
Louisiana Tech University

Louisiana Tech Digital Commons

Doctoral Dissertations Graduate School

Fall 2006

Membrane systems with limited parallelism
Bianca Daniela Popa
Louisiana Tech University

Follow this and additional works at: https://digitalcommons.latech.edu/dissertations

Part of the Bioinformatics Commons, and the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at Louisiana Tech Digital Commons. It has been accepted for

inclusion in Doctoral Dissertations by an authorized administrator of Louisiana Tech Digital Commons. For more information, please contact

digitalcommons@latech.edu.

Recommended Citation
Popa, Bianca Daniela, "" (2006). Dissertation. 542.
https://digitalcommons.latech.edu/dissertations/542

https://digitalcommons.latech.edu?utm_source=digitalcommons.latech.edu%2Fdissertations%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/graduate-school?utm_source=digitalcommons.latech.edu%2Fdissertations%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations?utm_source=digitalcommons.latech.edu%2Fdissertations%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/110?utm_source=digitalcommons.latech.edu%2Fdissertations%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.latech.edu%2Fdissertations%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.latech.edu/dissertations/542?utm_source=digitalcommons.latech.edu%2Fdissertations%2F542&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@latech.edu

MEMBRANE SYSTEMS WITH

LIMITED PARALLELISM

by

Bianca Daniela Popa, B.S., M.S.

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

COLLEGE OF ENGINEERING AND SCIENCE
LOUISIANA TECH UNIVERSITY

November 2006

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 3261293

INFORMATION TO USERS

The quality of this reproduction is dependent upon the quality of the copy

submitted. Broken or indistinct print, colored or poor quality illustrations and

photographs, print bleed-through, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

®

UMI
UMI Microform 3261293

Copyright 2007 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LOUISIANA TECH UNIVERSITY

THE GRADUATE SCHOOL

October 2nd, 2006
Date

We hereby recommend that the dissertation prepared under our supervision

by BIANCA DANIELA POPA__

entitled MEMBRANE SYSTEMS WITH LIMITED PARALLELISM

be accepted in partial fulfillment o f the requirements for the Degree of

PH.D. IN COMPUTATIONAL ANALYSIS AND MODELING

Recommendation concurred in:

OblQOS

ResearchC N I' . Sunerymor o f Dissertation

! Head of Department

G*tan*w/a. /rffaaMfr&thi
7 Department

Advisory Committee

Approval:

Director of Graduate Studies

H a
Dean of the College

Approved:

Dean of the Graduate School

GS Form 13
(5/03)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ABSTRACT

Membrane computing is an emerging research field that belongs to the more

general area of molecular computing, which deals with computational models inspired

from bio-molecular processes. Membrane computing aims at defining models, called

membrane systems or P systems, which abstract the functioning and structure of the

cell. A membrane system consists of a hierarchical arrangement of membranes delim

iting regions, which represent various compartments of a cell, and with each region

containing bio-chemical elements of various types and having associated evolution

rules, which represent bio-chemical processes taking place inside the cell.

This work is a continuation of the investigations aiming to bridge membrane

computing (where in a compartmental cell-like structure the chemicals to evolve are

placed in compartments defined by membranes) and brane calculi (where one con

siders again a compartmental cell-like structure with the chemicals/proteins placed

on the membranes themselves). We use objects both in compartments and on mem

branes (the latter are called proteins), with the objects from membranes evolving

under the control of the proteins. Several possibilities are considered (objects only

moved across membranes or also changed during this operation, with the proteins

only assisting the move/change or also changing themselves). Somewhat expected,

computational universality is obtained for several combinations of such possibilities.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We also present a method for solving the NP-complete SAT problem using P

systems with proteins on membranes. The SAT problem is solved in 0 (n m) time,

where n is the number of boolean variables and m is the number of clauses for an

instance written in conjunctive normal form. Thus, we can say that the solution for

each given instance is obtained in linear time. We succeeded in solving SAT by a

uniform construction of a deterministic P system which uses rules involving objects

in regions, proteins on membranes, and membrane division.

Then, we investigate the computational power of P systems with proteins on

membranes in some particular cases: when only one protein is placed on a membrane,

when the systems have a minimal number of rules, when the computation evolves in

accepting or computing mode, etc.

This dissertation introduces also another new variant of membrane systems

that uses context-free rewriting rules for the evolution of objects placed inside com

partments of a cell, and symport rules for communication between membranes. The

strings circulate across membranes depending on their membership to regular lan

guages given by means of regular expressions. We prove that these rewriting-symport

P systems generate all recursively enumerable languages. We investigate the compu

tational power of these newly introduced P systems for three particular forms of the

regular expressions that are used by the symport rules. A characterization of ETOL

languages is obtained in this context.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

APPROVAL FOR SCHOLARLY DISSEMINATION

The author grants to the Prescott Memorial Library o f Louisiana Tech University the right to

reproduce, by appropriate methods, upon request, any or all portions o f this Dissertation. It is understood

that “proper request” consists o f the agreement, on the part o f the requesting party, that said reproduction

is for his personal use and that subsequent reproduction will not occur without written approval o f the

author o f this Dissertation. Further, any portions o f the Dissertation used in books, papers, and other

works must be appropriately referenced to this Dissertation.

Finally, the author o f this Dissertation reserves the right to publish freely, in the literature, at

any time, any or all portions o f this Dissertation.

Author BIANCA D. PO PA

Date 1 0 / 0 2 / 2 0 0 6

GS Form 14
(5/03)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

ABSTRACT ... iii

LIST OF T A B L E S ... ix

LIST OF F IG U R E S .. x

ACKNOWLEDGEMENTS ... xi

1 IN T R O D U C T IO N ... 1

1.1 An Informal View on Membrane Com puting.. 1

1.2 A Presentation of This Dissertation... 4

2 PR E R E Q U ISIT E S... 7

2.1 Elements of Languages, Automata, C om p lex ity ... 7

2.1.1 Languages.. 7

2.1.2 Chomsky G ram m ars.. 9

2.1.3 Lindenmayer Systems ... 12

2.1.4 Automata and Register M ach in es.. 14

2.1.5 Matrix Grammars ... 19

2.1.6 Elements of C o m p lex ity ... 24

2.2 Basic Classes of P Systems .. 26

2.3 Some Computability and Efficiency R e s u l t s .. 37

3 APPLICATIONS OF MEMBRANE C O M PU TIN G ... 39

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

vii

3.1 M o tiv a tio n ... 39

3.2 P Systems as Modeling Tools in B io lo g y .. 40

3.2.1 Mechanosensitive Channels .. 41

3.2.2 Biological D y n a m ic s ... 43

3.2.3 Cell-Mediated Im m un ity ... 50

3.2.4 P53 Signaling P a th w a y s ... 52

3.2.5 EGFR Signaling Cascade... 54

3.2.6 Quorum Sensing in B a cter ia ... 56

3.2.7 Respiration and Photosynthesis in C yanobacteria.................................. 58

3.2.8 P h otosyn th esis .. 64

3.3 Applications in Computer Science .. 67

3.3.1 Static Sorting P S ystem s... 68

3.3.2 Sub-LP Systems Used In Computer G r a p h ic s 72

3.3.3 An Analysis of a Public-Key Protocol with M em branes.................... 75

3.3.4 Membrane A lgorith m s... 78

3.3.5 Computationally Hard Problems ... 81

4 OPERATIONS FROM BRANE CALCULI... 85

4.1 Mate/Drip Operations in P S y s te m s ... 85

4.2 Computing P o w e r ... 88

5 P SYSTEMS WITH PROTEINS ON M EM BR A N ES..................................... 96

5.1 The M o d e l .. 96

5.2 Computational Results for the Generating M o d e .. 102

5.2.1 Universality for One Type of R u le s ... 105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

viii

5.2.2 Using Two Types of R u le s .. I l l

5.3 One Protein Case ... 120

5.4 Accepting and Computing S y stem s... 124

5.5 A Small Universal P System .. 126

5.6 Solving SAT in Polynomial T im e .. 131

5.7 Using a More Restrictive Type of R u l e s ... 141

6 REWRITING P SYSTEMS WITH SYMPORT R ULES.................................. 149

6.1 The M o d e l .. 149

6.2 Computational R esults.. 152

7 CONCLUSIONS, OPEN PROBLEMS AND FURTHER RESEARCH . . . 165

BIBLIOGRAPHY ... 167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

Table 4.1 Theorem 4.1 (simulating a matrix of type 2)... 90

Table 4.2 Theorem 4.1 (simulating a matrix of type 3)... 90

Table 4.3 Theorem 4.3 (simulating a matrix of type 2)... 92

Table 4.4 Theorem 4.4 (simulating a matrix of type 2)... 94

Table 4.5 Theorem 4.4 (simulating a matrix of type 3)... 95

Table 4.6 Theorem 4.4 (simulating the end of computation).................................. 95

Table 5.1 Restricted rules.. 99

Table 5.2 Change protein rules.. 100

Table 5.3 Theorem 5.2 (simulating a SUB instruction)... 106

Table 5.4 Theorem 5.3 (simulating an ADD instruction)... 109

Table 5.5 Theorem 5.3 (simulating a SUB instruction)... 110

Table 5.6 Theorem 5.4 (simulating an ADD instruction)... 112

Table 5.7 Theorem 5.4 (simulating a SUB instruction)... 113

Table 5.8 Theorem 5.5 (simulating an ADD instruction)... 115

Table 5.9 Theorem 5.5 (simulating a SUB instruction)... 115

Table 5.10 Theorem 5.6 (simulating an ADD instruction)... 118

Table 5.11 Theorem 5.6 (simulating a SUB instruction)... 119

Table 5.12 Theorem 5.8 (simulating the input).. 126

Table 5.13 The simulation of l5 : (ADD(5),/e) and h '■ (SUB(7), I7 , Is)........................ 131

Table 7.1 Universality results from [56]... 166

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

Figure 2.1 Inclusions for classes of problems.. 25

Figure 5.1 Relationships between the types of rules... 103

Figure 5.2 The universal register machine U2 2 ... 129

Figure 5.3 The instructions of the universal register machine U2 2 130

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ACKNOWLEDGEMENTS

First I would like to thank my advisor Dr. Andrei Paun for providing me the

opportunity to work under his guidance, and for his constant interest, support, and

advice throughout my PhD program.

I would also like to express my gratitude to my Louisiana Tech University

professors for their patience and help, especially to Dr. Vir Phoha, Dr. Ben Choi,

Dr. Weizhong Dai, Dr. Raja Nassar, Dr. Richard Greechie, Dr. Galen Turner, and

Dr. B. Ramu Ramachandran.

This work was possible thanks to the financial support of research grants,

in part by LA BoR RSC grant LEQSF (2004-07)-RD-A-23 and NSF Grants IMR-

0414903 and CCF-0523572.

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 1

INTRODUCTION

1.1 A n Inform al V iew on M em brane C om p u tin g

The main goal of this dissertation is to contribute to the bridging of membrane

computing and brane calculi by introducing and studying new classes of membrane

systems inspired from brane calculi.

Membrane computing is an area of natural computing initiated in 1998 in

the technical report [78], and its main goal is to abstract computing ideas and to

construct models based on the structure and functioning of living cells, as well as

from the way cells are organized in tissues, organs, and organisms. Models in this

area are called membrane systems or P systems, and three basic classes are considered:

cell-like (inspired from the cell structure), tissue-like (inspired from the organization

of cells in tissues), and neural-like (related to the way neurons are linked in neural

nets).

Briefly, a membrane system is a distributed and parallel computing model

processing multisets of objects in the compartments of a cell-like hierarchical arrange

ment of membranes (hence a structure of compartments which corresponds to a rooted

tree), or in a tissue-like structure consisting of cells placed in the nodes of an arbitrary

graph. Both the membranes and the objects of the membranes evolve according to

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2

some rules. For instance, the multisets of objects may evolve by means of rewriting

rules, which have the form of usual chemical equations (several objects react and get

transformed into some product objects). A crucial aspect of this processing is the

resulting communication of objects through membranes, between regions of the same

cell, between cells, or between cells and their environment.

Since the initiation of membrane computing, many classes of P systems have

been introduced (based on the form of rules and the way they are used), inspired

from biological reality and motivated from mathematical or computer science points

of view. Most of them are able to compute all Turing computable sets of natural num

bers, showing that the cell is a powerful and efficient computing device. A comprehen

sive; presentation of the field can be found in [79]; for a complete overview of membrane

computing, see the P systems website at: h t tp : / /p s y s te m s .d is c o .u n im ib .i t / .

In February 2003, the Institute for Scientific Information (ISI) has mentioned

[78] as a “fast breaking paper” in computer science (see h t t p : / /e s i - t o p ic s .c o m ,

February 2003); in October 2003, the domain itself was qualified by ISI as “emergent

research front” in computer science, with the paper [75] mentioned as a “citation

leader” in membrane computing.

In turn, several brane calculi were introduced in [23], where the emphasis is

on operations involving membranes (e.g., mate, drip, pinocytosis, exocytosis, etc.)

and controlled by proteins placed on membranes. The approach is based on process

algebra techniques and has as the main goal to produce a biologically realistic model.

The two directions of research are thus complementary from several points of view,

hence combining their ingredients is a natural research idea (already explored, from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://psystems.disco.unimib.it/
http://esi-topics.com

3

points of view related to but different from those we considered here, e.g., in [24],

[19], etc.).

The topics dealt with in this dissertation can be placed in a broader perspec

tive, first, in the framework of natural computing, and then in the framework of cell

modeling.

In terms of natural computing, membrane computing is one of the main areas

of bio-inspired computing areas, closely related to DNA computing, but also to older

areas of natural computing, such as evolutionary computing and neural computing.

While theoretical developments in DNA computing can be traced back to 1987

[50], the birth of DNA computing is considered in the year 1994, when Leonard Adle-

man reported his successful experiment of computing in a test tube [1]. He used

fragments of DNA to compute the solution to a complex graph theory problem, the

Traveling Salesman Problem. Adleman’s method utilizes sequences of DNA’s molec

ular subunits to represent vertices of a graph. Thus, combinations of these sequences

formed randomly by the massively parallel action of biochemical reactions in test

tubes described random paths through the graph. Using the tools of biochemistry,

Adleman was able to extract the correct answer to the problem out of the many

random paths represented by the product DNA strands. A drawback of Adleman’s

DNA computer is that it requires human assistance. The goal of the DNA computing

field is to create a device that can work independent of human involvement, and one

possible idea - also related to the birth of membrane computing - is to place the

computation in the natural environment where DNA evolves, in the cell.

In turn, there are two main approaches in modeling the living cell, the “tra

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4

ditional” one, mainly using differential equations (hence continuous mathematics),

and several recent approaches, based on discrete mathematics combined with com

putational techniques. Membrane computing is perfectly suited from this point of

view, because it uses tools coming from automata and language theory (hence dis

crete mathematics). Mainly, local processes were addressed by means of differential

equations, with an intensive effort made in the last years towards obtaining models

of the whole cell. In membrane computing, the whole cell is represented from the

very beginning, but the models were not introduced with aims related to biologi

cal research but with computer science purposes. In addition to these two direc

tions, we need to mention also the Petri nets (tool for describing and studying sys

tems that are characterized as being concurrent, asynchronous, distributed, parallel,

non-deterministic, and/or stochastic) and 7r-calculus (processes describing concurrent

computations whose configuration can change during the computation).

The thesis presents both a series of applications of membrane computing (in

particular, in modeling the cell), and several models and results of the natural com

puting type, hence covering both frameworks mentioned above.

1.2 A P resen ta tion o f T his D isserta tion

We start with a section of prerequisites, recalling notions and results from

automata, formal language theory, and complexity theory used in the thesis. Then,

we give the basic definition of a P system and the three main classes of membrane

systems, together with the relevant computational and efficiency results known in this

area.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5

In Chapter 3, we discuss the applications of membrane computing models in

the two main directions, biology and computer science, and also about new areas of

interest, such as linguistics and economics.

Chapter 4 gives the first results related to P systems using rules from brane

calculi and evolution rules based only on proteins placed on membranes.

In Chapter 5, we consider a new class of P systems with objects placed in both

compartments and on membranes, with the evolution of the former being controlled

by the latter, which can also evolve, either by membrane operations or, directly, by

object evolution rules. Several possibilities are considered (objects only moved across

membranes or also changed during this operation, with the proteins only assisting

the move/change or also changing themselves). Somewhat expected, computational

universality is obtained for several combinations of such possibilities. We also inves

tigate here some particular cases: P systems with only one protein on a membrane, P

systems with minimal number of rules, P systems working in accepting and comput

ing mode, etc. As an application of P systems with proteins on membranes, we give

a solution to the Satisfiability problem in polynomial time, using exponential space.

In Chapter 6, we combine two central ideas used in membrane computing.

Namely, we work with string objects processed by context-free rewriting rules (such

systems are known not to be universal [79]), without target indications associated with

the rules, and we move the strings across membranes by means of symport rules. The

passage of strings across membranes is controlled by means of regular expressions

which define languages of strings able to move in/out a region of a system. This is

reminiscent of the EC (evolution-communication) P systems from [26] and [57], and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6

can also be related to the brane calculi - membrane computing bridging, in the sense

that one combines the evolution of objects (described by strings this time) from the

compartments of a membrane structure with the control imposed by the proteins

placed on membranes.

The contents of the last four chapters are original and most of the results

reported here were published in papers presented at specialized conferences or in

international journals.

The dissertation ends with a short chapter indicating a series of research topics

and open problems, and a comprehensive bibliography.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PTE R 2

PREREQUISITES

2.1 E lem en ts o f L anguages, A u tom ata , C om p lex ity

We recall here several notions and results from automata and formal language

theory, as well as from complexity theory; for further details, we refer to some of the

monographs in this area, such as [67], [86], [87].

We use standard set theory notations: 0 is the empty set, the fact that an

element a belongs to a set M is denoted by a € M, the inclusion of a set Mi in a set

M2 is written Mi C M2, and the strict inclusion is indicated by Mi C M2; the union,

intersection, difference, and Cartesian product of two sets Mi and M2 are written as

Mi U M 2, M i n M 2, M i — M 2, and Mi x M 2, respectively. The set of natural numbers,

{ 0 ,1 ,2 , . . .} , is denoted by N; the set of n-dimensional vectors of natural numbers is

denoted by N n, for n > 1. The cardinality (the number of elements) of a finite set

M is denoted by card(M).

2.1.1 Languages

An alphabet is a finite non-empty set of abstract symbols. For an alphabet V,

the free monoid (all finite strings of zero or more elements from V) generated by V

under the operation of concatenation is denoted by V*, and the identity element of

this monoid is the empty string, denoted by A. The set of non-empty strings over V,

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8

that is V* — {A}, is denoted by V+ . Each subset of V* is called a language over V . A

language which does not contain the empty string (hence it is a subset of V +) is said

to be A-free. A set of languages is usually called a family of languages. If V = {a},

then we write a* instead of V*.

The length of a string x G V* (the number of occurrences in x of symbols from

V) is denoted by |x|. The number of occurrences of a symbol a G V in x G V* is

denoted by |x|a. For a language L C.V*, the set length(L) = {|x| | x G L} is called

the length set of L. If FL is a family of languages, then we denote by N F L the family

of length sets of languages in FL.

The Parikh vector associated with a string x G V* with respect to the alphabet

V = { a i , 0 2 , . . . ,an} is \Ev(x) = (l ^ l a n M a 2 > • • • > M a „) (note that the ordering of the

symbols from V is relevant); \Ev '■ V* — ► N n is also called the Parikh mapping

associated with V. The Parikh image (or Parikh set) of a language L C V* is defined

by \E'v(L) = {'Iv (x) | x 6 L}. For a family of languages FL, we denote by P s F L

the family of Parikh images of the languages in FL.

A mapping h : V — » U*, extended to h : V* — ► U* by h{A) = {A}, with

h(x\xf) = h(xi)h(x 2), for X\,X2 G V*, is called a morphism. If h(a) ^ A, for each

a € V, then h is a A-free morphism. A morphism h : V* — > U* is called a coding if

h(a) G U, for each a G V, and a weak coding if h(a) G UL) {A}, for each a & V. Thus,

a coding only renames the symbols, while a weak coding can also erase some of them.

The languages L are sets; hence, we can perform the usual set operations:

union, intersection, difference, and complementation (with respect to V*, if L C V*).

There are also several operations which are specific to languages as sets of strings

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9

(hence specific to strings).

The concatenation of two languages L\ and L2 is L iL2 = {xy | x G Li, y G L2}.

This operation can be iterated: take by convention L° = {A}; then, for all i > 0, we

define Ll+1 = LTJ. The union of all languages L \ for i > 0, is denoted by L* and is

called the Kleene closure of L.

A language that can be obtained from symbols of an alphabet V and from

A by using finitely many times the operations of union, concatenation, and Kleene

closure is called regular, also, the empty language is considered to be regular.

