of membrane mucins offer
excellent stoichiometric power to allow specific interactions with
glycan-binding proteins of gut microbes. On the other hand,
membrane mucins decorate the tip of microvilli and form a thick
carbohydrate-rich coat that may act as a highly specific barrier based
on charge, chain length and branching of mucin glycans. Another
possibility is that membrane mucins act as binding and attachment
sites for bacteria (see poster). Thus, in a combined binding and barrier
function, membrane mucins can act as decoys that limit microbial
binding to cells surfaces. This has been shown formurineMUC1 that
is highly expressed in the gastric epithelium; there, it limits acute and
chronic Helicobacter pylori colonization by preventing H. pylori
from binding directly to enterocytes (McGuckin et al., 2007). In
another study, oral infection of mice with Campylobacter jejuni
upregulated protein levels of MUC1 along the gastrointestinal tract
and, in turn, suppressed the pro-apoptotic action of the C. jejuni
toxin, explaining why the bacterium induces epithelial damage and
translocates systemically in Muc1−/− mice (McAuley et al., 2007).
Studies of in vitro cancer cell cultures have also suggested that
Salmonella enterica strains invade epithelial cells by binding to
sialyated MUC1 through their giant adhesin SiiE (Li et al., 2019).
Human MUC13 has been identified as a host receptor for the
pentameric B-subunit of Vibrio cholerae toxin (Ctx) in human T84
cells; however, whether MUC13 is an entry route or a protective
decoy for Ctx has not yet been explored (Wands et al., 2015).
Recently, we showed that overexpression of MUC17 in a 2D human
epithelial Caco-2 cell culture with low endogenous MUC17
expression reduced binding of enteropathogenic Escherichia coli
(EPEC) to cell surfaces in a TNF-dependentmanner (Schneider et al.,
2019), supporting the concept that membrane mucins function as
cell-autonomous barriers against bacteria (see poster).

Regulation of membrane mucins in health and disease
Several membrane mucins show aberrant expression in cancers.
MUC1 overexpression in colon, gall bladder and pancreas cancers
often correlates with metastasis and poor prognosis (Nakamori
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et al., 1994; Hiraga et al., 1998; Kashiwagi et al., 2000; Lüttges
et al., 2002). Moreover, epigenetic changes, such as DNA
methylation and histone acetylation, have been shown to
upregulate MUC4 and MUC17 in pancreatic cancer (Vincent
et al., 2008; Kitamoto et al., 2011). Although the role of membrane
mucins in cancer is not fully understood, several mechanisms have
been suggested. Loss of regulated cell polarity and dissociation of
cancer cells from neighboring cells has been attributed to the heavily
glycosylated mucin domain (Maher et al., 2011) (see poster).
Overexpression of MUC1 has also been shown to both mediate and
block cell–cell adhesion due to interactions between its mucin
domain and proteins, such as selectins and intracellular adhesion
molecule 1 (ICAM1) (McDermott et al., 2001). Moreover, the CT
domain of MUC1 engages several binding partners, such as
β-catenin, that are known to be involved in carcinogenesis
(see poster).
How external signals and intrinsic programs regulate membrane

mucins in health and disease is only beginning to be understood.
Insight into the signaling pathways that govern membrane mucins
can be gained by investigating human diseases, such as
inflammatory bowel disease (IBD), and mouse models of acute
enteropathogenic infections. In the mouse colon, in vivo interleukin
22 (IL22) upregulates gene expression ofMuc1,Muc13 andMuc17
(Sugimoto et al., 2008). IL22 and interferon gamma (IFNγ) also
upregulatesMuc17 in organoids derived frommouse small intestine
but not in those from colon (Price et al., 2018). IL22 is a homeostatic
interleukin involved in epithelial cell regeneration and barrier
reinforcement (Sanos et al., 2009). Together with its downstream
signaling pathway components, such as the transcription factor
signal transducer and activator of transcription 3 (STAT3), IL22 has
been identified as a susceptibility gene in IBD (Glocker et al., 2009;
Silverberg et al., 2009; Khor et al., 2011; Chi et al., 2014). Indeed,
an earlier study has reported that the membrane mucin genesMUC1,
MUC4, MUC12, MUC13 and MUC17 are downregulated in
humans suffering from Crohn’s disease (CD) or ulcerative colitis
(Moehle et al., 2006). A more-recent study has reported abnormal
microvillar morphology in CD patients, and correlated this
observation to the significant downregulation of genes involved in
microvillus assembly and maintenance in CD patients as compared
to the control group (VanDussen et al., 2018). An intriguing
explanation for the role of membrane mucins in IBD is that
perturbations in membrane mucin expression and microvillar
assembly can result in defective glycocalyx, leading to loss of
epithelial barrier integrity.

Conclusions and future perspectives
Membrane mucins are a neglected family of membrane-bound
glycoproteins that cover many epithelial surfaces of the human
body. In this Cell Science at a Glance article and poster, we have
discussed structure, function, glycosylation and microbial
interactions of membrane mucins, particularly, in the intestinal
tract. However, many crucial gaps of knowledge remain to be
addressed. What is the fundamental role of membrane mucins in
epithelial cells? Do membrane mucins act as receptors for specific
bacteria or as specialized barriers against pathogens? How are these
large glycoproteins trafficked to the cell surface and how are the
spatiotemporal dynamics of membrane mucins coordinated with
cell differentiation in tissue with a high cell turnover? At various
sites through the human body, two or more membrane mucins are
expressed in the same cell type. How are these membrane mucins
connected in terms of localization and function? Finally, the
comprehensive scrutiny of regulatory pathways that dictate gene

expression of membrane mucins will add another layer of
understanding regarding infectious and inflammatory diseases in
the intestine.
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