2 .1 .2 C hom sky G ram m ars

Generally speaking, a grammar is a finite device generating in a well-specified

sense the strings of a language. The Chomsky grammars are particular cases of

rewriting systems, where the operation used in processing the strings is the rewriting

(the replacement of a substring of the processed string by another substring), and

they have been introduced as a possible model of the syntax of natural languages

(and developed mainly in relation with the syntax of programming languages).

D efin ition 2.1 A Chomsky grammar (or a type-0 grammar) is a quadruple G =

(N,T, S, R), where N and T are disjoint alphabets, S G N, and R is a finite set of

rewriting rules (we also say productions) of the form u —> v, with u, v G (NUT)* and u

contains at least one non-terminal symbol. The alphabet N is called the non-terminal

alphabet, T is the terminal alphabet, and S is the axiom.

Let V = N U T and R having rules in the form r : u —>■ v, for u,v G V*. For

a string w = w luw2, we can rewrite u by means of v by using the rule r, and we get

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

10

the string z = w\ vw 2 . This operation is called direct derivation and it is denoted by

w = > r z, or simply w =>- 2 if r is understood. The reflexive and transitive closure

of direct derivation is denoted by = > * . Thus, we have w ==>* z if either w = z, or

w ==>• Zi =>- z 2 =>• . . . ==>• Zk = z, for some z 1, . . . , zk G V*, k > 1. Each string

w G V* such that S =^*G w is called a sentential form. The language L(G) generated

by G is defined by

L(G) = {x G T* | S = > * x}.

Two grammars G\ and G 2 are called equivalent if L{G\) — {A} = L(G2) — {A}

(the two languages coincide modulo the empty string). Therefore, when comparing

the languages generated or accepted by two devices, we ignore the empty string.

According to the form of their rules, the Chomsky grammars are classified as

follows. A grammar G = (N , T , S , R) is called:

• length-increasing (or type-1), if for all u —► v G R we have \u\ < |u|;

• context-sensitive, if each u —► v G R has u = UiAu2,v = U\xu2, for u i ,u 2 G

(N U T)*, A G iV, and x G (N U T)+;

• context-free (or type-2), if each production u —> v G R has u G N ;

• linear, if each rule u v G R has u G i V and v G T* U T *N T *;

• right-linear, if each rule u —> v G R has « G A and v G T* U T* N;

• left-linear, if each rule u —» v G R has « G i V and v g T * U AT*;

• regular (or type-3), if each rule u —> u G i? has u G A and d g T U TA .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

11

The family of languages generated by length-increasing grammars is equal

to the family of languages generated by context-sensitive grammars; the families of

languages generated by right-linear or by left-linear grammars coincide and they are

equal to the family of languages generated by regular grammars, as well as to the

family of regular languages.

We denote by RE, CS, CF, LIN, and REG the families of languages gener

ated by arbitrary (or recursively enumerable), context-sensitive (hence also by length-

increasing), context-free, linear, and regular (hence also by right-linear and left-linear)

grammars, respectively. By F I N we denote the family of finite languages.

The following strict inclusions hold:

F I N c R E G C L I N c C F c C S c RE.

This is called the Chomsky hierarchy, the constant reference for investigations

related to the power of membrane systems (and of any new types of computing de

vices). This important role of Chomsky hierarchy is due to the fact that the family

R E of languages generated by type-0 Chomsky grammars is exactly the family of

languages which are recognized by Turing machines, and according to the Turing-

Church thesis, this is the maximal level of algorithmic computability. The Chomsky

hierarchy is well structured; hence, we have a detailed classification of computing

devices (there are other types of grammars considered in literature, which are related

to this hierarchy).

Because R E is the family of languages recognized (computed) by Turing ma

chines, N R E , the family of length sets of languages in RE, is the family of sets of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

12

numbers recognized (computed) by Turing machines. If we consider the length sets

of languages, the Chomsky hierarchy becomes

N F I N c N R E G = N L I N = N C F c N C S c N R E ,

because the length set of a context-free language can be obtained as the length set of

a regular language. On the other hand, if we consider the Parikh sets of languages,

the inclusions still hold:

P s F I N c P s R E G = P s L I N = P s C F c P s C S C PsRE.

We continue by introducing a tool used in subsequent proofs, the Kuroda

normal form for type-0 grammars.

D efin ition 2.2 A type-0 grammar G — (N , T, S, R) is said to be in Kuroda normal

form if the rules in R are of the forms A —> BC, A —> a, A —> A, and A B —► CD,

where A, B ,C , D £ N and a G T.

2 .1 .3 L indenm ayer System s

Lindenmayer systems (or L systems), which were introduced in 1968 by Aristid

Lindenmayer, are rewriting systems which model the development of multicellular

organisms (for more details we refer to [62],[86]). The main difference with Chomsky

grammars is the parallelism: in a derivation step one rewrites all symbols of the

string.

D efin ition 2.3 A zero-interactions Lindenmayer system (or OL system) is a con

struct G — (V, w, R), where V is an alphabet, w E V* is the axiom, and R is a finite

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

13

set of rules of the form a —> v, with a £ V, v £ V*, such that for each a £ V there is

at least one rule a —> v in R (we say that R is complete).

For W\,W2 € V*, we write w\ ==>• W2 it w\ = a \ . . . an, W2 = v \ . . . vn, with

di —> Vi £ R, for 1 < i < n. The language generated by G is

L(G) = { x £ V * \ w ^ * x}.

If we have v ^ X, for each rule a —> v £ R , then we say that G is propagating

(non-erasing); if for each a £ V there is only one rule a v in R, then G is said to be

deterministic. If we distinguish a subset T of V and we define the generated language

as L(G) = {x £ T* | w =4>* x}, then we say that G = (V, T, w, R) is extended. The

family of languages generated by OL systems is also denoted by OL; we add the letters

P, D, E in front of OL if propagating, deterministic, or extended OL systems are used,

respectively.

D efin ition 2 .4 A tabled OL system, abbreviated TOL, is a system G =

('V , w , R 1 , . . . , R n), such that each triple (V ,w ,R i), for 1 < i < n, is a OL system;

each Ri is called a table, for 1 < i < n.

The language generated by G is defined by

L(G) = { x £ V * \W = > Rjl W1 = > R j2 ■ ■ ■ = > R jm Wm = X,

m > 0,1 < ji < n, 1 < % < m}.

(Each derivation step is performed by the rules of the same table.)

A TOL system is deterministic/propagating/extended when each of its tables

is deterministic/propagating/extended.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

14

The family of languages generated by TOL systems is also denoted by TOL;

the families ETOL, EDTOL, etc., are obtained in the same way as EOL, EDOL, etc.,

by adding the letters P, D, E in front of TOL.

The DOL family is incomparable with F I N , R E G , LI N. CF, whereas EOL

strictly includes the family CF; ETOL is the largest family of Lindenmayer languages

(with O-interactions); it is strictly included in C S , and it is closed under union,

intersection with regular languages, arbitrary morphisms, concatenation, and Kleene

closure.

For each language L € ETOL, L C T*, there is a very useful normal form of

ETOL systems with only two tables, G = (V, T, w, R\, R2), such that L = L(G).

D efin ition 2.5 An ETOL system G — (V, T, w, Ri, R2) is in the two-table normal

form if it has only two tables, i.e., (V, T, w, R\) and (V. T, w, R2) are EOL systems.

2 .1 .4 A u to m a ta and R eg ister M achines

The five basic families of languages in the Chomsky hierarchy, R E G , LIN,

CF, CS, RE, are also characterized by (recognizing) automata. These automata are:

the finite automaton, the one-turn pushdown automaton, the pushdown automaton,

the linearly bounded automaton, and the Turing machine, respectively. We present

here only two of these devices, those which are more relevant for this dissertation:

finite automata and Turing machines.

D efin ition 2.6 A non-deterministic finite automaton is a construct A =

(Q,V, sQ, F,S), where Q and V are disjoint alphabets, s0 € Q, E C Q, and

S : Q x V — ► V(Q); Q is the set of states, V is the alphabet of the automaton,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

15

s 0 is the initial state, F is the set of final states, and (5 is the transition mapping.

If card(S(s,a)) < 1, for all s G Q, a G V, then we say that the automaton

is deterministic (in this case, S is a function from Q x V to Q). A relation b is

defined on the set Q x V* in the following way: for s, s' G Q, a G V, x G V*, we write

(s , ax) h (s' ,x) if s' G <5(s, a); by definition, (s, A) b (s,A). If b* is the reflexive and

transitive closure of the relation b, then the language of the strings recognized by

automaton A is defined by

L(A) = { x e V * \ (s0, x) b* (s, A),s G F}.

D efin ition 2 .7 A Turing machine is a construct M = (Q,V, T, b,s0, F, 5), where Q

and V are disjoint alphabets (the set of states and the tape alphabet), T C. V (the

input alphabet), b G V — T (the blank sym bol), s0 G Q (the initial sta te), F C Q

(the set o f final states), and S is a partial m apping from Q x V to the power set of

Q x V x {L, R } (the move mapping; if (s ' ,b,d) G S(s,a), for s , s ' G Q, a , b G V, and

d G { L , R} , then the m achine reads the sym bol a in state s and passes to sta te s',

replaces a w ith b, and moves the read-write head to the left when d = L and to the

right when d = R).

If card(S(s, a)) < 1, for all s G Q, a G V, then M is said to be deterministic.

A configuration of a Turing machine as above is a string xsy, where x G V*,

y G V*(V — {b}) U {A}, and s G Q. In this way we identify the contents of the

tape, the state, and the position of the read-write head: it scans the first symbol of

y. Observe that the blank symbol may appear in x, y, but not in the last position

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16

of y ; both x and y may be empty. We denote by I D M the set of all instantaneous

descriptions of M.

On the set I D M, one defines the direct transition relation \-M as follows:

xsay \~m xbs'y iff (s', b, R) G 5(s, a),

xs \ ~m xbs' iff (s', b, R) G 6 (s, b),

xcsay \~m xs'cby iff (s', b, L) € 6(s, a),

xcs hM xs'cb iff (s',b, L) £ 5(s, b),

where x , y G V*, a,b ,c G V , s, s' G Q.

The language recognized by a Turing machine M is defined by

L (M) = {w G T* | s0w \-*M xsy for some s G F ,x , y G V*}.

(This is the language of all strings such that the machine reaches a final state when

starting to work in the initial state by scanning the first symbol of the string.)

The family of recursively enumerable languages is characterized as follows:

R E = {L | there exists a Turing machine M such that L = L(M)} .

The difference between a finite automaton and a Turing machine is visible only in

their functioning: the Turing machine can move its head in both directions and it can

rewrite the scanned symbol, possibly erasing it (replacing it with the blank symbol).

Consider an alphabet T and a Turing machine M = (K, V,T,b, So, F,5). As we

have seen above, M starts working with a string w written on its tape and reaches or

does not reach a final state (and then halts), depending on whether or not w G L (M).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

17

A Turing machine can be codified as a string of symbols over a suitable alphabet.

Let us denote such a string by code(M). Imagine a Turing machine M u which starts

its work from a string which contains both w G T* and code(M), for a given Turing

machine M, and stops in a final state if and only if w G L(M). Such a machine Mu

is called universal. It can simulate any given Turing machine, providing that a code

of the particular machine is written on the tape of the universal one, together with a

string as input for the particular machine.

Note the important distinction between computational completeness and uni

versality. Given a class C of computability models, we say that C is computationally

complete if the devices in C can characterize the power of Turing machines (or of any

other type of equivalent computing devices). This means that given a Turing machine

M, we can find an element C in C such that C is equivalent to M. Thus, complete

ness refers to the capacity of covering the level of computability of Turing machines

(in grammatical terms, this means to generate all recursively enumerable languages).

Universality is an internal property of C and it means the existence of a fixed element

of C which is able to simulate any given element of C in the way described above for

Turing machines.

Because in the membrane computing area computational completeness always

implies universality, we will say “computational universality” (or simply “universal

ity”) when having a result which is stated as a computational completeness result.

In the proofs from the next sections, we will use register machines as one of

the devices characterizing N R E , hence the Turing computability.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

18

Informally speaking, a register machine consists of a specified number of regis

ters (counters) which can hold any natural number, and which are handled according

to a program consisting of labeled instructions; the registers can be increased or de

creased by 1 - the decreasing being possible only if a register holds a number greater

than or equal to 1 (we say that it is non-empty) - and checked whether they are

non-empty.

D efin ition 2.8 A (non-deterministic) register machine is a device M =

(to, B , l 0 ,lh, R), where m > 1 is the number of counters, B is the (finite) set of

instruction labels, l0 is the initial label, lh is the halting label, and R is the finite set

of instructions labeled (hence uniquely identified) by elements from B (R is also called

the program of the machine). The labeled instructions are of the following forms:

• li : (ADD(r), Z2, Z3), for 1 < r < m (add 1 to register r and go non-

deterministically to one of the instructions with labels l2, I3);

• l\ : (SUB(r), l2, I3), for 1 < r < m (if register r is not empty, then subtract 1

from it and go to the instruction with label l2; otherwise, go to the instruction

with label Z3);

• lh : HALT (the halting instruction, which can only have the label lh).

We say that a register machine has no ADD instructions looping to the same

label (or without direct loops) if there are no instructions of the form l\ : (ADD(r), U, l2)

or l\ : (ADD(r), l2, l\) in R. For instance, an instruction of the form li : (ADD(r), Zi, l2)

can be replaced by the following instructions, where /3, I 4 , Z5, l6 are new labels:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

19

h : (ADD(r), /3, Z4), Z3 : (ADD(r), /5, /5), /4 : (ADD(r), /6, l6), k ■ (ADD(r), , li), l6 :

(ADD(r), hih)- The generated set of numbers is not changed.

A register machine generates a natural number in the following manner: it

starts computing with all m registers being empty, with the instruction labeled by Iq;

if the computation reaches the instruction A : HALT (we say that it halts), then the

value of register 1 is the number generated by the computation. The set of numbers

computed by M in this way is denoted by N(M). It is known (see [67]) that non-

deterministic register machines with three registers generate exactly the family N R E ,

of Turing computable sets of numbers. Moreover, without loss of generality, we may

assume that in the halting configuration, all registers, except the first one where the

result of the computation is stored, are empty.

If the addition instruction has the form l\ : (ADD(r), /2), meaning that the value

of register r in increased by 1 and the computation goes to instruction l2, then the

register machine is called deterministic.

2.1 .5 M atrix G ram m ars

In membrane computing area, context-free grammars with regulated rewriting,

such as matrix grammars, are very useful devices [39].

D efin ition 2.9 A context-free matrix grammar (without appearance checking) is a

construct G = (N,T, S, M), where N and T are disjoint alphabets (of non-terminals

and terminals, respectively), S G N (axiom), and M is a finite set of matrices, which

are sequences of the form (Ai —> aq, . . . , An —> xn), for n > 1, of context-free rules

over N U T.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

20

For a string x, a matrix m : (rl5. . . . rn) is executed by applying the productions

r i , . . . , rn one after the other, following the order in which they appear in the matrix.

Formally, we write w ==>m z if there is a matrix m : (A\ —> X\, . . . , A n —> xn)

in M and the strings w i ,w 2, • ■ •, wn+\ G (N U T)* such that = w, wn+\ = z, and for

all 1 < i < n we have Wi = w^Aiw", Wi+ 1 = w^Xjw”. If the matrix m is understood,

then we write instead of =4>m. As usual, the reflexive and transitive closure of

this relation is denoted by = > * . Then, the language generated by G is

L(G) = {w £ T* | S = * * re}.

The family of languages generated by context-free matrix grammars is denoted

by M AT.

The following results on matrix languages are known:

1. C F C M A T c RE, and N C F = N M A T C N R E , P s C F C P s M A T C

P s R E ;

2. The family M A T is closed under union, concatenation, intersection with regular

languages, morphisms, right and left derivatives, mirror image, and permuta

tion;

3. Each language L e M A T , L C a*, is regular.

In a matrix grammar as above, without appearance checking, when using a

matrix, all rules are used in the order imposed by the matrix. A powerful extension

is provided by the possibility to skip certain rules, and this leads to the following

definition.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

21

D efin ition 2 .10 A construct G = (N, T, S , M, F) is a matrix grammar with appear

ance checking if (N , T, S, M) is a matrix grammar as in Definition 2.9 and F is a set

of occurrences of rules in the matrices of M.

For w , z G (NUT)*, we write w = > z if there is a matrix (A\ —> X\, . . . , An —>■

xn) in M and the strings Wi E (N U T)*, for 1 < i < n + 1, such that wi = w,

w n + 1 = 2 , and for all 1 < i < n, either (1) wt = w^Apv", wi+i = for some

in', w" € (NUT)*, or (2) Wi = wi+i, if Al does not appear in wu and the rule At —> xt

appears in F.

Therefore, the difference between a matrix grammar with appearance checking

and one without appearance checking is the fact that in the former case we have at

our disposal the set F, consisting of occurrences of rules in the matrices of M (that

is, if the same rule, say A —> x, appears several times in the matrices, only some of

these occurrences can be present in F\ we may interpret them as having some “flags”

which distinguish them from the other rules); the rules of a matrix are applied in

order, as usual, possibly skipping the rules in F if they cannot be applied. Thus, if a

rule not in F is met, then it has to be used. If a rule from F is met, then we have

two cases: if it can be applied, then it must be applied; if it cannot be applied, then

the rule may be skipped. That is why the rules from F are said to be applied in the

appearance checking mode. The information given by such an application of a rule

from F is rather useful because in the case of skipping the rule, we get “negative

information”: a certain symbol is not present in the string.

The language generated by a matrix grammar with appearance checking G is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

22

defined by

L(G) = { w e T * \ S = > * w}.

The family of languages of this form is denoted by MATac.

The following results are known:

C F C M A T C M A T ^ = RE

(which implies N M A T ac = N R E and P sM A T ac = PsRE).

Note that in the previous definitions of matrix grammars we allow erasing

rules; in general, there is a difference between using or not erasing rules, but we do

not consider this distinction here.

D efin ition 2.11 A matrix grammar (with appearance checking) G = (AT, T, S, M, F)

is said to be in the binary normal form if N = Ni U N 2 U {S, # } , with these three

sets mutually disjoint, and the matrices in M are in one of the following forms:

1. (S -> X A) , where X E N 1} A E N2,

2. (X —> Y, A —> x) , where X , Y E Ni, A E N 2 , x E (iV2 U T)*, |x| < 2;

3. {X Y, A -► #) , where X , Y e N u A E N2;

4- (X —> A, A —> x), where X E Ni, A E N2, x E T*, |x| < 2.

Moreover, there is only one matrix of type 1 and F consists exactly of all rules

A —» # appearing in matrices of type 3; ff is a trap symbol - once introduced, it is

never removed. A matrix of type 4 is used only once - in the last step of a derivation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23

In the proofs from the subsequent chapters, a matrix grammar with appearance

checking in the binary normal form is always given as G = (N,T, S, M, F), with

N — iVi U 7V2 U {S, # } , and with n + 1 matrices in M, injectively labeled with

mo, mi, ■ ■ •) m n\ the matrix mo : (S —> XinitAinit) is the initial one, with X mit a

given symbol from N\ and Ainit a given symbol from N2] the next k matrices are

without appearance checking rules, : (X —> a., A —> x), for 1 < i < k, where

X £ Ni, a £ Ni U {A}, and A £ N 2, x £ (N2 U T)*, |x| < 2 (if a = A, then x £ T*);

the last n — k matrices have rules to be applied in the appearance checking mode,

mi : (X —> Y, A —> #) , for k + 1 < i < n, with X , Y £ N \ ,A £ N2.

The non-terminal matrices to*, for 1 < i < k, will be called matrices of type 2,

the matrices m ,̂ for k + 1 < i < n, will be called matrices of type 3, and the terminal

matrices m* : (X —> A, A —> x), for 1 < i < k, will be called matrices of type f.

D efin ition 2.12 A matrix grammar (with appearance checking) G = (N , T, S, M, F)

is in the Z-binary normal form if N = Ni U N 2 U { S , Z , f f \ , with these three sets

mutually disjoint, and the matrices in M are in one of the following forms:

1. (S —> X A) , where X £ N\, A £ N2,

2. (X —> Y, A —> x), where X , Y £ N \ ,A £ N2, x £ (N2 U T)*, |x| < 2;

3. (X -»• Y, A -> #) , where X £ N u Y £ ^ U { Z j , A £ N 2,

4. (Z ^ A).

Moreover, there is only one matrix of type 1, F consists exactly of all rules

A —s- jf appearing in matrices of type 3, and, if a sentential form generated by G

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

24

contains the symbol Z, then it is of the form Zw, for some w £ (T U {# })* (that

is, the appearance of Z makes sure that, except for Z, all symbols are terminal). As

above, # is a trap symbol, and the (unique) matrix of type 4 is used only once - in

the last step of a derivation.

Usually, in the case of grammars in the Z-binary normal form, we have N —

JVi U 1V2 U {S, Z, # } , the matrices m;, for k + 1 < i < n, can also be of the form

rrii : (X —> Z, A —> #) , and the only terminal matrix is mn+1 : (Z —► A).

2.1 .6 E lem en ts o f C om p lex ity

In this section, we introduce some notions from the theory of computational

complexity ([45]), and we start with some basic definitions.

A problem X is tractable (or X £ P) if there exists an algorithm which solves

X in polynomial time (its worst case time efficiency has an asymptotic upper bound

that is polynomial of the problem input size). The class N P contains the problems

which can be solved by a non-deterministic algorithm in polynomial time.

Obviously, deterministic classes of problems are included in the non-

deterministic classes. The problems from the class P are considered computationally

tractable, that is, one can afford to solve them in a feasible time, while the problems

from N P (which are not known to be in P) are considered intractable. All known

deterministic algorithms for problems in N P — P are of an exponential time complex

ity, and the exponentials grow “too fast” in order to wait an exponential time for a

solution. Thus, it is important to know whether a given problem lies in the class P or

not. For that, the problems can be reduced from one problem to another one. We say

that problem B reduces to problem A if there is a transformation R which, for any

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

25

input x of B, produces an input R (x) to A such that the answer of A to the input

R (x) is the answer of B to the input x. Thus, if B reduces to A, then in order to

solve B , it is enough to compute R(x) and to solve A for the input R(x). Of course,

a reduction is acceptable if it is less complex than the problem B itself. With respect

to classes P and N P , a reduction R is acceptable if it can be done in polynomial

time. In such a case, when B reduces to A, we may say that A is at least as complex

as B; hence, it is important to know whether a problem A has the property that

all problems from a given class can be reduced to A (we may say that A is among

the hard problems of that class). For most natural complexity classes, P and N P

included, there are problems such that all problems from that class can be reduced

to them. Such problems are called complete for the respective classes. Of particular

interest are the problems which are NP-complete (N P C class from Figure 2.1).

The inclusion P C N P is clear; whether or not this is an equality is probably

the best known and the most important open problem in computer science today, the

?so-called P = N P problem. As for now, the situation looks as in the following figure.

\
NP

a r ■\

P NPC
J A /

V

Figure 2.1 Inclusions for classes of problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

26

2.2 B asic C lasses o f P System s

The essential ingredient of a P system is its membrane structure, which is a

hierarchical arrangement of membranes, as in a cell (hence described by a tree), or

a net of membranes (placed in the nodes of a graph), as in a tissue or a neural net.

The intuition behind the notion of a membrane is a three-dimensional vesicle from

biology, but the concept itself is generalized to interpret a membrane as a separator

of two regions, a finite “inside” and an infinite “outside,” providing the possibility of

a selective communication between the two regions.

Following the real-life cell structure, where chemicals appear in different con

centrations, and where the number of occurrences matters, membrane computing uses

multisets as data structures (a multiset is a set with multiplicities associated with its

elements). Each region contains a multiset of objects represented by symbols from

a given alphabet. Usually, multisets are represented by strings where the order of

symbols does not matter. In addition, each region has a set of rules applying to its

objects or to the membrane itself (changing the structure of the system). The ob

jects are considered to be identical; thus, the rules and the objects to be applied are

non-deterministically chosen.

Rules are applied in a non-deterministic and maximally parallel way (by max

imal we mean that at each step as many rules as possible are used; hence, no further

rule can be applied to the objects present in the membranes). The rules to be used

and the objects are chosen in a non-deterministic manner, and all compartments of

the system structure evolve at the same time, synchronously. This way, transitions

among system configurations are obtained. A sequence of configurations starting from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

27

the initial one is called a computation, and a result may be associated only with a

halting computation (ending in a halting configuration where no rule can be further

applied). Because P systems are characterized by non-determinism, a successful com

putation provides a result that can be a set of numbers, a set of vectors (Parikh set)

of numbers, a set of strings (a language), etc., depending on the way the result of a

computation is defined.

Besides the maximally parallel way of applying the rules, several others were

considered, such as sequential way (at each step only one rule is used in the whole

system or in each region), bounded parallel way (at each step at least k or exactly k

rules are used in the whole system or in each region), or minimally parallel way (at

each step at least one rule is used in each region where rules can be applied).

For a given system II, we denote by iV(II) the set of numbers computed by II.

When we consider the vector of multiplicities of objects from the output region, we

write Ps(U). In turn, in the case where we take as (external) output the strings of

objects leaving the system, we denote the language of these strings by T(II).

We specify here some notations which are already standard in membrane com

puting. The family of sets AT(II) of numbers generated by P systems of a specified

type, working with symbol objects, having at most m membranes, and using ingredi

ents from a given list-of-features is denoted by N O P rn (list-of-features). If we compute

sets of vectors, we write PsO Pm(list-of-features). When string objects are used, N

is replaced by L (from “languages”) and O by S (from “strings”), thus obtaining

families LS Pm(list-of-features).

A P system can be defined as an accepting or a generating device. By accept

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

28

ing, we mean that the P system is able to determine whether a given number (placed

in the input membrane in the form of the multiplicity of a given object) is part of a

specific set, while a generating P system is one that generates a set of numbers. The

two main topics investigated in this framework are the computing power of P systems

(working in the generative or accepting modes) and their usefulness in solving hard

decision problems (based on the maximally parallel way of applying the rules). In the

case of computing functions or solving problems, we need deterministic P systems in

order to get only one result, not a set.

In what follows, we describe the three basic types of P systems: cell-like,

tissue-like, and neural-like.

The main component of a cell-like P system is its membrane structure, a

hierarchically arranged set of membranes, which is contained in a distinct external

membrane (called the skin membrane), and which can be represented by a rooted tree

or a string of labeled matching brackets. Each membrane determines a compartment

(also called region) delimited from the region containing it and from the membranes

placed directly inside, if any exists.

Many types of rules have been considered in literature such as evolution rules

(for instance multiset rewriting with catalysts in [42]), communication rules (e.g.,

symport/antiport in [75]), rules involving the membranes too (division, dissolution,

etc.), or combinations of the previous types. The use of rules can be controlled by

promoters, inhibitors, catalysts, priorities, permeability of membranes, etc.

In a tissue-like P system, the structure consists of several one-membrane cells

placed in the nodes of an arbitrary graph. Certain cells can communicate by channels

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

29

(represented by edges of the graph) that are provided between them, but all cells can

communicate through the environment. The communication among cells (usually by

symport/antiport rules, [43]) can be done directly (in one step) or indirectly (through

the environment: one cell sends out objects and other cells can take these objects in

one of the next steps). The channels (also called synapses) can be given in advance

or they can be dynamically established during the evolution of the system. To each

synapse can be associated a state, and by applying a rule to a synapse, the state

can be changed. The use of rules is sequential at the level of each synapse, but it is

maximally parallel at the level of the system (all the synapses which can use a rule

must do so). An even more general type of tissue-like P system, called population

P system, was introduced in [15], where also the cells can evolve as the membranes

in a cell-like P system (by division, dissolution, creation, etc.), and, in addition, the

synapses are inherited.

The neural-like P systems are similar to tissue-like P systems in the way that

the cells are placed in the nodes of a graph and they contain multisets of objects,

but they communicate by signals (spikes) along synapses. In this case, the cells have

associated states which can be changed according to the signals that are received

during computation. There are three possible ways of applying the rules: minimal (a

rule is chosen and applied once to the pair state-multiset of objects), parallel (a rule

is chosen and is used in maximally parallel manner related to the multiset of objects),

and maximal (all rules are applied in a maximally parallel manner related to the pair

state-multiset of objects). For formal definitions and details, see [31], [79].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

30

To define a P system, we have to specify the alphabet of objects (a finite non

empty set of abstract symbols identifying the objects), the membrane structure (a

string of labeled matching brackets), the multisets of objects present in each region of

the system, the sets of evolution rules associated with each region, and the indication

about the way the output is defined. Next, we give the basic definitions for some

common types of P systems, following [79].

D efin ition 2.13 A transition P system (or a P system with multiset-rewriting rules)

of degree m (with m > 1) is a construct of the form

II = (0 , C , l l , WU W2, , Rm, i 0),

where:

1. O is the (finite and non-empty) alphabet of objects;

2. C C O is the set of catalysts;

3. // is a membrane structure, consisting of m membranes, labeled 1, 2 , . . . , to;

4. wi, w2, ■.., wrn are strings over O representing the multisets of objects present

in regions 1, 2 , . . . , m of the membrane structure;

5. i?i, R-2 , . . . , Rm are finite sets of evolution rules associated with regions

1, 2 , . . . , m of the membrane structure;

6. ia is either one of the labels 1, 2 , . . . , m, and the respective region is the output

region of the system, or it is 0, and the result of a computation is collected in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

31

environment of the system (usually, i0 is the label of an elementary membrane

of fl).

The rules are of the form u —»• v or u —> vd, with u G 0 + and v G (O x Tar)*,

where Tor = {here, in, out} and S represents the membrane dissolution. The rules

can be cooperative (with u arbitrary), non-cooperative (with u G O — C), or catalytic

(of the form ca —> cv or ca —> cvS, with a G O — C,c G C, and v G ((O — C) x Tar)*).

Note that in the standard case, the catalysts never evolve and never change the region,

but they only help the other objects to evolve.

In general, the membrane structure and the multisets of objects from its com

partments identify a configuration of a P system. The initial configuration is given

by specifying the membrane structure and the multisets of objects available in its

compartments at the beginning of a computation, that is, by (//, w \ , . . . , wm). During

the evolution of the system, by applying the rules, both the multisets of objects and

the membrane structure can change.

A possible extension of this definition is to consider a terminal set of objects,

T C O, and to count only the copies of objects from T, discarding the objects from

O — T present in the output region.

The multiset rewriting rules correspond to reactions taking place in the cell

inside the compartments. However, an important part of the cell activity is related

to the passage of substances through membranes. The process by which two mole

cules pass together across a membrane (through a specific protein channel) is called

symport', when the two molecules pass simultaneously through a protein channel, but

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

32

in opposite directions, the process is called antiport. In membrane computing, these

operations are represented in the following way: (ab,in) or (ab,out) are symport

rules, stating that objects a and b pass together through a membrane, entering in

the former case and exiting in the latter case; similarly, (a, out-, b, in) is an antiport

rule, stating that a exits and, at the same time, b enters the membrane. Separately,

neither a nor b can cross a membrane unless we have a rule of the form (a, in) or

(a, out), called uniport rule (or minimal symport). We can generalize these types of

rules, by considering symport rules of the form (x, in) and (x, out), and antiport rules

of the form (z , out] w , in) , where x , z , w E V* are multisets of arbitrary size, over an

alphabet V. The weight of the symport rule is equal to |a;|, and the weight of the

antiport rule is computed as max(|,z|, |u>|).

Now, such rules can be used in a P system instead of the target indications here,

in, and out. If we consider multiset rewriting rules without target indications, as well

as symport/antiport rules for communication of the objects between compartments,

we obtain evolution-communication P systems, which were considered in [26]. If we

use symport/antiport rules alone, we can compute using only communication, as in

[18], [74],

D efin ition 2 .14 A P system with symport/antiport rules is a construct of the form

II [O, p, W i , . . . , W m , E, R i , . . . , Rrn, io),

where:

1. O is the alphabet of objects;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

33

2. /x is the membrane structure (of degree m > 1, with the membranes labeled

1, 2 , . . . , m in a one-to-one manner);

3. w i , . . ., vjrn are strings over O representing the multisets of objects present in

the m compartments of /i in the initial configuration of the system;

4. E C O is the (finite) set of objects supposed to appear in the environment in

arbitrarily many copies;

5. , Em are the (finite) sets of symport/antiport rules associated with the

m membranes of /x;

6. iQ is the label of an elementary membrane of /x, which indicates the output

region of the system.

The rules are used in the non-deterministic maximally parallel manner. The

number (or the vector of multiplicities) of objects present in region iQ in the halting

configuration is said to be computed by the system by means of that computation;

the set of all numbers (or vectors of numbers) computed in this way by II is denoted

by N(U) (by -Ps(II), respectively).

We note here a new component of the system, the set E of objects which are

present in the environment in arbitrarily many copies. Because objects are moved

only across membranes and the computation starts with finite multisets of objects

present in the system, we cannot increase the number of objects necessary for the

computation (no object is created, destroyed, or changed - the conservation law can

be applied) if we do not provide a supply of objects in the environment. Because

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

34

the environment is supposedly inexhaustible, the objects from E are inexhaustible;

regardless of how many of them are brought into the system, arbitrarily many remain

outside.

We pass now to presenting a class of P systems, which, together with the basic

transition systems and the symport/antiport systems, is one of the three central types

of cell-like P systems considered in membrane computing. This last type of P systems

gives a very active role to the membranes (by division rules, dissolution rules, etc.)

during the computation, [44].

D efin ition 2.15 The P systems with active membranes are constructs of the form

II = .. . , w m,R),

where:

1. m is the initial degree of the system (m > 1);

2. O is the alphabet of objects;

3. H is a finite set of labels for membranes;

4. fj, is the membrane structure, consisting of m membranes initially having neutral

polarizations and labels from H (not necessarily in a one-to-one manner);

5. w \ , , wrn are strings over O, describing the multisets of objects placed in the

m regions of /i;

6. R is a finite set of developmental rules, of the following forms:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

(a) [ha —> v]eh, for h G H, e G {+ , —, 0}, a G O, v G O*

(object evolution rules: associated with membranes and depending on the

label and the charge of the membranes, but not directly involving the

membranes);

(b) a lh Vh -*■ > for h e H ’ e i ’ e 2 e (+> - , 0 } , a , 6 e O

(in communication rules: an object is introduced in the membrane, and

possibly modified during this process; also the polarization of the mem

brane can be modified, but not its label);

(c) \ha Yh “ *■ \h Yhb’ for h € # , e i , e 2 G { + , - , 0 } , a , 6 e O

(out communication rules: an object is sent out of the membrane, and pos

sibly modified during this process; also the polarization of the membrane

can be modified, but not its label);

(d) [ha] eh ^>b, for h G H, e E {+ , —, 0}, a, b G O

(dissolving rules: in reaction with an object, a membrane can be dissolved,

while the object specified in the rule can be modified);

(e) lha Vh L b Vh2ihc IT’ for h £ H,ei, e2, e3 £ {+ , —, 0}, a,b ,c £ O

(division rules for elementary membranes: in reaction with an object, the

membrane is divided into two membranes with the same label, and possibly

of different polarizations; the object specified in the rule is replaced in the

two new membranes possibly by new objects; the remaining objects are

duplicated and may evolve in the same step by rules of type (a)).

Inside each membrane, the rules of type (a) are applied in the non-deterministic

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

36

maximally parallel manner, with each copy of an object used by only one rule of any

type from (a) to (e). Each membrane can be involved in only one rule of types

(6)-(e). The types of rules are chosen in a bottom-up way: first we use the rules

of type (a), and then the rules of other types; in this way, in the case of dividing

membranes, the result of using the rules of type (a) first is duplicated in the newly

obtained membranes.

The set H of labels has been specified because it is possible to allow the change

of membrane labels. For instance, a division rule can be of the more general form

(e') Li a]hi ^ ih2b ^ h 3c]Z ̂ for hi ’h*’h3 e H ,e i , e 2 ,e3 G { + , - , 0}, a, b, c G O.

The change of labels can also be considered for rules of types (b) and (c).

Moreover, we can consider the possibility of dividing membranes in more than two

copies (d-division), or even of dividing non-elementary membranes (in such a case, all

inner membranes are duplicated in the new copies of the membrane).

It is important to note that in the case of P systems with active membranes,

the membrane structure evolves during the computation, not only by decreasing the

number of membranes, due to dissolution operations, but also by increasing the num

ber of membranes by division. This increase can be exponential in a linear number

of steps: using a division rule successively n steps, due to the maximal parallelism,

we get 2" copies of the same membrane. This is one of the most investigated ways

of obtaining an exponential working space in order to trade time for space and solve

computationally hard problems (NP-complete problems) in feasible time.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

37

2.3 Som e C om p u tab ility and Efficiency R esu lts

The initial goal of membrane computing was to define computability models

inspired from the cell biology, and to examine their computing power in compari

son with the standard models in computability theory, Turing machines and their

restricted variants. As it turns out, most of the classes of P systems considered are

equal in power to Turing machines. All classes of systems considered above, whether

cell-like, tissue-like, or neural-like, with symbol objects or string objects, working in

the generative or the accepting modes, with certain combinations of features, are

known to be universal. The cell turns out to be a very powerful “computer,” both

when standing alone and in tissues.

We mention here some recent results, which are relevant for our work (for

proofs, see the mentioned papers):

• NOPi{cat 2) = N R E (transition P systems with one membrane and two cata

lysts are universal [42]);

• NOPz(symi ,ant i i) = NOP^^sym^jantio) = N R E (symport/antiport P sys

tems of degree 3 using symport and antiport rules of weight 1, or only symport

rules of weight 2, are universal [6]);

• NOP^objs, sym*,anti*) = N R E (P systems with four membranes and symport

and antiport rules of arbitrary weight are universal even when using only three

objects [80]).

• NOPz({a), (b), (c)) = N R E (P systems with active membranes of degree 3 and

rules of types (a), (6), (c) are universal [64]);

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• NOPg(endo, exo) = N R E (P systems of degree 9 and mobile membranes using

brane calculi operations, endocytosys and exocytosys, are universal [58]);

• NSPs(repl2) = N R E (P systems of degree 3 with strings and using replicated

rewriting rules, with at most 2 copies of each string produced by replication,

are universal [60]).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 3

APPLICATIONS OF MEMBRANE COMPUTING

3.1 M otivation

The results from the last years show that membrane computing offers a variety

of tools, techniques, and models, which can be applied to biology, linguistics, theoret

ical and practical computer science problems (for more details see [34]). In addition

to previous mentioned areas of application, there are also new approaches, such as

economics: in accounting (see [54]), in human resource management (see [13]), etc.

Here we also refer to several applications of P systems in linguistics, as a represen

tation language for various concepts related to language evolution, dialogue, syntax

and semantics [14], and making use of the parallelism in solving parsing problems in

an efficient way [49]), etc.

Before looking at these applications, let us stress the attractiveness of mem

brane computing as a modeling framework by mentioning several essential features rel

evant to membrane computing that are of interest for many applications: distribution,

discrete mathematics, the property of being algorithmic, scalability/extensibility,

transparency (multiset rewriting rules are nothing other than reaction equations from

chemistry and biochemistry), massive parallelism, non-determinism, communication,

etc.

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

40

All the applications have in common some aspects: the concepts are presented

in the mathematical formalism of membrane computing and, in addition, they have a

graphical representation of cell-like structure, tissue-like structure, and so on; mem

brane computing also provides a way to visualize the system’s evolution (the way

rules are applied).

3.2 P S ystem s as M od elin g Tools in B io logy

There are different domains of computer science which are inspired from the

biology behind the living organisms. We are talking about evolutionary computing

(genetic algorithms), neural networks, DNA computing, and membrane computing.

All of them are known as molecular computing.

Most applications of membrane computing are related to biology. This is

quite natural in view of the fact that the theory of membrane systems as a model of

computation started from biology as an abstraction of the structure and functioning

of biological membranes. The final goal is to develop in silico simulators in order to

replace the experiments in vitro or in vivo.

Also, other classes of rewriting systems related to biological phenomena are

presented in the literature (see [50], [62], [87]), but the P systems have a membrane

structure similar to the cell and they may be seen as computational universal devices

and also as simulators of evolution processes by observing the transitions between

configurations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

41

In what follows, we briefly recall some biological applications of membrane

computing, mainly following [34], but also other recent papers from membrane com

puting literature.

3.2.1 M ech an osen sitive C hannels

There are different approaches for describing the evolution of molecular func

tioning of living cells. As we already mentioned, there are simulator softwares based

on the numerical integration of sets of differential equations (using continuous mathe

matics), such as E-CELL project (which models and reconstructs biological phenom

ena to allow precise whole cell simulation - see [90]), or Virtual Cell (a computational

environment that constructs cell biological models and generates simulations of reac

tions - see [63]).

A totally different approach is to use discrete mathematics that is more ap

propriate for the simulation of membrane behavior or the activity of channels in

bacteria. One such application is described in [10] for mechanosensitive channels of

large conductance (MscL). Mechanosensitive channels, located in the cell membrane,

are protein-based channels gated by mechanical forces and they allow the rapid exit

of different chemicals decreasing the osmotic pressure inside the cell. Based on the

biological notions concerning MscL in bacteria and the way they are gated, two P

system models are defined corresponding to in vitro patch clamping experiments and

in vivo hypotonic shocks. These systems consist of some basic components: an en

vironment, a region, a membrane, and rules, which naturally correspond to essential

aspects of MscL activity.

In both models, objects are never modified by evolution rules; instead, they are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

42

only exchanged between the internal region and the environment (so they are more

communication rules with respect to objects). In addition, by using different target

indications, the direct passage of water through the cellular membrane, by osmosis, is

distinguished from the passage of chemicals which needs the opening of mechanically

gated channels.

In the in vitro simulation P system model, 43 rules are used to obtain a cycle

simulation, a transition of the channels from closed state to open state and then back

to closed. By applying the rules, the label of the membrane is also changed according

to the status of the channel (the label is seen as a tension parameter which can take

eight values corresponding to real membrane tension and channel status). Probabil

ities are associated with evolution rules in order to achieve a closer resemblance to

biological reality of the priorities between reactions.

The second P system model describes the in vivo activity of MscL based on

laboratory experiments data. The number of membrane tension values is reduced to

5 and, in this case, probabilities are not associated with rules. With respect to the

number of water molecules, for the chemicals from a multiset, a concentration function

is defined, and then extended for the whole multiset that is present in the environment

or in the region. The transitions among tension values are due to addition of water

in the environment and they are coded by environmental rules. The communication

of chemicals through channels depends on their concentration and the rewriting rules

have the form of concentration-based evolution rules or they may be combined with

environmental rules. Using only 10 rules, the P system can predict the possible

behavior of MscL for different amount of water molecules placed in the environment.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

43

A software environment has been used to produce simulations of the in vitro

P system model and to obtain predictions about observable quantities that could

be used to test its soundness and validity. The MscL activity was simulated using

EdnaCo, a virtual test tube spatially arranged as a 3D coordinate system, in which

biomolecules may move, interact, etc. The parallel way of applying the rules in a

P system is implemented in EdnaCo by dividing the virtual test tube into segments

that are run on different processors. The main advantage of using EdnaCo is that a

simulation requiring multiple MscL (in a bacterial cell there are 50 — 100 channels, not

only one as in the in vitro model) interacting under the same changing environmental

conditions can be run in short time because of the massive parallelism.

The models presented could be enlarged to also include other processes occur

ring during osmotic shocks, but there is presented only the formal simulation of the

activity of MscL in prokaryotes, and the investigation is based on biological data and

results obtained from Escherichia coli. However, the models are general enough to

cover distinct conditions for the functioning of MscL in other prokaryotes too.

3 .2 .2 B io log ica l D ynam ics

There are some aspects which are crucial in almost any study of biomolecular

processes, and the traditional P systems do not take them into major account. In

view of the studies from [17], [21], and [40], these aspects are: dynamical behavior

of bio-molecular processes, environmental energy and resources, and asynchronous

system control. The focus of the P system on final configuration and maximal par

allelism (which leads to consumption of all available resources of the system during

one transition) is changed to dynamics of evolution.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

44

New classes of P systems are defined, with a more active role to the mem

brane boundary and to the environment. These are: P systems with boundary rules

(PB systems), PB systems with environment (PBE systems), and PBE systems with

resources. The boundary rules (for a formal definition, see [17]) are a special case of

communication rules which recall of antiport rules. For PB systems, the notation x[%y

means that a membrane labeled i can see outside, close to its boundary, a multiset x,

and inside the membrane is the multiset y. Biological processes such as periodicity,

stability, adaptability, growth, or degeneration, and the relationships between them

are implemented in the new types of P systems.

To obtain graphical representation of a P system which describes an oscilla

tory biochemical system, a simulator called Psim is used. Psim is a Java implemented

simulator with a user-friendly graphical interface which allows the definition of mem

brane structure by XML files (for details see [20]). The oscillatory process refers to

the periodic behavior of biological systems and it is modeled using concentrations as

sociated to biological or chemical elements. The algorithm that is implemented, called

metabolic, is inspired by the chemical reading of the rewriting rules. The objects are

seen as reactants or products and the rules as chemical reactions with a reactivity

coefficient associated. The algorithm is tested with Psim to simulate the oscillations

of Brusselator model, which is a simplified model of the Belousov-Zhabotinskii reac

tion (that occurs between reactants such as sulphuric acid, malonic acid, ferroin, and

bromate sodium, combined together in presence of a cerium catalyst). The results

had been verified by the numerical integration Runge-Kutta method on the associated

differential equations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

45

A second dynamic system is investigated and tested by Psim. The system

is of predator-prey type. To be more concrete, a population of cells (or people) is

divided in three groups: healthy, ill, and immune, and its evolution is observed in

time. The simulation of this system with Psim has shown results which agree with

those obtained by solving the Lotka-Volterra equation system. The results have

highlighted the existence of a threshold of activation for the epidemic: if the initial

healthy population is below a certain amount, then the epidemic does not start and,

hence, ill people decrease in number until they vanish; on the other hand, if the

initial healthy population is beyond that threshold, then the epidemic activates and

the number of ill people grows up until reaching its maximum.

The immune system represents a case of complex adaptive system where the

notion of cell membrane is essential. P systems provide a good mean to describe

the main processes happening in the immune system. The surface of immune cells

(and of other cells too) is covered with receptors that are complex three-dimensional

electrically charged structures. The receptor of a pathogen is called epitope, and

the bond strength between a receptor and an epitope is called affinity. In order to

formally express the presence of a receptor, instead of using [i to indicate a membrane,

it is used the notation { with an interstice between braces and square brackets,

intended as a region belonging to the external surface where receptors are detectable

from the outside and, in their turn, can detect objects from the environment. This

feature can be considered as an extension of the communication mechanism of PB

systems and of symport/antiport P systems.

Some pathogens constantly attack the body and can be harmful if they are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

46

left unchecked. Since different antigens have to be destroyed in different ways, the

problem faced by the immune system is to recognize them and to choose the right tools

for destroying that particular kind of pathogens. The relevant biological properties

that characterize the immune system can be represented by P systems with labels

for antigens, objects for epitopes, and electrical charges associated to membranes. To

protect organisms from foreign pathogens (such as viruses, bacteria, parasites, etc.),

the immune system must be capable of distinguishing harmful foreign material from

normal constituents of the organism. The recognition of an antigen as foreign in

the immune system can be seen as a problem of pattern recognition implemented by

binding. For example, lymphocytes recognize pathogens by forming molecular bonds

between pathogen fragments and receptors on the surface of the lymphocyte. The

more complementary the molecular shape and electrostatic surface charge between

pathogen and receptor, the stronger the bond (and the higher the affinity) is.

The architecture of the immune system is made of different levels. The most

elementary one is the skin, which is the physical barrier to infection. Another level

is constituted by the physiological conditions (such as pH or temperature) that pro

vide uncomfortable living conditions for foreign organisms. When pathogens enter

the body, they encounter the innate immune system and then the adaptive immune

system. Both systems consist of a multiplicity of cells and molecules that interact

in a complex manner to detect and eliminate pathogens. The first system is not

changed from the birth of the organism and it provides a rapid defense to keep an

early infection in check, giving the adaptive immune system enough time to prepare a

more specific response. The adaptive system learns how to recognize specific types of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

47

pathogens, and it retains memory of this for speeding up future responses. Both de

tection and elimination depend upon chemical bonds. The surfaces of immune system

cells are covered with various receptors. Some of these receptors bind to pathogens

and some others bind to other immune system cells or molecules.

The membrane system defined to describe the principal steps of innate immune

system contains two membranes representing the first two levels of defense before

going to the adaptive part of the immune system (that is located in the environment

for this membrane structure). The attack of antigens is seen from the inside to the

outside of the system, because the most internal region represents the external world,

and the most external region represents the last, and more specific body defense.

This choice is motivated by the increasing complexity of the processes that must be

described.

Complement molecules are the primary chemical response of the immune sys

tem in the early stages of infection, and they are involved in two distinct phenomena,

respectively, lysis and opsonization. Lysis is the process by which the complement

ruptures the bacterial membrane; this action results in the destruction of the bac

terium. Opsonization refers to the coating of bacteria with the complement, causing

the bacteria to be detected by macrophages (phagocytes which engulf cellular debris

and pathogens). Macrophages have receptors both for certain kinds of bacteria and

for complement.

Cytokines are molecules that act as a variety of important signals, and their

release activates the next phase of the host defense, called early induced response.

They are produced not only by macrophages and other immune system cells, but also

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

48

by some self cells (which are not part of the immune system) when they are damaged

by pathogens. Their major effect is to induce an inflammatory response, associated

to some physiological changes (fever) which reduce the activity of pathogens and

reinforce the immune response by triggering the production of acute phase proteins

(APP), substances which bind to bacteria, thus activating macrophages or comple

ments. When infected by viruses, certain cells produce interferons, a family of cy

tokines, which inhibit the viral replication. Moreover, they activate certain immune

system cells called Natural Killer (NK) that kill infected cells. NK cells bind to normal

host cells, but they are normally not active because healthy cells express molecules

that act as inhibitory signals. When some virally infected cells cannot express these

signals they are killed by activated NK cells, that release special chemicals that trigger

the apoptosis (death) on an infected cell.

P systems are topological spaces without a metric on objects, but a metric

can be important when dealing with cellular reactions. The membrane system that

is defined has rules which are not used like in the P systems, but in the way of Psim ;

therefore, the process dynamics and effects are regulated at every step by the actual

amounts of reactants. Every dissolving membrane delivers its content to the immedi

ately outer membrane, and every dividing membrane replicates its content inside the

new membrane. The objects represent biological properties of the antigen, epitopes in

all possible forms (before and after lysis), self cell receptors, complements, cytokines,

APP as symbol for activation of macrophages, and apoptosis. The rules simulate

the processes of entrance of antigens, replication, infection, lysis, opsonization, debris

remotion, opsonized antigen remotion, antigen-macrophage complex, functionality

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

49

restoration, cytokine production by macrophages, cytokines production by infected

cells, APP production by cytokines, complement increasing by APP, macrophages

increasing by APP, self cells immunization by cytokines, virus replication/inhibition,

NK cell activation by interferons, interferon production by activated NK cells, apop

tosis, and self cell death.

In an organism the first response against an inflammatory process consists in

the activation of recruitment of leukocytes. Activation relies on the complex func

tional interplay between the surface molecules. These molecules are differently ex

pressed by leukocytes circulating in the blood, and by endothelial cells covering the

blood vessel. A leukocyte cell has some receptors on its surface that bind with coun

terreceptors located on the surface of the endothelial cells. These bonds slow down

the initial speed of leukocyte. Moreover, some molecules, called chemokines, are pro

duced by the epithelium and by the bacteria that have activated the inflammation

process. Chemokines can bind with the leukocyte receptors, producing signals inside

of it. Such signals generate on the leukocyte surface new and different receptors that,

while interacting with the endothelial receptors, strongly slow down the cell speed un

til it stops. There are four stages in the movement of the leukocyte: the initial state

with fast circulating leukocytes into the blood, the rolling state, the activation state,

and the final adhesion state. A membrane system representing this immunological

phenomenon is described in [40], and then a simplified model with two membranes is

analyzed by Psim.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50

3.2 .3 C ell-M ed iated Im m unity

From the simulation of the innate immune system using Psim presented in the

previous section, we move to the adaptive immune system modeled by client-server P

systems and described in [32]. As we already mentioned, the most important function

of the immune system is to distinguish between the harmless self and the potentially

dangerous non-self. Adaptive immunity (or acquired immunity) is developed and

modified throughout life by learning the specific antigens before removing them from

the organism. The most important components of adaptive immune system are the

major types of lymphocytes: T cells (80%) and B cells (15%). There are two adaptive

mechanisms: humoral immunity and cell-mediated immunity. Humoral immunity is

mediated by serum antibodies, which are proteins secreted by the B cells, while cell-

mediated immunity consists of the T cells. Each T cell has many identical antigen

receptors which interact with antigens.

T cells play a central role in the cell-mediated immunity. When a T cell recog

nizes a foreign antigen, it initiates several signaling pathways and the cell activates.

The T cell activation is caused by an appropriate interaction between the T cells

armed with T cell antigen receptors and the antigen cells. The antigen recognition

initiates signal transduction, which can be broken down into a series of discrete steps

that are related to various molecular events within the signaling pathways.

In order to model the T cell signaling network, a distributed version of P

systems is used. The P system application of rules in a maximally parallel manner

expresses the natural competition for scarce resources in the immune system. Com

munication and coordination is essential, and thus symport/antiport rules are consid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

51

ered for communication among membranes. Since the immune system environment is

highly distributed, a new type of P systems, called client-server P system (CSPS), as

defined in [33], is used to model the T cell signaling pathways and T cell activation. A

client-server P system is a P system composed of elementary membranes (except the

skin), with state objects modeling the states of the clients, and rule objects modeling

the communication (by symport rules) between clients. Client-server P systems were

theoretically investigated in [33], where it is proven that CSPSs of degree at most 4

and using symport rules of weight at most 4 are computationally universal.

Starting from CSPS, a client-server P simulator (CSPsim) is defined as a set

of communicating automata together with appropriate internal transitions for each

component, and communication steps between components. Each membrane of a

CSPS corresponds to an automaton in CSPsim. The CSPsim adds to the abstract

model both qualitative and quantitative features of the T cell signaling network,

while a client-server P simulator with two clients has the same computational power

as a Turing machine. These abstract simulators represent an intermediate step from

a formal theory suitable for theoretical results to a software implementation of a

molecular network.

The steps needed to obtain useful results from the software are as follows:

T cell real system CSPS CSPsim MOINET

For the implementation of T cell molecular networks model, it is used a new

software environment called MOINET (MOlecular NET works) [33]. The software

experiments provide data which is then statistically processed and interpreted. One

of the main goals of statistics is inferring conclusions based solely on a finite number

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

52

of observations about events likely to happen an indefinite (infinite) number of times.

Nonetheless, the strength of conclusions yielded depends on the sample size upon

which the analysis is based. In fact, in many cases a big difference appears between

the minimum size required by statistics in order to make methods applicable, and the

size that biological “wet” experiments can provide. This is why computer simulators

for biological processes are needed: the use of such tools overcomes the problems

of budgeting, since the cost per software experiment is low in comparison with the

biological lab experiments. Therefore, data sets of a desired size can be obtained

allowing for correct statistical inferences and hypothesis testing.

The results contribute to explaining how various factors determine differences

in the formation and composition of the T cell antigen receptors signaling complexes,

and how they drive different biological consequences of T cell signaling networks. The

T cell behavior is determined by the signaling network that could engage various cell

responses due to potentially different signal types, quantities, and durations.

3 .2 .4 P 5 3 Signaling P athw ays

ARMS (Abstract Rewriting system on MultiSets) is a simple model for chem

ical reactions and consists only of an alphabet of symbols (molecules) and a set of

rewriting rules (reactions); hence, this is a one membrane P system with multiset

rewriting rules. The rewriting rules are applied in parallel and, when there are more

then one rule applicable to the same object, then one rule is randomly selected. An

ARMS cannot be considered a P system because of the lack of a membrane structure.

In [88], there is defined a type of ARMS, called ACS (Artificial Cell System), which

has a membrane structure with multisets of objects associated to each membrane.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

53

The rules are still applied globally, meaning that there are no different rules for each

membrane. The division and dissolution reactions are not implemented by rules as

in standard P systems, but by using threshold values. A membrane disappears if the

volume of membrane compounds decreases below a given dissolving threshold. When

the volume of a membrane’s compounds increases above a given dividing threshold,

a new membrane is created inside of it and the multiset of objects is divided into two

multisets of random sizes between these membranes.

Various types of ARMS had been proposed and used, and we further refer

to the ARMS with membrane structure presented in [89], which is equivalent to a

P system with multiset rewriting rules and target indications. The system models

the p53 signaling pathways and consists of two membranes (one for the nucleus and

another one to enclose the cytoplasm) and 9 rules.

The p53 signaling network has been studied intensively because it plays a

major role in cell survival, and it protects against genetic instability, which leads to

tumor formation. The p53 protein is an important factor in regulating the response

of cells to stresses and damage, mainly through the activation of genes involved in

cell cycle control, DNA repair, senescence (aging), and apoptosis. In normal cells,

p53 is an ephemeral and scarce protein because of its rapid degradation, and it exists

in an inactive form. Once a cell has a DNA damage, p53 transforms itself from

latent to active conformation and moves from the cytoplasm to the nucleus of the

cell. Protein p53 has two levels of activation, depending on the level of DNA damage.

The weakly activated p53 prevents damaged cells from proceeding in the cell division

cycle and promotes DNA repair, while the highly activated p53 induces apoptosis and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

54

eliminates mutated or irrevocably DNA damaged cells [89].

The evolution of the p53 signaling network modeled by the ARMS with two

membranes is then simulated on computer and the results agree with the biological

facts: when the DNA damage increases, the p53 protein is activated and translocated

from cytoplasm to nucleus; after the damage is repaired, the protein returns to the

normal state.

3 .2 .5 E G F R Signaling C ascade

In this section we describe a model for epidermal growth factor receptor

(EGFR) signaling cascade simulated by a continuous variant of P systems [82]. EGFR

is an important biological target for the development of novel anticancer therapies and

it had been investigated using mathematical formalization of differential equations,

which is focused on the description of the change in concentration of the chemical

compounds. The proposed continuous P system is a different approach of simulating

the intracellular signaling networks by using a topological and modular view.

For the usual discrete P systems, the rules are applied in a maximally parallel

way an integer number of times. A continuous P system can evolve in every instant

by applying a maximal set of rules a positive real number of times determined by

a given function K . This way of applying the rules is inspired from the in vivo

chemical reactions evolution which is continuous and based on the concentration of

the reactants. The objects also have non-negative real number multiplicities and take

part of the continuous multisets. The rules are of the form «[v]{ —> u'[v')v where

the multisets u and v represent the reactants, the multisets v! and v' represent the

products, and i is the membrane relevant for the reaction. A configuration E(t) of a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

55

continuous P system at an instant t is given by a matrix of non-negative real values

aij representing the multiplicity of the jth object in the membrane % of the system.

K(r , E (t)) is the rate of application function and associates with each rule r and each

configuration E(t) a non-negative real value representing the rate of application of

rule r. The standard P systems perform computations and produce results, whereas

in the case of continuous P systems the evolution at various moments of time is

significant.

EGFR signaling cascade is a complex process and it is modeled by more than

60 proteins and complexes of proteins and 160 chemical reactions. The continuous P

system consists of an alphabet of objects representing the proteins and the complexes

of proteins, and a membrane structure with three regions (for the environment, the

cell surface, and the cytoplasm). The initial multisets present in the regions have

values of concentrations of substances from real experiments. For rules, the rate of

application function is computed based on the Law of Mass Action, which means

that the rate of a reaction is proportional to the product of the concentrations of the

reactants.

In order to simulate evolutions of continuous P systems on computers, they

need to be approximated by discrete P systems. The effect of a rule r during an

interval of time [t(, b+i] of length p — ti+\ — t i , for p small enough, is approximated

by pK(r , E(ti)). By this approximation, a usual P system is obtained, which performs

a finite number of steps and at each step the rules are applied pK(r , E(ti)) times, in

a bounded parallel manner (as defined in Section 2.2).

The model of EGFR signaling cascade is implemented using CLIPS (C Lan

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

56

guage Integrated Production System), which is an expert system tool that allows the

construction of needed rules and objects. The evolutions of the continuous P sys

tem is approximated by computations of a discrete P system working in a bounded

parallel manner of parameter p = 10-3 . The graphical results show the effect of

concentrations of the most relevant proteins in the signaling cascade over time and

suggest that the cascade is robust to variations in the EGF (epidermal growth factor)

concentration, which agrees with experimental data. This model may be used for

predictions and new hypothesis about the behavior of EGFR signaling cascade in the

cell cycle and tumor genesis.

3 .2 .6 Q uorum Sensing in B acteria

In [16], a new variant of P systems with generalized boundary rules is used to

model the quorum sensing system of the marine bacterium Vibrio fischeri. The model

provides a description for the reactions involved in the quorum sensing regulatory

network in an arbitrarily large colony of bacteria seen as a whole complex system.

Usually, bacteria are considered as independent organism, but certain bacteria, such

as Vibrio fischeri. bacterium, exhibit coordinated behavior which allows an entire

population of bacteria to regulate the expression of specific genes depending on the

size of the population. This cell density dependent gene regulation system is known

in literature as quorum sensing. In this way, bacteria can effectively communicate

to each other by responding to changes in the concentration of the signal molecules

present inside of them and in the environment.

The P system model used is a cell-like P system consisting of a number of

compartments, which represent the bacteria placed inside of the skin membrane that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

57

represents the environment. The elementary membranes communicate only with the

environment region and not directly to each other. Only 5 objects are necessary to

encode the proteins and the complexes of proteins involved in the quorum sensing

k ■
process. The rules have the form: j : u[v]i -4 u'[v']i5 with the difference from the

previous mentioned model (from [82]) being in the rate of application function that is

replaced by a kinetic coefficient kj g R + associated with each rule j (as a measure of

rule’s reactivity). Using these kinetic coefficients and a mass action law, at each step

only one rule is applied, meaning that the evolution of the system is not based on

parallelism. The set of rules consists of 2 rules related to the environment membrane

and another 12 which correspond to all inner regions representing the bacteria (all

having the same label).

The P system defined to model the quorum sensing depends on the considered

number of bacteria in the colony and on the choice of the real values for the kinetic

coefficients associated with each rule. The system is implemented using Scilab, a

scientific software package for numerical computations with a user-friendly interface.

The behavior of the system is changing for populations of different sizes and, for this

reason, it is important to see how a bacterium can sense the number of bacteria in

the colony and respond (by producing light) only when the number of individuals is

big enough. First, the model is simulated for a population of 300 bacteria and the

graphical results show the evolution over time of the bacteria which respond and the

number of signal molecules sent to the environment. The signal molecules accumulate

in the environment until saturation (a specific threshold of concentration) and then

bacteria are able to detect that the size of the population is big enough. Moreover,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

58

the evolution of a population of only 10 bacteria shows no coordination of the colony

behavior.

The simulations indicate that Vibrio fischeri bacterium has a quorum sensing

system where a single bacterium guesses that the size of the population is big enough

and starts producing light. This bacterium massively produces signal molecules and,

if the signals do not accumulate in the environment (meaning that the guess was

wrong), then it switches off. On the other hand, if the signals do accumulate in

the environment (meaning that the number of bacteria in the colony is big), then a

recruitment process takes place and makes the whole population of bacteria to glow.

These results agree with the in vitro experiments.

3 .2 .7 R esp iration and P h oto sy n th esis in C yanobacteria

Starting from the evolution-communication P system proposed in [26], a new

probabilistic model was defined in [11], and then the mathematical model results

were compared with the biology reality by simulations (for details about simulator

see [11], [27]). The software was used to simulate simple biological phenomena re

lated to respiration in Escherichia coli and the interaction between respiration and

photosynthesis in cyanobacteria.

In an evolution-communication P system (EC P system), there are two types

of rules: rewriting rules for evolution and symport/antiport rules for communication

that work simultaneously and independently. Each copy of a symbol (object) evolves

according to given evolution rules that represent chemical reactions associated with

the regions and described by rewriting rules. In the same time, symport/antiport

rules are applied, simulating biochemical transport mechanisms present in the cell.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

59

The transport of molecules and chemicals (objects) across membranes can be passive

or active. The transport is passive when molecules pass across the membrane from

the compartment with a higher concentration to that with a lower concentration,

and no energy is used for the transport. An example of passive transport is the

entry of oxygen molecules by diffusion into the cell of Escherichia coli bacteria or the

exit of carbon dioxide outside the bacterium. These two passive processes are both

important for the aerobic respiration in Escherichia coli. The transport is active when

molecules pass across the membrane from a compartment with a lower concentration

to one with a higher concentration. In this case, it is necessary to consume some

energy to accomplish the transport.

The symport of different substances is needed for bacterial growth. In Es

cherichia coli, the protons are moved in symport with either lactose, arabinose, or

galactose. An example of antiport mechanism is the proton-sodium antiport found in

many bacteria, where the main function is the maintaining of a constant concentration

of either protons or sodium ions inside the cell [27].

The application of the rules of either type, evolution and symport/antiport

rules, of an EC P system is made in a non-deterministic and maximally parallel

way and the process is synchronized. Any computation, halting or non-halting, of a

system is considered, corresponding to the biochemical transformations and transport

processes in a living cell.

A software simulator is built to implement EC P systems with probabilities

associated to rules implying a weak priority that solves the competition of rules for

each copy of an object. The simulator takes, as input, the rules of the EC P system

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to simulate, the structure of the system, and the occurrences of the objects present

at the beginning of the computation in the regions of the P system. In addition,

it needs two types of probabilities for each rule: the probability to be available and

the probability to win a conflict. The probabilities of rules to be available (given in

the initial configuration) are independent of each other and also independent of the

presence of objects. The probability of a rule to win a conflict over a symbol with

other rules is computed at each step and is dependent on the coefficients associated

with each rule (the initial coefficients are given). The phases followed by the simulator

are: list all available rules, search for conflicts, solve the conflicts, execute the rules,

and then repeat the process for a new step of computation.

A first interesting application on the simulator is an one-membrane EC P

system with only one symbol a, two evolution rules: rq : a —> aa (representing

associations) and r\ : aa —> a (representing dissociations), and equal probabilities.

The model may be seen as describing the processes from the “origin of life on Earth” ,

[27]. Even the system could seem very stable, the results over 20000 steps show that

the number of copies of symbol a is changing with large variations, meaning that the

behavior of the system is unstable.

A biological component of the real cell is the enzyme which allow the chemical

reactions to occur. In P system area, they are sometimes called catalysts and they

had been used in many classes of P systems. Another concept present in biology is the

activity rate of an enzyme, which is defined as the speed of the enzyme or the number

of reactions that it can catalyze in a fixed unit of time. Every type of enzyme has

its own activity rate, and this can change in time according to biological parameters

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

61

dependent on the particular chemical reaction considered. Usually, each object in a

classic P system has the same activity rate or velocity (at each step, each copy of an

object is used, if possible). For the catalysts used in an EC P system different activity

rates can be considered as the number of rules where the catalyst can be used in one

step.

Respiration is the biological process that allows cells to obtain energy from a

flux of electrons moving from electron donors to a final electron acceptor, which in

most cases is the molecular oxygen. In Escherichia coli, as well as in other bacteria,

the cell ability to consume molecular oxygen during the respiration is determined

by the presence of two different enzymes that catalyze the final step of respiration:

the reduction of molecular oxygen with protons and electrons. These two enzymes

are: cytochrome bd and cytochrome bo. The activity rates of these two enzymes are

different, according to the percentage of saturation of molecular oxygen.

The simulator is used for a simple EC P system with one membrane that mod

els the consumption of oxygen in the respiration process of Escherichia coli in three

different cases: when only cytochrome bd enzyme is present, when only cytochrome bo

is present, and when both are present. The system has as parameters the number of

copies of oxygen objects (nanomols of oxygen) and the number of copies of enzymes

(unit enzymes). The results showing the oxygen consumption, represented as dia

grams, are compared for the three cases and for different quantities of enzymes. The

difference between the cases when the enzymes are used separately and when they

are used together is not large; when the two enzymes are used together, the speed of

the consumption of oxygen is approximately half of that when only the enzyme cy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

62

tochrome bo is used, and then doubled when only the enzyme cytochrome bd is used.

In practice, a stronger difference can be noticed when the quantity of oxygen available

is very low and the affinity of the two enzymes becomes a fundamental parameter.

In Escherichia coli, the consumption of molecular oxygen is related to the

translocation (pumping out) of protons outside the cell. Specifically, cytochrome bo

enzyme translocates two protons for every electron transported to molecular oxygen,

while cytochrome bd enzyme translocates only one proton for every electron. Given

the situation where only consumption of molecular oxygen and translocation of pro

tons are taken into consideration and where only one type of enzyme is present, the

results show the accumulation of protons in the environment after a number of steps

(each step is equivalent to 60 minutes).

These results may be very helpful in academic studies and bioindustrial activ

ities because enzyme activity or enzyme quantity cannot be measured in intact cells,

while oxygen measurements are laborious and time consuming.

Respiration process can be found also in cyanobacteria, which is the largest

group of aquatic photosynthetic prokariotes. Cyanobacteria have the ability to per

form both processes of photosynthesis (within the thylakoid membranes) and of res

piration (within the plasma membranes and thylakoid membranes). The process of

photosynthesis consists of using electrons from water to reduce carbon dioxide, pro

ducing other chemicals. The first reaction in photosynthesis is the splitting of water,

at the expense of light energy, to produce molecular oxygen, protons, and electrons.

In respiration, the opposite process occurs: water is produced by the consumption of

oxygen during its combination with protons and electrons, as in Escherichia coli. In

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

63

cyanobacteria, there is a strong interaction between respiration and photosynthesis:

the oxygen produced by photosynthesis in the inner membrane (thylakoid membrane)

is used in the cell membrane for respiration and, in the same time, the carbon diox

ide produced by respiration in the cell membrane is used in the inner membrane for

photosynthesis.

The EC P system considered to model the processes of respiration and pho

tosynthesis in cyanobacteria consists of two membranes, one for the cell membrane

and one for the thylakoid membrane. The system is closed, meaning that there is no

exchange of chemicals with the environment (oxygen and carbon dioxide are not in

troduced in the system). Water and light are supposed to be present in inexhaustible

quantities. The results show that after some time (one step of computation is equiv

alent to 10 minutes) the oxygen stops to accumulate and there is the same amount

of oxygen in the cell membrane as carbon dioxide in the thylakoid membrane. The

simulation of the EC P system was considered in two situation: with oxygen present

in the initial configuration and without, the difference between the results was only

in the number of steps needed for the system to get at the same state.

In cyanobacteria, it is possible to inhibit the production of oxygen during

photosynthesis by adding a synthetic chemical inhibitor called diuron. Using diuron

in low concentration, it is possible to decrease the production of oxygen by 50%, while

the consumption of oxygen is not modified. This known biological fact is obtained

by simulation of an EC P system in two cases: with oxygen present in the initial

configuration and without. The addition of diuron to the system changes the results

only in the increasing number of steps (time) needed. To verify these simulation

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

64

results, the real values were considered for cyanobacterium Synechocystis PC C 6803.

The process of proton translocation is considered in the case of another

cyanobacteria, Anacystis nidulans. The proton translocation consists in the pumping

of protons, outside the cell, when oxygen is consumed; therefore, the decrease of oxy

gen concentration inside the cell corresponds to an increase of proton concentration

outside the cell. To model only the reaction involving oxygen and protons in the

process of pumping of protons in Anacystis nidulans, it is considered an EC P system

with two membranes, the cyanobacterium cell and the environment. The consump

tion of oxygen takes place inside the cell membrane, and by using the symport rule

present here, the protons are sent out and accumulated in the environment. One step

of simulation corresponds to 2 minutes, and the results indicate that after a few steps

the amount of oxygen in the cell is the same as the amount of protons accumulated

outside. The number of steps always depends on the initial configuration.

Using the basic definition of an EC P system plus additional features, and an

improved simulator (in order to consider, for example, the fact that the affinity of

enzymes is involved in the oxygen concentration), other biological processes could be

modeled.

3 .2 .8 P h o to sy n th esis

All cells are surrounded by a plasma membrane, which is made of a bilayer of

phospholipids. Within this membrane is the cytoplasm, which is composed of fluid

and organelles of the cell. There are many enzymes embedded in the membranes

of organelles which act as catalysts for biochemical reactions taking place in a cell.

Because the membrane of a living cell is not a thin film but a complex structure, it

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

65

is natural to consider the inner region of a membrane in between the two layers of

phospholipidic molecules. In this direction, a first extension of standard P systems is

considered in [69] and [TO], i.e., P systems with inner regions of membranes, besides

usual regions delimited by membranes.

The inner region of a membrane is hydrophobic because there are hydrocarbon

chains of lipids inside the membrane and phosphoric acids outside. The structure of

the membrane induces a selective permeability for molecules. Small molecules, such as

H20 , 0 2, or CO2 , easily go through membranes. On the other hand, large molecules

and all ions cannot diffuse across membranes. However, the proteins embedded in

the membrane control transportation of ions and large molecules. The membranes of

living cells and the organelles in cells discriminate between the inside of the membrane

and the outside.

The computational power of the family of P systems with inner regions of

membranes is identical to that of standard P systems. In [69], it is proven that

P systems with inner regions of membranes of degree 1 and with one catalyst are

universal.

The complex process of photosynthesis is analyzed more in depth by extending

the P systems with inner regions of membranes to R -subset transforming systems with

membranes, as in [69] and [70], where real values are allowed for multiplicities.

Photosynthesis of plants is a process which occurs in chloroplasts. A chloro-

plast catches light energy, converts the energy into chemical energy, and produces

starch from C 0 2, H20 , and chemical energy. In a chloroplast, there are many

membrane-surrounded structures called thylakoids. The region inside the thylakoid

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

66

membrane is called lumen; the space between the chloroplast envelope and thylakoids

is called stroma. Photosynthetic reactions are classified into two groups: light re

actions and dark reactions. Light reactions separate water into O2 and H+ , reduce

NADP (Nicotinamide Adenine Dinucleotide Phosphate) to NADPH, and synthesize

ATP (Adenosine Triphosphate). The enzymes which act as a catalyst of light reac

tions are embedded in the thylakoid membrane. Dark reactions make starch from

C 0 2 and H20 using the reduction power of NADPH and the chemical energy of ATP.

Dark reactions occur in stroma. In moderate luminosity, the products of light re

actions are all consumed by dark reactions. If the light is strong or dark reactions

stop, then the products, NADPH at stroma and H+ at lumen, become harmful to the

structure of chloroplasts. Plants have a mechanism, called photoinhibition, to depress

light reactions in high luminosity.

The R-subset transforming system, called Photo, is constructed to model light

reactions and photoinhibitions of photosynthesis, by considering probabilities asso

ciated to chemical reactions. Photo has three regions: the stroma, the inner region

of the thylakoid membrane, and the lumen. The envelope membrane of chloroplast

is the skin membrane of Photo. The system behaviour is then simulated on a com

puter with various parameter values and different initial R-subsets. When no light

is present, the simulation of Photo shows soundness. The photosystem decreasing

activity is effective in preventing damages caused by a low pH under strong light

conditions. Photoinhibition reactions are important for the chloroplasts. Photo is

sensitive to the threshold of pH suggesting that different thresholds correspond to

different plants which grow under different light conditions. Photo is insensitive to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

67

the threshold of NADP for photoinhibition. This may suggest that photoinhibition

is triggered mainly by pH.

The results obtained by Photo are compared to the ones from a model of

photosynthesis using a conventional method based on differential equations. The tra

ditional model is a dynamical system of three differential equations which are highly

nonlinear and cannot be solved analytically. Numerical integration on a computer

gives the behavior of the variables of the differential equations, but it is much sim

pler to construct a model using P systems and to simulate it on a computer than to

construct a system of differential equations and then integrate it numerically.

As said before, there are many other applications of P systems in biology, but

we stop here, since we already have an image about the usefulness of this approach,

as well as a hint about the many modifications of various ingredients of P systems

which were introduced in this framework.

3.3 A p p lication s in C om puter Science

Inspired from biology, membrane systems are computer science devices equal

in computing power to Turing machines and used for solving hard decision problems,

but also in many other applications. We mention here only several applications:

in computer graphics (where the compartmentalization seems to add a significant

efficiency to well-known techniques based on L systems, [47]), in devising sorting and

ranking algorithms [8], [9], handling 2D structures [29], etc.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

68

3.3 .1 S ta tic Sorting P S ystem s

This section refers to the application of P systems for sorting problems (strong

sorting, weak sorting, and ranking) that are very important in computer science and

for which many algorithms, both sequential and parallel, were developed. As for

now, the time complexity remains at least 0 (n log(n)) for the sequential case and

0(log2n) for the parallel case. In [8] and [9], we find a study of various algorithms

based on different models of P systems and their time complexities with respect to the

maximal number of integers to be sorted or to their sum. The feature shared by these

algorithms is that the input components are placed in an initial input membrane,

and the computation dissociates this input according to the relation order among the

multiplicities of components. In this way, the sorting is interpreted as the order of

elimination of the objects. The idea behind many of the algorithms is to consume

objects from all components at once and, when one component is exhausted, to

trigger a signal to find the next component to be eliminated. In other algorithms, a

comparator is developed, which can be used practically in any sorting network design.

For most of the algorithms, the time complexity will be also linear, while for others it

will depend on the largest multiplicity. For solving a practical problem, the algorithm

has to work in a deterministic or confluent way and this is because the answer of the

problem has to be received in a specified time. In addition, the system has to stop or

reach an equilibrium state after finishing the computation so that the output can be

read.

Weak sorting is an algorithm which processes a multiset (the multiplicities

represent the integers to be sorted) and gives as a result a multiset, the weak sorting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

69

string, where the objects’ multiplicities are ordered. The strong sorting algorithm

outputs the objects with the same associated multiplicities as in the input multiset,

but present in a multiset, the strong sorting string, in increasing order of their mul

tiplicities. Finally, the ranking algorithm produces a word, the ranking string, of

objects ordered according to their multiplicities from the input multiset.

A first algorithm for the integer sorting problem uses a P system with pro

moters and cooperating rules. In the case of promoters, the rules are applied only in

the presence of certain objects which can evolve at the same time as objects whose

evolutions they support. The time complexity for the strong sorting algorithm with P

systems with promoters is 2k + 1, where k is the number of elements to be sorted, and

it is constant with respect to the values of the elements. The number of elements of

the system’s alphabet is exponential with respect to k. In this algorithm, the sorting

is successful only if all the integers are different. To solve the general problem, the P

system is changed to reduce the problem to the sorting of different numbers. By using

inhibitors, it can be specified when the execution of some rules should not happen,

and the production of objects is driven in the right order. The time complexity for

the strong sorting algorithm with P systems with inhibitors is 2k.

Another biologically inspired model is represented by P systems with weak

priorities. In nature, systems evolve according to rules that usually are in some

ordered relation. Moreover, systems evolve in time according to sequences of rules

based on the priorities, in parallel, up to some moment when they reach an equilibrium

state. Using weak priorities means that in one step of computation the rules are

applied in a sequence according to the priority relation as much as possible for a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

70

specific rule, and in the maximally parallel manner for those rules for which the

relation is not defined or rules that have the same priority (with competition for

objects if it is the case). The time complexity for the strong sorting algorithm with

P systems with weak priorities is 2 plus the sum of all the elements to be sorted.

Using strong priority means that in one step of computation only the rules

with the highest priority are applied in the maximally parallel manner, regardless of

whether rules with a lower priority can be used for the remaining objects. The use

of strong priority controls more strictly the computation process and, as a result, the

degree of sensitivity is smaller than in the model where the weak priorities are used.

Another one membrane P system is built, using strong priorities among rules with

finite-states catalysts. A s-stable catalyst has s states C \ , , cs and by applying a

rule this catalyst may switch between states. The time complexity for the strong

sorting algorithm using P systems with strong priorities and s-stable (,s = k + 1,

where k is the number of integers to be sorted) catalysts is equal to the sum of the

elements to be sorted, plus their maximum.

Another sorting algorithm is implemented by a P system with membrane dis

solution. If a rule x —► y5 is applied, then the objects of x are consumed, the objects

of y are produced, the corresponding membrane is dissolved, and all its contents pass

to the upper region. The time complexity for the weak sorting algorithm with P sys

tems with object rewriting rules is 2k2 + 3k + 4. but the number of different objects

used is exponential with respect to k, where k is the number of elements to be sorted.

If the P system allows mobile catalysts (that can be moved from one region to

another), the time complexity for the strong sorting algorithm is linear with respect

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

71

to the maximum number of elements to be sorted, and it also depends on the number

of components to be sorted and on the sum of the elements.

One of the sorting algorithms is Bead Sort. The construction from [12] uses a

tissue-like P system implementing this algorithm. In such a system an antiport rule

of the form (i , x\ y, j) means the simultaneous exchange of objects of multiset x from

cell i with objects of multiset y from cell j . The number of cells is k x rn, where

m = m ax{rii , . . . , nk}. The positive integers rii, . . . , nk to be sorted are represented

by a set of “beads” and they slide along the “rods” to their appropriate places. This

simple idea is also used in [9] for the construction of a tissue-like P system with “rods”

represented by cells that can communicate (the membrane structure is of degree

m x k + k, where rn x k represents the rn rods with k levels) and beads represented by

objects from multiset x placed inside membranes (and a special object # to represent

the absence of a bead). Thus, the problem is solved in a purely communicative way.

The time complexity of this solution is linear, but the features used are quite powerful

(antiport rules of unbounded weight), the descriptive complexity of the solution is

rather high (m x k + k membranes), the initial data has to be a priori distributed

among the m x k cells, and the result is obtained in the environment.

A study on this topic was also done in [30], where the P systems with in

hibitors/promoters and symport/antiport rules were used to develop comparators and

then to organize them in a sorting network. The input data was placed in different

membranes and the computation started operating on elements already dissociated.

A P system with symport/antiport rules and priorities was constructed to compare

the multiplicities of a single object. The result was not obtained in a halting con

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

72

figuration but in a stable one, meaning that there were rules still applicable, but

their application did not change the string/object contents of the membranes or the

membrane structure. The time complexity was linear with respect to the number of

components, and the number of membranes used in the computation was proportional

to the number of components.

Also in [30], it is presented an algorithm that implements a weak sorting using

a rewriting P system with symbol objects and with weak priorities for rules having at

most two objects on the left hand side. The idea behind this algorithm is the parallel

simulation of an odd-even sorting network. The time complexity for the weak sorting

algorithm with P systems with rewriting rules is 2k + 1, where k is the number of

elements to be sorted. This idea of parallel simulation of an odd-even sorting network

is further used in [9] for an evolution-communication P system with non-cooperative

evolution rules without target indications and symport/antiport rules of weight 1.

We end this section about static sorting P systems by pointing out an interest

ing result concerning this topic: starting with objects that do not have any order and

are mixed together in a multiset, the order is constructed by computing. Many types

of membrane system models are investigated and they behave in slightly different

ways when addressing the same problem.

3 .3 .2 Sub-L P S ystem s U sed In C om pu ter G raphics

In this section we describe a model which simulates the growth and the devel

opment of living plants, with a variety of information regarding the behavior of the

modeled plants as well as graphical representations of the simulation. The approach

from [47] develops a model and a specification language based on L systems models

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

73

and their use in graphics. This approach presents a more modular view on modeling

in general and plant development in particular.

Among the commonly used models to represent plants graphically are those

based on grammars. L systems model is the most widely studied for plant represen

tation. This is a string-rewriting model, which was inspired by the developmental

processes occurring in simple algae. String rewriting in L systems proceeds in paral

lel, unlike Chomsky grammars, where rewriting is sequential; this creates an analogy

with cellular growth and division, which also proceeds in parallel in multicellular

organisms. Many extensions of L systems have been suggested, and each increases

the power of the model in a different direction. An advantage of L systems is that

they are developmental mechanisms. Not only do they construct a plant structure

as it would exist at one particular moment in time, but they describe its growth and

development.

The most widely used plant simulation package is L-Studio/cpfg and it uses

the combination of L systems and turtle interpreter (for more information see [53]).

It consists of two parts: L-Studio is the integrated development environment where a

designer creates and edits models, while cpfg is the software that runs simulations of

the models and produces graphical output using a turtle interpreter. Here, a “turtle”

is a cursor that moves and rotates in space, drawing lines in its path. The symbols

in the L system string are interpreted as drawing commands by the turtle, thus

producing plant-like shapes. These commands instruct the turtle to move forward,

rotate, and draw lines, while many other commands exists for fine-tuning the drawing

process.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

74

Rewriting rules have been introduced in P systems with the specific motivation

of capturing aspects of modularity typical of some of the existing extensions of L

systems. In this respect, rule rewriting can be interpreted as an operation to develop

a particular substring inside a region of the system in the form of a rule that can

be moved from one region to another and used to insert the substring into another

string present in the system. Both rules and strings can be moved, but rules can be

moved only as a consequence of the rules applied to the strings currently associated

with the various regions of the system. In a sense, this feature introduces a certain

level of interaction among the strings in various regions of the system.

The new model that is introduced in [47], called sub-LP system, is based on

recursive strings of symbols, parametric symbols, rewriting rules that include com

munication and dissolution (these may be either conditional or non-conditional), mi

grating numerical variables and migrating arithmetical rules. The rules are applied

in parallel and it is assumed that no conflicts occur between rule targets. Membranes

are used to separate the structure of the system into regions, each of which performs

a computation. When regions do not communicate, each performs an isolated compu

tation. Membranes are labeled with distinct positive integers. A membrane’s region

may contain any number (or none) of variables, arithmetical rules, string rewriting

rules, and other membranes. Every membrane contains one and only one symbol

string. Thus, sub-LP systems are hierarchically structured just like P systems. The

top-level membrane is known as the skin membrane. The skin membrane and its

symbol string are the only required components of a sub-LP system.

A software system has been prepared for testing the sub-LP systems models.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

75

SubLP-Studio is a Java application (see [46]) which produces models and simulates

their behavior. As it obtains symbol strings at each simulation step, it passes them

to cpfg for rendering. Reusing cpfg makes the software simpler. Also, the comparison

of L systems and sub-LP systems is more objective, since the interpreting mechanism

is kept constant.

P systems are systems of nested membranes. This nested representation im

plies a tree-like hierarchy of regions, which has an analogy with branching in plant

structures. This analogy is only loosely used in sub-LP systems, as branching is mod

eled by both grammatical rules and membrane nesting. Allowing this option gives the

designer freedom to either exploit the representational compactness of L system-like

grammatical rules, or to use membranes to localize computation.

3 .3 .3 A n A n alysis o f a P u b lic -K ey P ro to co l w ith M em branes

This section presents an approach belonging to the membrane computing area

used to address a well known combinatorial problem: the analysis of cryptographic

protocols. In [65], is described and logically analyzed the Needham-Schroeder public

key protocol (NSPK), which has a well known solution, so that the results can be

compared and validated. The approach taken here consists of the exploration of the

state space of the protocol for a systematic search of attacks. More interesting is

the study of the representation and generation of states, rather than a new search

strategy. This approach is motivated by the opinion that the representation of data

is a central problem in biocomputing.

The goal of the logical analysis is to find an interleaving of elementary actions

(sending and answering messages) that allows an intruder to obtain confidential in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

76

formation. Cryptographic protocols define the exchange of a few messages between

parties in order to distribute some secret data like cryptographic keys or to authen

ticate themselves. These messages are built with cryptographic primitives, like en

cryption, signature, or hash functions, and therefore the security of protocols relies

on the strength of the cryptographic functions in use. However, it appears that even

though these functions are assumed unbreakable, the security of a protocol can be

compromised by an unexpected interleaving of messages between honest agents and a

malicious intruder which has some limited control over the communication network.

Such attacks can be realized at almost no computational cost and they can have disas

trous consequences. Various formal methods have been proposed for the automation

of the analysis of the vulnerability of cryptographic protocols to logical attacks, both

for searching for flaws of this kind or for the formal proof of their absence.

In this section, we describe an experiment using membranes for modeling the

NSPK cryptographic protocol and finding attacks by state exploration. The declara

tive style of membrane computing framework is strongly advocated by the intruder-

centric model which is generally considered in order to apply formal methods to

cryptographic protocol verification. In this model, the agents executing the protocol

communicate asynchronously via a unique channel which has been compromised by

an intruder. The intruder is able to spy and divert every message on the channel,

and to analyze read messages, with the restriction that he must know the appropri

ate encryption key in order to decipher an encrypted message. It can also build and

send new messages, possibly under a fake identity. The global state of the system

can hence be represented by a heterogeneous set containing the local states of each

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

77

agent (with a bounded memory), the messages known to the intruder, and the mes

sages sent and not yet received by an agent. The actions of the agents, receiving and

sending messages, as well as of the intruder, can be modeled using rewriting rules on

multisets.

The description of the protocol involves two different kinds of components:

entities and evolution rules. The entities are records and evolution rules are given by

rewrite rules. A system state is a finite collection of entities of three kinds: agents,

messages transmitted through the network, and messages components memorized by

the intruder. The model is organized into the following parts: record definitions are

used to describe the three kinds of entities; various predicates, which are used to

select from the set of reacting entities a specific entity of a given kind - an agent

or a message; rules specifying the abilities of the intruder to collect all the messages

that have been exchanged between agents and extract pertinent information; rules

specifying the abilities of the intruder to produce fake messages from the information

gathered; rules specifying the receiving and sending of messages by agents (such rules

are defined as reactions between an agent and a received message which fulfills some

conditions); and rules implementing a state exploration procedure which halts with

a predicate checking whether a bad state is reached, and whether the search of an

attack is successful.

The idea to implement the logical analysis of NSPK is to aggregate all the

entities involved into the protocol in a single multiset acting as a chemical solution

containing the agents, the messages, and the revealed information. The agents and

the intruder will react with messages to augment the solution with new information.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

78

All information is in the solution at the same level. The basic idea is to generate

all strings of bounded length made of four symbols representing an evolution of one

of the agents. The combinatorial generation of such a string can be done randomly.

The use of membranes permits to handle correctly the fact that an agent may have

to react to more than one message, leading to more than one evolution of the state.

To validate the new model of the logical analysis, it is implemented using the

MGS programming language. MGS is a research project devoted to the design and the

development of a programming language dedicated to the simulation of biological

processes [48]. Based on topological distances, MGS supports the notion of transfor

mation: a localized computation specified by rules. Thus, MGS can potentially be used

to process membranes, despite the fact that the MGS project focuses on the design of a

programming language rather than the development of a well founded computational

model.

The problem of finding attacks of protocols is highly undecidable, the state

space being infinite for several reasons: the unboundedness of the number of agents

present, the ability of agents to generate new random data, the unlimited size of terms

generated by the intruder. The problem of protocol security becomes decidable when

the number of agents considered is bounded (whenever there exists an attack, there

exists an attack involving messages of a bounded size). Note that another version of

this experiment is described and fully detailed in [66]; it goes further by generalizing

the approach to the exploration of general state spaces and does not rely on the

assumption that attacks involve messages of bounded size. The complete running

code of the two versions has been implemented in MGS and it is detailed in [66].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

79

3 .3 .4 M em brane A lgorithm s

In [71], a new type of approximate algorithm for optimization problems, called

membrane algorithm, is proposed. A membrane algorithm consists of several regions

separated by means of membranes; in each region, few tentative solutions of the

optimization problem and a sub-algorithm are placed. In every region, the solutions

are updated by the sub-algorithm simultaneously. The best and worst solutions,

with respect to the optimization criterion, in a region are moved by transporting

mechanisms to adjacent inner and outer regions, respectively. By repeating this

process, a good solution will appear in the innermost region. The membrane algorithm

repeats updating and transporting solutions until a termination condition is satisfied.

The best solution in the innermost region is the output of the algorithm.

A membrane algorithm borrows nested membrane structures, rules in mem

brane separated regions, transporting mechanisms through membranes, and dynamic

structures of rules and membranes from P systems, and uses all these membrane

computing ingredients to solve NP-complete optimization problems approximately.

The algorithm solves the Traveling Salesman Problem (TSP) using as sub

algorithm in the innermost region the tabu search (search a neighbor of the tentative

solution by exchanging two nodes in the solution and, in order to prevent a node

from appearing in the same solution twice, a tabu-list which consists of nodes already

exchanged is constructed). For an instance of the TSP, randomly there is constructed

one tentative solution for the innermost region and two tentative solutions for every

other region. For all the other regions, the sub-algorithms used resemble genetic

algorithms (recombine the two solutions or, if the solutions are identical, then the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

recombination produces no new solutions).

The membrane algorithm is implemented using the Java programming lan

guage. Computer experiments show that the membrane algorithms solve the TSP

better than the simulated annealing algorithm. The more membranes a membrane

algorithm has, the better obtained the results are (of course, the computation time

is proportional to the number of membranes). All programs used in the computer

experiments can be downloaded from

h t t p : / / www. comp.pu-toyama. a c . j p /n ish id a / .

This algorithm is improved by incorporating the concepts of tissue P systems

and of P systems with a dynamic membrane structure. A compound membrane

algorithm has two phases: first, a number of membrane algorithms produce good

solutions from randomly generated initial solutions; then, these solutions become the

initial solutions of the second phase. The compound membrane algorithm always

outputs almost strict solutions; but, on a single processor, the computation time of

the compound membrane algorithm is, as expected, much longer than that of the

simple membrane algorithm. However, because in the first phase the membrane al

gorithms work completely independent, the compound membrane algorithm can be

easily implemented on a distributed computing system, and the computation time

will then be only twice as long as that of a simple membrane algorithm. Another im

provement is to use shrink membrane algorithm by incorporating dynamic membrane

structures and having different membrane algorithms in the first and second phases

of the compound membrane algorithm.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.comp.pu-toyama.ac.j

81

3.3 .5 C om p u tation a lly H ard P rob lem s

In this section, we mainly follow the survey from [84], which shows that mem

brane computing provides efficient solutions to decision problems through families of

cell-like membrane systems, stressing on the SAT problem, as we have a solution for

it in Section 5.6.

There are many theoretical requirements for a P system to provide an algo

rithmic solution to an abstract decision problem, such as all computations of the

system must halt (providing a positive or negative answer to a particular instance a

problem). Also, the system must be confluent. This is a generalization of the notion

of determinism because it is required that all possible computations to provide the

same answer.

There are significant differences between the solutions, dividing them into two

groups: the semi-uniform solutions, which associate with each instance of the problem

one P system to solve it, and the uniform solutions, which associate with each possible

size of the instances of the problem one P system to solve all instances of that size.

Another possible classification can be considered with respect to the existence

or not in the system of a membrane where the input data is introduced before the

computation starts. Usually, the semi-uniform solutions are performed by P systems

without input, whereas the uniform solutions are performed by P systems with input.

In order to accept or reject an input, it should be enough to read the answer

of any computation of the system. Hence, it is necessary to require a condition

of confluence in the following sense: every computation of the system is a halting

computation, and, on the same input, all computations have the same output. A

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

82

recognizer P system is a P system with external output such that all computations

halt and, only in the last step of the computation, either object yes or object no (but

not both) must be released into the environment.

Recognizer membrane systems without input membrane require the confluence

condition: all branches of a computation associated with an instance eventually reach

a unique configuration. Using this type of P systems, the decrease in the execution

time from exponential to polynomial is achieved, but with the use of an exponential

amount of space, this space is created in polynomial time. This is possible in various

types of membrane systems through membrane division [77] (repeat the division of

membranes in order to obtain 2” membranes in n steps), membrane creation [52]

(new membranes are produced under the influence of the existing objects in a mem

brane), string replication [25] (in a rewriting membrane system using string objects,

exponentially many strings are generated in linear time), or by using precomputed

resources [79] (starting from an arbitrarily large initial membrane structure, without

objects placed in its regions, both objects and rules related to a given problem are

introduced in a specified membrane).

A construction is semi-uniform if the systems of the family solving the decision

problem are constructed starting not from the size of an instance, but from an instance

only (for each instance of the problem a P system associated with it is constructed).

A semi-uniform solution to SAT problem is presented in [91] and for HPP in [83].

Now, we briefly recall some of the efficient solutions of NP-complete problems

in the framework of P systems without input, described in a semi-uniform way.

In [5], a linear time solution to SAT through P systems with active mem

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

83

branes without polarizations is presented, but using some membrane rules (merging,

separation, and release).

The first efficient solution to HPP by P systems is presented in [59], but using

rules for d-division, with an arbitrary d (a solution to Vertex Cover is also provided

in this paper). This result about HPP was improved in [73] by using only rules for

2-division. Other efficient solutions to SAT and HPP are given in [25], through P

systems using string replications, and in [36], through P systems using precomputed

resources.

Recognizer P systems with input membrane solve hard problems in a uniform

way in the following sense: all instances of a decision problem that have the same

size are processed by the same system, to which an appropriate input that depends

on the concrete instance is supplied. This method for solving problems provides a

general purpose algorithmic solution, meaning that a system constructed to solve an

instance of the problem can also be used for solving another instance of the same size.

The first efficient and uniform solutions to numerical NP-com plete problems

were given in [81] where a solution to the Knapsack problem was presented. A uniform

solution to Multiset 0 — 1 Knapsack problem is given in the same framework in [72].

For SAT, there are many different types of P systems that solve it in a uniform

manner, e.g. in [83], Different efficient solutions to graph problems (Vertex Cover,

Clique) in a uniform way are presented in [7]. Another general problem, the Common

Algorithmic Decision Problem, is solved in quadratic time by a uniform construction

in [84],

Solutions to NP-complete problems are looked for in this framework by making

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

use of appropriate families of recognizer P systems that can be constructed in a

semi-uniform or uniform way. We have discussed here the differences between these

constructions, and we have presented a short survey of some solutions known in the

current literature of membrane systems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 4

OPERATIONS FROM BRANE CALCULI

4.1 M a te /D r ip O perations in P S ystem s

Membrane computing tries to abstract computing models, in the Turing sense,

from the structure and the functioning of the cell, making use especially of automata

and language theoretic tools, while brane calculi (introduced in [23]) pay more atten

tion to the biological reality and have as a primary target systems biology. Various

operations with membranes appear in both areas, fully idealized in the former area,

less idealized in the latter. For instance, an important distinction concerns the role the

membranes play in the two fields: separators of compartments in membrane comput

ing, with the computation done inside the regions, and main objects in brane calculi,

with the emphasis put on the structure, properties, and evolution of membranes. In

particular, in the latter case the membranes are the support of bio-chemistry, with

the proteins embedded in them being central to the cell evolution, rather than the

chemicals from the compartments.

We start from the four basic operations from brane calculi (mate, drip , pino,

exo), and we consider them as operations in a P system; hence, they are used in a non-

deterministic and maximally parallel manner. With membranes we associate multisets

of proteins, which are supposed to be placed on membranes and visible/accessible from

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

86

both sides of them. Different classes of proteins associated to the membranes were

considered: the peripheral proteins, which are linked only to the external or to the

internal side of the membrane (proposed in [38] and also investigated in [19]), and

integral (or trans-membrane) proteins (considered in [24]), which span the cellular

bilayer and thus have part of their molecule on either sides of the membrane. We

consider only the latter case, where the proteins are available for the rules placed in

the regions inside and outside the membrane.

In the following results, we work only with mate and drip rules, and that is

why we only define here these operations:

mate. []ua[]t> ̂ []uxv>

drip. []uai) > []ux[]d;

where u, v, x E P* and a € P. for a specified alphabet P of proteins.

In a m ate/drip rule, the length \uav\ (the total multiplicity of the multiset

represented by uav) is called the weight of the rule. When using a m ate/drip rule,

the membranes from its left hand side are consumed and the membranes from the

right hand side of the rule are produced instead. Similarly, the protein a specified

in the left hand side of rules is consumed, and it is replaced by the multiset x. All

other proteins which mark the membranes that are consumed remain unchanged, and

they are transferred to the newly created membranes. In the case of mate rules, all

proteins are placed on the new membrane; in the case of drip rules, the proteins of the

old membrane which are not involved in the rule are non-deterministically distributed

to the new membranes. Note that the evolution is parallel at the level of membranes,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

87

but sequential at the level of each multiset marking a membrane: at most one protein,

a, evolves by applying a rule, and at most one rule is applied to each membrane in

one step (but using a rule is obligatory if this is possible).

D efin ition 4.1 A P system with m ate /drip rules of degree m is a device of the form:

II = (P,fx,u1, u2, . .. ,um,R),

where:

1. P is an alphabet (finite and non-empty set) of proteins;

2. n is a membrane structure with at least two membranes, m > 2;

3. Ui , . . . ,um are multisets of proteins placed on membranes of fj. at the beginning

of the computation (we assume that the membranes in fi are labeled from 1 to

rn; the skin membrane has label 1 and u\ = A);

4. R is a finite set of m ate/drip rules, of the forms specified above, using proteins

from the set P.

Note that the skin membrane has no protein associated, because no rule can

be applied to it (it only delimits the system from its environment). In each step of a

computation, each membrane and each protein can be involved in only one rule; the

skin membrane never evolves.

A computation is successful only if it halts, and in the halting configuration,

there are only two membranes, the skin and an inner one. The result of a successful

computation is the number of proteins which mark the inner membrane in the halting

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

88

configuration. We can also take as the result of a computation the vector which

describes the multiplicity of objects placed on the inner membrane in the halting

configuration (as in [24]). The set of all numbers computed by II is denoted by iV(II),

and the family of all sets iV(IT) computed by P systems II using at any moment during

a halting computation at most m membranes, and mate, drip rules of weight at most

p , q, respectively, is denoted by N O P m(matep,dripq); if we consider the result as

vectors of numbers, then we obtain P sO P m(matep, dripq).

4.2 C om p u tin g Pow er

Here, we consider the m ate/drip rules from brane calculi and some related op

erations for the cooperative/non-cooperative evolution of proteins on the membranes

without changing the membrane structure:

cooev []ua > []«x,

ncooev [] „ - ►[]*,

where u, v, x € P* and a G P, for a specified alphabet P of proteins.

In all rules we can also have polarizations, one of + , —, 0, which can be changed

when applying the rule; for instance, we can have a mate rule of the form

r i° r i- M+ .
L iu a l iv I Juxv

The family of vectors of numbers generated by a P systems with at most

m membranes, using mate rule of weight at most p and drip rules of weight

at most q, cooperative evolution rules and all three polarizations is denoted by

P sO P m(matep, dripq, cooev, 3pol)\ when only two polarizations are used we write 2pol

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

89

instead of 3pol. When one type of rules is not used, then the respective indication

(■matep, dripq, or cooev) is omitted.

In [19], it is proven that N O P ^ m ate^ drip4) = N R E , by simulating a register

machine. This result holds also for vectors of numbers. With a smaller number of

membranes and rules of smaller weights, we can generate at least the Parikh images

of matrix languages.

T heorem 4.1 P sM A T C PsOPz(m ate2, drips).

Proof. We simulate a matrix grammar G = (N\ U N2 U {5 } , T, S, M) without appear

ance checking in the binary normal form.

We construct the P system with m ate/drip rules

n = {P, [[]], A, X initAinitc, R) ,

with the alphabet

P = Ni U N2 U{ Xi I X e W,1 < i < n}

U {x | x G (N2 U T)*, |x| < 2}

U {c,c' ,c", f , # } ,

and the rules from the set R as constructed below.

We start from the initial configuration [[] x initAiriitc \ \ and, in this way, the

matrix of type 1 is already simulated.

For a matrix mi : (X —> Y, A —> x) of type 2, we introduce the rules from

Table 4.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

90

Table 4.1 Theorem 4.1 (simulating a matrix of type 2).

Step Rules Type

1 [] x A c ~ * [] X i [}Ac drip

2 [] cA[} Xi —► [] cxXi mate

3 []xiC —► [] y [] c drip

4 [] y [] c [] y c mate

We replace the terminal matrices (X A, A x) with (X —> / , A —> x). For

completing the computation (when / is introduced), we also consider the rules from

Table 4.2.

Table 4.2 Theorem 4.1 (simulating a matrix of type 3).

Step Rules Type

1 [] c / - []c'[]/ drip

2 []/[]c -► []d mate

3 [] ^ [] c " []A drip

4 [] c " []A — []A mate

In order to ensure that the computation halts only when simulating a terminal

derivation in G (in the halting configuration [[]X]A). we introduce the following rules:

[]c * [] # # [].X>

[] / - > [] # # [] a ,

[] a - > []##[] a , for all A e N 2,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We have the equality \ht (L (G)) = P s (II).

As an open problem remains, the question if this inclusion is proper.

In the following theorems, we also use evolution rules, alone or together with

m ate/drip rules.

T heorem 4 .2 PsOPi(ncooev) = PsR EG .

Proof. C Just out together all rules; we get a pure context-free grammar; hence, the

generated language is context-free, and its Parikh image is in PsR E G .

2 For a regular grammar G = (A, T, S, C), we construct the P system

u = (p , [] , \ , s , r),

with the alphabet

P = N U T ,

and the set R consisting of the following rules:

[]a []aB , for A - > a B e C ,

[]a ~*[]a> for A ► a G C,

[] > ! “+[U, for A e N.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

92

T h eorem 4.3 P sM A T C PsO P\ (cooev, 2pol).

Proof. For a matrix grammar G = (Ni U N2 U { S} , T, S, M) without appearance

checking in the binary normal form, we construct the P system

n — (-P] []i X - in i tA in i t i -P) !

with the alphabet

P = jVi I X e N u l < i < n}

U { x | x 6 (N2 U T)*, |x | < 2 } ,

and the rules from the set R as constructed below.

The computation starts from the initial configuration []°xin itA init anT in this

way, the matrix of type 1 is already simulated.

For a matrix m, : (X —> Y, A —> x) of type 2, we introduce the rules from

Table 4.3.

Table 4.3 Theorem 4.3 (simulating a matrix of type 2).

Step Rules Type

1 []°x - []°Xi cooev

2 []°xlA - [cooev

3 [& - []°r cooev

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

93

If Y = A, the previous rules simulate a type 3 matrix.

We also introduce the following rules in order to prevent the incorrect halting

of the system:

[]°x -> l for X e AT,,

[R ^ []V for A e N 2.

T heorem 4 .4 P sO P ± (m a te 2, d r ip 2, cooev, Spol) = P s R E .

Proof. We start from a matrix grammar with appearance checking in the binary

normal form, G = (N , T, S', M, F), where iV = ^ U jV2 U {S', # } , and we construct

the P system

II = (-P, [[] []] , A, XinitAinit, Ci, R),

with the alphabet

P = N 1 U N 2 U { X i \ X G N ! , l < i < n }

U { x | x € (N 2 U T)*, |x| < 2}

U {Cl, . . . , c 5, / , / ' , # } ,

and the rules from the set R as constructed below.

The computation starts from the initial configuration with polarizations

[[}xinuAinit[]ci]a and, in this way, the matrix of type 1 is already simulated.

A matrix m* : (X —> Y, A —> x) of type 2 is simulated by the rules from

Table 4.4.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

94

Table 4.4 Theorem 4.4 (simulating a matrix of type 2).

Step Rules Type

1 []°x - [

[& - []%

cooev

cooev

2 []°XtA - [

[]°2 - []°J]°4

cooev

drip

3 [e , - []* ,

[12. - [E,

m ate

cooev

4 [] * - []y.

[E» - [£

cooev

cooev

A matrix m* : (X —> Y, A —> #) of type 3 is simulated by the rules from

Table 4.5.

We replace the terminal matrices (X A —* x) with (X —> / , A —* x). For

completing the computation (when Y = f in a type 2 matrix), we use the rules from

Table 4.6.

To ensure a correct halting of the system, we also add the rules:

[] # # - [H I]#•

[f i t]# - []##■

In this way we proven that P sO P ^ m ate2, drip2, cooev, 3pol) 5 P sR E and the

proof ends.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

95

Table 4.5 Theorem 4.4 (simulating a matrix of type 3).

Step Rules Type

1 [f t - [f t ,

[f t - [f t

cooev

cooev

2 [}0X iA [ft##>

[f t - [f t [f t

cooev

drip

3 [f t [f t - [f t ,

[f t - [f t

mate

cooev

4 [f t - [ft ,

[f t - [f t

cooev

cooev

Table 4.6 Theorem 4.4 (simulating the end of computation).

Step Rules Type

1 []} - [f t ,

[f t - [f t

cooev

cooev

2 [1% - [ft# # -

[f t - [f t [f t

cooev

drip

3 [f t [f t - [f t ,

[f t - [f t

mate

cooev

4 [f t f f t - [f t mate

5 [f t - []°x cooev

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PTE R 5

P SYSTEM S W ITH PRO TEINS ON M EM BRAN ES

5.1 T h e M o d e l

In “standard” membrane computing (we refer the interested reader to [78],

[79]), one works with multisets of objects placed in the regions delimited by the

membranes of (in general, cell-like) membrane structures and the evolution of these

objects is based in most cases on multiset rewriting rules and/or on communication

rules, e.g., on symport/antiport rules ([75]). However, in biology, many reactions

taking place in the compartments of living cells are controlled/catalysed by the pro

teins embedded in the membrane’s bilayer. For instance, it is estimated that in the

animal cells, the proteins constitute about 50% of the mass of the membranes, the

rest being lipids and small amounts of carbohydrates. There are several types of such

proteins embedded in the membrane of the cell; one simple classification places these

proteins into two classes, that of integral proteins (these molecules can “work” inside

the membrane as well as in the region outside the membrane), and that of peripheral

proteins (macromolecules that can only work in one region of the cell) - see [2]. In

the new model, we try to capture features of both these types of proteins.

In turn, in brane calculi introduced in [23], one works only with objects called

proteins placed on membranes, while the evolution is based on membrane handling

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

operations, such as exocytosis, phagocytosis, etc. The two approaches are somewhat

dual to each other (membrane operations are used also in membrane computing),

and it is just natural to combine features from the two areas. Investigations in this

direction were already started in [24], using brane calculi operations in a P system

framework (multisets of objects placed on membranes and handled only by membrane

operations controlled by these objects), as well as in [2 2] and [28].

We consider a restrictive case, where the “main” information to process is

encoded in the multisets from the regions of a P system, but these objects evolve

under the control of a bounded number of proteins placed on membranes. Also, the

rules we use are very restrictive: move objects across membranes, under the control

of proteins, changing or not the objects and/or the proteins during these operations.

In some sense, we have an extension of symport/antiport rules, with the mentioning

that we always use minimal rules, dealing with only one protein, one object inside

the region, and/or one object outside of it.

The control by means of proteins embedded in the membrane bilayer can be

used also for more complex symport or antiport rules, maybe obtaining in this case

easier universality proofs, but we do not go in this direction (as we have already

seen, minimal symport - hence uniport - and minimal antiport lead to universal

ity). Moreover, we can use the proteins not as reactants, as “partners” of the ob

jects which evolve, but as promoters or inhibitors of rules handling objects from the

compartments. The essential difference from the case we consider here is that the

promoters/inhibitors do not diminish the parallelism; one single promoter/inhibitor

can enhance/forbid the use of arbitrarily many rules.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

98

A similar strategy considering operations with multisets controlled by objects

placed on membranes was recently followed in [28]; however, with considerable dif

ferences from the case considered here, in [28], one provides an exchange between

compartment multisets and membrane proteins, but the system can also use opera

tions with membranes, etc.

In the P systems which we consider below, we use two types of objects, proteins

and usual objects; the former are placed on the membranes, the latter are placed in

the regions delimited by membranes. The fact that a protein p is on a membrane

(with label) i is written in the form [.p|. Both the regions of a membrane structure

and the membranes can contain multisets of objects and of proteins, respectively. For

instance, the expression

[1P1P21 a3bd [2pz| b5cd2]2] 1

indicates that we have a membrane structure with two membranes, labeled 1 and 2 ,

with the inner membrane 2 containing the multiset of objects b5cd2 inside its region

and the protein pz on it, while in region 1 we have the multiset of objects asbd and the

respective membrane is marked (to follow the terminology from [28]) by the multiset

of proteins p\p 2 -

We consider the following types of rules for handling the objects and the

proteins; in all of them, a ,b ,c ,d are objects, p is a protein, and i is a label (“res”

stands for “restricted”):

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

99

Table 5.1 Restricted rules.

Type Rule Effect

Ires [*Pl« liP\b

b[iP\ modify an object, but not move

2 res liP\a -►a \iP\

a[iP\ \iP\a move one object unmodified

3res [M a b[iP\

a[M -> \iP\b modify and move one object

4res a[iP\b ~* b\iP\a interchange two objects

5res d{iP\b - * 4iP\d interchange and modify two objects

In all cases above, the protein is not changed; it plays the role of a catalyst

assisting the evolution of objects. A generalization is to allow rules of the forms as in

Table 5.2 (now, “cp” means “change protein”), where p .p' are two proteins (possibly

equal; if p = p', then the rules of type cp become rules of type res).
An intermediate case is considered, whereas of changing proteins, but in a

restricted manner, by allowing at most two states for each protein, p, p, and the rules

either as in the first table (without changing the protein), or changing from p to p

and back (like in the case of bistable catalysts). Rules with such flip-flop proteins are

denoted by n f f , n = 1 , 2 ,3 ,4 ,5 (note that in this case we allow both rules which do

not change the protein and rules which switch from p to p and back).

In both cases of rules for type cp and for type / / , we can ask that the proteins

are always moved in their complementary state (from p into p and vice versa). Such

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100

Table 5.2 Change protein rules.

Type Rule Effect (besides changing also the protein)

lcp \iP\a -*• [$t\b

a iiP\ b[tP'\ modify an object, but not move

2 cp liP\a a iiP'\

a[tp\ —> move one object unmodified

3cp [jP|a -> b[j /1

a[tp\ —> [jP'lb modify and move one object

4cp a \iP\b ~ * b^p'la interchange two objects

5cp a iiP\b ('[tp'\d interchange and modify two objects

rules are said to be of pure cp or / / type, and we indicate the use of pure cp or / /

rules by writing cpp and f f p , respectively.

We can use these rules in devices defined in the same way as the sym-

port/antiport P systems (hence, with the environment containing objects, in arbi

trarily many copies each - we need such a supply of objects, because we cannot

create objects in the system), where also the proteins present on each membrane are

mentioned.

D efin ition 5.1 A P system with proteins on membranes is a device of the form

II (O, P , /r, w j z i , ■ • •, E , R\, • ■ ■, Rmi io)•>

where:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

101

1 . m is the degree of the system (the number of membranes);

2 . O is a finite set of objects;

3. P is a finite set of proteins (with O fl P = 0);

4. [i is the membrane structure;

5. w i , , wm are the (strings representing the) multisets of objects present in the

m regions of the membrane structure //;

6 . Zi, . . . , zm are the multisets of proteins present on the m membranes of /i;

7. E C O is the set of objects present in the environment (in an arbitrarily large

number of copies for each);

8 . R \ , . . . , Rm are finite sets of rules associated with the m membranes of /r;

9. i0 is the output membrane, an elementary membrane of p.

The rules can be of the forms specified above, and they are used in a non-

deterministic and maximally parallel way: in each step, a maximal multiset of rules

is used, that is, no rule can be applied to the objects and the proteins which remain

unused by the chosen multiset. As usual, each object and each protein can be involved

in the application of only one rule, but the membranes are not considered as involved

in the rule applications; hence, the same membrane can appear in any number of

rules at the same time.

If, at one step, two or more rules can be applied to the same objects and

proteins, then only one rule will be non-deterministically chosen. At each step, a

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

102

P system is characterized by a configuration consisting of all multisets of objects

and proteins present in the corresponding membranes (we ignore the structure p,,

which will not be changed, and the objects from the environment). For example,

C = W i /z i , . . . , wm/ z m is the initial configuration, given by the definition of the P

system. By applying the rules in a non-deterministic and maximally parallel manner,

we obtain transitions between the configurations of the system. A finite sequence of

configurations is called computation. A computation halts if it reaches a configuration

where no rule can be applied to the existing objects and proteins.

Only halting computations are considered successful; thus, a non-halting com

putation will yield no result. With a halting computation, we associate a result in the

form of the multiplicity of objects present in region iQ in the halting configuration.

We denote by N(H) the set of natural numbers computed in this way by a given sys

tem FI. A generalization would be to distinguish the objects and to consider vectors

of natural numbers as the result of a computation, but we do not examine this case

here.

We denote, in the usual way, by N O Pm{pror fist-of-types-of-rules) the family

of sets of natural numbers N(U) generated by systems II with at most m membranes,

using rules as specified in the list-of-types-of-rules, and with at most r proteins present

on a membrane. When parameters m or r are not bounded, we use * as a subscript.

5.2 C om p u tation al R esu lts for th e G enerating M ode

Clearly, rules of type 3 are more general than those of type 2, and rules of

type 5 are more general than those of type 4; in turn, rules cp are more general than

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

103

rules / / , which are more general than the rules res. Finally, non-restricted rules of a

given type, cp or / / , are more general than using pure rules of the respective types.

Thus, all proofs which involve rules of a particular form are also valid for rules of the

more powerful form (and this observation will justify the corollaries of the theorems

from next sections).

Then, it is easy to see that any rule \jP\a —> [.p'\b of type 1 cp can be simulated,

in two steps, by rules of type 3cp: [{p\a —>■ b^p], b[jp\ —> [iP'\b-

Therefore, the families of sets of numbers generated by systems using on ly

one type of rules are included in one another as suggested by the diagrams from

Figure 5.1.

3 cp

5 cp

3/ /
2 cp1 cp

4 cp

3 res
I f f 4/ /bres

1 res 2 res

Figure 5.1 Relationships between the types of rules.

The rules of type 2res correspond to uniport rules, while rules of type Ares

correspond to minimal antiport rules. Is is important however to note that in our

case the number of proteins never changes; hence, at a given step the number of rules

which can be used is bounded by the number of proteins (hence the parallelism is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

104

restricted in this way).

Fortunately enough, in the proof of the universality of P systems with minimal

symport/antiport rules from [6], NOP^{sym\ ,ant i\) = N R E , the parallelism is also

bounded. Consequently, we have the following result:

T h eorem 5.1 ./VOP3 (pro*; a/3,7 <5) = N R E , for all a G {2 ,3}, (3,8 G

{ r e s , f f , c p } , 7 G {4 ,5}.

As expected, when we use the rules from above, where proteins control the

operations of passing objects through membranes in the symport/antiport manner,

improvements of this result can be obtained (while the proof is much simplified) - see

Theorem 5.4.

Not for all combinations of rules we get the universality. For instance, because

the rules of forms 1, 4, and 5, of any type res, f f , cp, never change the number of

objects. Systems using only rules of these types can compute only sets of numbers

consisting of a single number (the initial one present in the system).

Similarly, if we use rules of both types 1 res and 2res, then we can produce

only finite sets of numbers: the system cannot reach a configuration with more objects

than the number of objects present inside it in its initial configuration and also halt.

The reasoning is the following: in the skin membrane (the only membrane that can

bring in the system new objects), we cannot have rules of types Ires or 2 res bringing

in the system objects which are present in the environment in arbitrarily many copies,

because such a rule would be applied indefinitely, so the system will never halt. Thus,

the only rules that can bring objects from the environment would be rules applied to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

105

objects that were expelled from the system, and the number of such objects is finite

(as many as they were present in the system at the beginning of the computation).

5 .2 .1 U n iversa lity for O ne T yp e o f R ules

Now we start to investigate classes of P systems with rules like the ones above,

which are computationally complete, able to characterize N R E , and begin by con

sidering systems in which only one type of rules is used.

T h eorem 5.2 NOPi(pro2,2cpp) = N R E .

Proof. We consider a register machine M = (m, B, l0, lh, R) without direct loops in

the ADD instructions and we construct the system

n = (0 , P , [x]1,X/l0p , E , R 1, 1),

with the following components:

O = {ar | 1 < r < m } U {q | I G B } U {c, d},

P = { /,(' , l " \ l £ B } U { p , p ' , f } U { p , \ l e B } ,

E = {ar | 1 < r < m } U {q | I € B } U {c, d},

and the following rules in Ri.

1. For an ADD instruction l\ : (ADD(r), l2, 13) G R, we consider the rules

Or[^il| > [-̂ 2 |Ct)

When protein l\ is in membrane 1, one of these two rules is applied non-

deterministically. This leads to a copy of object ar being brought in region

1 and protein li being changed into / 2 or l3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

106

2. For a SUB instruction ft : (SUB(r), Z2, ft) £ -ft we consider the following rules (we

also specify the proteins present on the membrane):

Table 5.3 Theorem 5.2 (simulating a SUB instruction).

Step Proteins Rules

1 ft and p c iA M -»■ i A K

2 ft and p [iPlcji -»■ q J ^ I and

d U i \ -»■ [iP'\d

3 p' and ph [xpix\ar —»■ ar[1ft'|, if ar exists, and

ctiP'l -»■ [{P"\c

4 p" and (ph or ft') [jft'lc c[1 Z2| or

[jPjJc -> c[1 Z3|, and

[\P"\d -> dtiPl

When protein ft is present on the membrane, we apply the rule q, [f t | —> [1ft |c^,

which changes the protein ft into ft, and moves one copy of q t inside.

In the second step, we apply both rules at the same time. By applying the first

rule, object q, is sent out and protein p is changed into pit ; while by applying

the second rule, object d is brought inside and protein ft is changed into p'.

At step 3, we send inside the object c and we change protein p' into p". If we

have at least one copy of object ar inside the region, we can also apply the rule

[1P/1 |ar —> ar[1 ft/|, which sends out object ar and changes the protein pil into ft'.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

107

At the last step, we send out object d while changing the protein p" into its

original form, p. If at step 3 we have sent out a copy of object ar, then we can

apply rule —> c[1 Z2|, which sends out object c and changes protein /" into

l2. If at step 3 we have not applied rule [1p; 1 \ar —> ar[1 /2/|, then we still have

protein ptl on the membrane, and we apply rule [jP/Jc —> c[1/3|, which sends

out object c and changes protein p;, into 1%.

After applying all these rules, we change the protein l\ into l2 or /3, depending

on whether or not we can send out an object ar, and this way we simulate the

SUB instruction.

3. When the HALT label lh is present on the membrane, no further instruction can

be simulated, and the number of copies of a\ in membrane 1 is equal to the

value of register 1 of M.

C orollary 5.1 N O P m(pror\2cpp) = N O P m{pror \ 3cpp) = N R E , for all m > 1,

r > 2 .

A similar result can be obtained for rules of type 3 / / (but without a bound

on the number of proteins).

T heorem 5.3 7VO.Pi (pro*; 3 / /p) = N R E .

Proof. We consider a register machine M = (rn, B, l0, 1̂ , R). For each label I £ B,

we consider a pair protein - object (I, p); in the proof, we use the same subscripts

for I and g. The set of all objects g from a pair (/, g), with I £ B, is denoted by C.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

108

Let w{B) be the multiset which contains each I £ B exactly once. We construct the

system

II = (O, P, [j]v g o /w (B)p ,E ,R i , l) ,

with the following components:

O = {g, g', g", g'", glv \ g e C } u {ar 11 < r < m},

P = { l , l ' \ l e B } u { p , p ' } ,

E — {ar | 1 < r < m},

and the following rules in R\.

We start with one copy of each I £ B present on the membrane, together with

the protein p, and with the pair object of the initial label Iq, that is go, in the region.

1. For an ADD instruction li : (kDD(r),l2 ,h) & R, we consider the rules from

Table 5.4(when specifying the proteins, we mention only those of interest for

the use of the rules in that step).

We start with gi inside and all labels from B on the membrane, and we end

with one of the symbols g2 or g3 inside, plus one extra copy of ar , and again

with all labels on the membrane. At step 2 , we apply only two rules in parallel:

the first one, to bring one copy of ar inside, and only one of the following

four rules, depending on the protein present on membrane, p or // , and non-

deterministically between symbols g2 and g3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

109

Table 5.4 Theorem 5.3 (simulating an ADD instruction).

Step Proteins Obj. inside Rules

1 h and (p or p') 9\

2 l[and (p or p') aAiA\ [1^1 |ur and

9'i[{P\ -»■ [iP'1^2 or

g'i[iP'\ -► \iP\92 or

9\[{P\ -»• [1 P'\9s or

-»■ iiP\93

2. For a SUB instruction li : (SUB(r), l2, la) E R, we consider the rules from Ta

ble 5.5.

We start with object g\ inside, and at step 1, we send it out modified into g[.

The rule [^ll^i —> also changes the protein l\ into l \ .

At step 2 , object g\ is moved inside and changed into g", and the protein p is

changed between its non-primed version and its primed version. If there is at

least one copy of ar inside, we can also apply the rule [1 / (|ar —> a ^ l i|, which

sends out ar and changes protein l[into l\.

We now have two possibilities: one, when at previous step, we have sent out ar,

and one when we have not. In the first case, at step 3 when we have protein li

on the membrane, we change it into l[, and we also send out object g'{, modified

into g%'.

At step 4, we change back protein l'x into li, and we bring in object g'~", modified

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

110

Table 5.5 Theorem 5.3 (simulating a SUB instruction).

Step Proteins Obj. inside Rules

1 li and (p or p') 9i [M 9 i ^ 9 i h li\

2 l\ and (p or p') [1 Z'1 |ar —* ar[1 /i|, if ar exists, and

g'AiPl -»■ liP'Wi or

g'AiP'l -»■ [iP\g'(

3 (li or ![) and (p or p') 9i [Mg" or

[M 9 i ^ g t \ M

4 (l\ or /() and (p or p') 92 [A \ -»■ [i^i 1̂ 2 or

9l3[iP\ -»• [iP’\93 or

9z[iP'\ [lPl^3

into g2. In the second case, at step 3 when we have protein l\ on the membrane,

we change it into li, and we also send out object g'[, modified into g™. In the

last step, we bring in g™, modified into gs , but we do not bring it through the

li protein as we need it unchanged, so we bring it using the protein p/p'.

3. We also consider the following final rules:

tip\9h -^gdiP'l,

t ip'\dh -»■ gĥ Pl,

which remove the pair object of the HALT label leaving in the system only objects

from the output register.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I l l

When the computation in M stops, that is, the pair object of lh is introduced

in the system, the final rule is used and the computation in II also stops. The number

of copies of ai in membrane 1 is equal to the value of register 1 of M.

As previously mentioned, no other classes of systems using only one type of

rules can be universal.

5 .2 .2 U s in g T w o T y p e s o f R u le s

We pass now to the case when rules of two types (not proven above to be

separately universal) are considered.

We start by giving the result mentioned above, improving the result in Theo

rem 5.1.

T h e o r e m 5 .4 NOPi(pro2;2res,Acpp) = N R E.

Proof. As in the proof of Theorem 5.2, we consider a register machine M =

(m, B, /0- lh, R) without direct loops in the ADD instructions.

Given such a register machine, we construct the system

n = (O ,P , [1 }v c'c"/l0p , E , R 1,l) ,

with

0 = E U{c ' ,c"} ,

p = {i, i', r, r , r\ieB} u m,

E = {ar | 1 < r < m } U {d},

and the following rules in Ri.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

112

1. For each ADD instruction l\ : (ADD(r), Z2)13) in R, we introduce in R\ the rules

from next table.

Table 5.6 Theorem 5.4 (simulating an ADD instruction).

Step Proteins Rules Type

1 li and p ar[1Zi|c/ —► d[-J,2 \ar or

ar[1 Zi|c/ —> c^^la,.

4cpp

4cpp

2 (Z2 or Z3) and p c V I [iPW 2 res

The fact that the simulation of the ADD instruction is correct is obvious. The

rules of type 4cp are in the strong form since the register machine does not have

any direct loops. Step 2 above can be simultaneous with step 1 in simulating

any other instruction because the protein p is not involved in step 1 .

2. For each SUB instruction l\ : (SU B (r), Z2, Z3) 6 R we consider the rules from the

next table, where the rules are given according to the steps when they are used.

When protein l\ is present on the membrane, the 4cp rule d[1 /i|c // —> c'^Zj \d is

applied like an antiport rule for objects d and c". This rule also changes protein

li into l[.

In the second step, object c" is brought inside and, if a copy of ar is present

in region, another copy of object d is interchanged with ar and protein l[is

modified into Z".

At step 3, if we have protein l\ on the membrane (i.e., at step 2 , there was no

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

113

Table 5.7 Theorem 5.4 (simulating a SUB instruction).

Step Proteins Rules Type

1 l\ and p d[iZi|c" —► cf'U'^d 4cpp

2 l[and p \ar —»■ ar [1 d , if ar exists, and

c"[iP\ -»■ h p W

4cpp

2 res

3 (l[or I") and p d^l'Hd’ -► c/,[1 /,i,/|d or

d l A W -»■ d '[xli \ d

4cpp

4cpp

4 (I™ or /j") and p d[1/"'|d —> d[xl2\d or

d[iZ™|d —► d[t l3\d, and

c"[ipI Up W

4cpp

4cpp

2 res

copy of object ar inside the region), we change it into l\v. In the other case,

when we have protein I" on the membrane, we change it into In both cases,

we interchange the objects d and c".

In the last step, object c" is sent inside (in order to be available for simulating

future SUB instructions) by applying again the 2res rule from step 2, and either

protein I"' is changed into l2, or protein l\v is changed into /3. When we change

the protein, one copy of object d from the environment is interchanged with

another copy of d from inside the region.

3. When the label lh of the HALT instruction of M is introduced, we use the rules

{Jhlx —► xljhl, for x £ {c',c",d},

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

114

in order to “clean” the membrane of other objects than a\, and the computation

halts.

The equality N (M) = N(H) is obvious, and this completes the proof.

C o ro l la ry 5.2 NOP^pro^otP,^) — N R E , for all a E {2 ,3}, (3 E {res, f f , c p j ,

7 E {4cpp,Acp, bcpp, 5cp}.

The problem of obtaining a similar result remains open for a, (3 as in the

Corollary 5.2 and 7 E {4res, 5res, 4 / / , 5 / / } .

T h e o r e m 5.5 NOPi(pro2;2res, 1 cpp) = N R E .

Proof. We consider a register machine M = (m, B , l 0,lh, R) and we construct the

system

If = (0 , P , [x]v \ / l 0p , E , R i , l) ,

with the following components:

O = {ar, a!r , a" \ 1 < r < m } U {c, d, d, d'},

P = { l , l ' , l " , r \ l E B } U { p , p ' } ,

E = {ar | 1 < r < m] U {c},

and the following rules in R\.

1. For an ADD instruction li : (ADD(r), l2 , 1 3) E R, we consider the rules from

Table 5.8.

When protein li is present on membrane 1, a copy of object ar from the envi

ronment is changed into a'r , and protein /1 gets primed. At step 2 , the object

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

115

Table 5.8 Theorem 5.5 (simulating an ADD instruction).

Step Proteins Rules Type

1 li and p lcpp

2 l\ and p [/ l K 2 res

3 l\ and p [j/ila'r -> [j^lar or

[l^l \®r *

lcpp

lcpp

a'T is moved inside and, at step 3, is changed into ar, while one of the proteins

/2, l;i is, non-deterministically, introduced.

2. For a SUB instruction li : (SU B (r), /2, h) G R, we consider the next rules.

Table 5.9 Theorem 5.5 (simulating a SUB instruction).

Step Proteins Rules Type

1 li and p 4 M ^ d i j n lcpp

2 l'{ and p [xI'l|ar —»■ [j I'" a". if ar exists, and lcpp

d [{P\ d'[iP'\ lcpp

3 {l'{ or /"') and p' d ! [-> c '^ k | or lcpp

—> c'^l 2|, and lcpp

Up ' K -»• < V 'I 2 res

4 (l2 or l3) and p' c'tiPl c[iP| lcpp

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

116

When protein l\ is present on the membrane, we apply the rule c[1Zi | —> ri[x Z" |,

which changes the protein l\ into l'{, and also changes one copy of c into d.

In the second step, the object d gets primed and, if we have at least one copy

of object ar inside the region, then we can also apply the rule [fl"\ar —> [1 Z"/{a",

which changes ar into a" and also the protein I” into I"'.

At step 3, if protein I" is still present, then we change it into Z3, in the presence

of object d', which is transformed into d. This corresponds to the case when no

copy of ar was present. If we have protein I"' present, then also a" should be

present; we use the rules —► c/[1 Z2| and [fp’fi” and in this way

the simulation of the SUB rule is completed: the protein Z2 is introduced (while

changing d! into d), and a” is sent to the environment.

The last step (step 4) is just changing back the protein p' into p and the object d

into c, and thus we reach a configuration similar with the one when we started

the simulation, meaning that another simulation of a rule from the register

machine can proceed now.

3. When the HALT label lh is present on the membrane, no further instruction can

be simulated, and the number of copies of object ai present in membrane 1 is

equal to the value of the output register of M.

The observation that all rules of type 1 cp are pure completes the proof.

T heorem 5.6 NOP\{pro*; l r e s ,2 f f p) = N R E .

Proof. We consider a register machine M = (m, B, Z0, hi-. R)- As in the proof of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

117

Theorem 5.3, for each label I e B, we consider a pair protein - object (/, g)\ in the

proof, we use the same subscripts for I and g. The set of all objects g from a pair (I,

g), with I G B, is denoted by C. Let w(B) be the multiset which contains each I G B

exactly once. We construct the system

II = (0 ,P , [x]1,g0/ w (B) p , E , R 1, l) ,

with the following components:

0 = {fl-r | 1 < r < m } U {g, g', g" \ g G C},

p = {I,I' | I G B } U { p , p ’},

E = {Clr | 1 < r < m },

and the following rules in R l

1. For an ADD instruction li : (ADD(r), Z2, 1$) G R, we consider the rules from

Table 5.10.

First, we send out the object <7 1 , change the protein l\ into l\ , and then we bring

one copy of ar inside, and we change the protein back into l\ according with

the 2 / / rule. One of the two Ires rules is non-deterministically applied and

object gi is changed into <72 or g3. In the last step, ĝ or g% is moved inside the

membrane through either the protein p or p'.

2. For a SUB instruction li : (SUB(r), I2 . l;i) G R, we consider the rules from Ta

ble 5.11.

First, we change gi into g[, and then we send it out changing also the protein

11 into l[.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

118

Table 5.10 Theorem 5.6 (simulating an ADD instruction).

Step Proteins Rules Type

1 li and (p or p') U h l g i -* giUl'A 2 ffp

2 l[and (p or p') °t-[1^11 [i^l|ar an(f 2 ffp

g A M -»• g2[lv 1 or Ires

gi[-j>'\ g2 [1p'I, or Ires

SitiPl ->• toliPl or Ires

pitiP'l -► gzliP'l Ires

3 li and (p or p') g*[iP\ -»• tiP'Isaor 2 ffp

g2 [xp'\ [iP|ff2 , or 2 ffp

ga[iP\ -»• iiP'lgz ° r 2 ffp

g îiP'l -»■ [1PIP3 2 ffp

At step 3, we change object g[into g'[and, if a copy of ar is present inside, we

send it out and we change back protein l[into l\.

At step 4, if protein Zi is present on the membrane, object g" is changed into g2,

or, if protein l[is present, object g'{ is moved inside and the protein is changed

into l\.

In the last step, object g2 is brought inside, or object g'[is changed into g3.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

119

Table 5.11 Theorem 5.6 (simulating a SUB instruction).

Step Proteins Rules Type

1 l\ and (p or pf) [Jilgi -»■ hhWi Ires

2 li and (p or p') [xh\g'i 2 ffp

3 l\ and (p or p') [1 /j|ar —► ar[1Zi|, if ar exists, and 2 ffp

g'AiP\ -► or Ires

9i[iP'\ ^g'([iP'\ Ires

4 (or l[) and (p or p') g " \M -> gihhl or Ires

g'(lA\ - lifeK 2 ffp

5 li and (p or p') 92[xp\ -»• hp'\g2 or 2 ffp

g ^ p ' l -»■ [^ 2 , or 2 ffp

hpWI -» Up \93 or Ires

hp'WI [J ig s Ires

3. We also consider the following final rules:

[xp\9h

[iP'\9h -> 9h[xp\,

which remove the pair object of the HALT label.

When the computation in M stops, that is, the pair object of lh is introduced

in the system, one of the final rules is used and the computation in II also stops. The

number of copies of cq in membrane 1 is equal to the value of register 1 of M.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

120

C orollary 5.3 NOPi(pro*,3res ,2 ffp) — NOPi(pro*-,2ffp,lcp) =

N O P 1(pro*; I f f , 2f f p) = N R E .

In this way, many pairs of types of rules lead to the characterizations of N R E ,

but the problem remains open (even for the case of several membranes being used) for

the following pairs of types of rules (Ires, 3res), (1 / / , 2res), (I f f , 3 res), (2 / / , 3 res),

as well as for pairs involving rules of types 4/5, 5/5, for /5 E {res, cp, / / } .

5 .3 O ne P ro te in C ase

In this section, we consider the weaker case where only one protein is placed

on a membrane. Using matrix grammars without appearance checking (as in Defi

nition 2.9), we simulate one-membrane P systems with any type of rules (from the

previous defined).

T heorem 5.7 PsOP\(proi, a n y — rules) C PsM AT.

Proof. Let us consider a P system (with one membrane) with proteins on membranes,

II = (0 , P , [X]1,p /w , E, R i , l) , for some p E P, w E O*.

For each symbol a E O , we consider the new symbols a' , a Q, a t , and for each

p E P, we consider the new symbols p', p". The set { a ' \ a E O } is denoted by O'. For

a string w E O*, we denote by w0, Wi the strings obtained by replacing each symbol

a E O, which appears in w by a Q, a i , respectively. The intuition is that a, and a Q are

versions of a E O present inside or outside, respectively, the unique membrane of the

system, in a string which will describe below a configuration of II.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

121

We construct the following matrix grammar (without appearance checking)

G = (N , T , S , M), with

N = {cLi,a0 | a E 0 } U { p \ p " \ p E P } U { S , X } ,

T = O U O ' U P ,

and the following matrices in M:

1 . (S -+ X p fw i) .

The idea is to represent a configuration of II with the multiset u E O* inside,

protein p on the membrane, and a multiset v E (O — E)* outside, in the form

v0p'ui\ the objects of E appearing in the system are explicitly considered in

but if they are outside, then we ignore them, not considering them in v0. That

is why we consider the non-terminal X in the left of the protein-symbol as a

“source” of copies of objects in E.

2. For each rule —> c[-j)2 \d G i? l5 where a,b ,c ,d E O, p i , P 2 E P, we

introduce the matrices:

(Pi -»■ P2 ; ao Co, k -> <U), if c ^ E,

(Pi p'2, do —»■ A, 6 * —► di), if c e E.

We simulate the rule of Ri in an obvious way, not introducing the symbol c0

if c is an object from E. Clearly, this 5cpp rule covers also the other cases:

restricted, flip-flop, changing objects and not moving.

3. For each rule a[xp i | —> [xP2 \b E Ri, where a,b E O, p i ,P 2 E P, we introduce

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

122

the matrices:

CPi P21 ao -*■ M» if a ^

(p'i —> p'2, X —> bi), if a e E.

This time we move inside objects from the environment, modified or not; again,

we also cover the case of restricted and of flip-flop rules.

4. For each rule [xpi|a —> b[xp 2 \ € R\, where a ,b € O, Pi,P2 € P, we introduce

the matrices:

(Pi ^P*2,ai -*■ bo), if b £ E ,

(Pi ^P 2)ai A)> ii b e E.

By these matrices, we simulate the rules which move objects out of the mem

brane. In this way, all types of rules are covered; hence, each computation of II

leading to a configuration of the form l is simulated in G by a derivation

which reaches the sentential form v0p'ui.

5. We also add to M the following matrices:

(p' —> p"), for all p € P,

(p" —> p", X —> A), for all p 6 P,

{p" P" 1 ao —■y a'), for all a G O — E,

(p" —► p", a,i —> a), for all a e O,

{ p " - > p) .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

123

At any time during the derivation, we can change the primed protein to a

double primed one, and this entails the end of the derivation. In the presence

of a double primed protein, we remove the auxiliary non-terminal X , we change

each a0 into a' and each a* into a. In this way, a terminal string of G is obtained.

Each halting computation in II is simulated by a terminal derivation in G, but

the converse is not true: terminating the derivation in G as above does not guarantee

that the derivation corresponds to a halting computation in II. Therefore, we have

to filter out from L(G) all strings which describe configurations where at least a rule

of II can be used, and this can be done by intersecting L(G) with a regular language.

Indeed, the set of configurations where at least a rule can be applied is de

scribed by the language

La = [J 0'*{a'pb \ a[xp\b —► c[1g|d G Ri, a, b G O U {A}, q G P }0 * .
p e P

(We have covered the case of all types of rules by taking a, b G O U {A}.)

This is a regular language, hence

LnA = 0'*PO* - La ,

is also regular; the language LnA contains all strings of the form of the strings gener

ated by G which describe configurations of II where no rule from R can be applied.

This means that the intersection L(G)f)LnA contains exactly the terminal strings gen

erated by G which correspond to halting computations in II. Because M A T is closed

under intersection with regular languages, it follows that this language is in MAT.

What remains to do is to remove the symbols which do not participate in the output

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

124

of a computation in II, and this can be done by the morphism h : (O U P U O 1)* —*■ O*

defined by h(a) = A, for a G P U O', and h(a) = a, for a G O. The family M A T is

closed under morphisms; thus, the language L = h(L(G) D Lua) is a matrix one.

Consequently, Ps(II) = T 0 (T), hence Ps(II) G P sM A T , and this concludes

the proof.

Therefore, using only one protein restricts the computing power of P systems

with proteins on membranes (such systems are no longer universal), but two proteins

(Theorems 5.2, 5.5) or more (Theorems 5.3, 5.6) lead to computationally complete

systems.

Theorem 5.7 answers partially a question formulated to us by prof. Jurgen

Dassow, during the 10th International Conference on Developments in Language The

ory, Santa Barbara, CA, USA, June 2006.

5.4 A ccep tin g and C om pu tin g System s

Besides the generative approach, there are two other related ways of using

a P system: in the accepting mode and in the computing mode. In both cases, an

input is provided to the system, depending on the system’s type. For instance, in

a symbol-object P system, besides the initial multisets present in the regions of the

membrane structure, we can introduce a multiset w$ in a specified region by adding

the objects of wo to the objects present in that region. In the string case, a string can

be added, possibly inserted in one of the existing strings. The computation proceeds,

and if it halts, then we say that the input is accepted (or recognized).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

125

In the computing mode, we do not only have to halt, but we also collect an

output, from a specified output region, internal to the system or the environment.

An important distinction appears between systems which behave determin-

istically and those which work in a non-deterministic way. Such a distinction does

not make much sense in the generative mode, especially if only halting computations

provide a result at their end: such a system can generate only a single result. In

the case of computing functions or solving decidability problems, the determinism is

obligatory.

T heorem 5.8 NOP^cc(pro2; 2cpp) = N R E .

Proof. We consider a deterministic register machine M = (m, B , /0, h, R) without

direct loops in the ADD instructions and with the input placed on the first register.

To simulate the register M, we construct the following system:

n = (0 , P , [1]v d / l * p , E , R 1, l)

with the following components

O = {ar | 1 < r < m } U {q | I G B } U {c, d},

P = { l , l ' X \ l e B } \ j { p , p ' , p " } u { p l \ l £ B } v j { l ° Qd, l ™} ,

E = {ar | 1 < r < m } U {q | I € B } U {c}.

and the following rules in Ri.

First, we need to obtain the integer x as input by bringing inside the mem

brane x copies of object a\. In a sequence of odd and even steps, we chose non-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

126

deterministically between a rule that sends in another copy of ai and a rule that

stops the input phase and changes the protein to R (see Table 5.12).

Table 5.12 Theorem 5.8 (simulating the input).

Step Proteins Rules

odd Rd and p [xRd\d -> d[xlo| or

« i [i d ->■ W k

even Iqv and p [1 Rv\d -*• d[xlo| or

1. For an ADD instruction R : (ADD(r), R) € R, we consider the rule:

When protein R is in membrane 1, a copy of object ar is brought in region 1

and protein R is changed into R.

2. A SUB instruction R : (SUB(r), R, R) G R is simulated in the same manner as in

Theorem 5.2, Table 5.3.

3. When the HALT label lh is present on the membrane, no further instruction can

be simulated and the system halts, meaning that number x is accepted (if the

computation does not stop, input x is not accepted by II).

With similar constructions, we can obtain P systems working in accepting

mode from the results for the generative mode obtained in Theorems 5.3, 5.5, and

5.6.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

127

5.5 A Sm all U niversal P System

There are many results dealing with the descriptive complexity of P systems.

In most of the cases, size parameters (as the number of objects, the number of mem

branes, the number of rules per membrane, the size of rules, the number of objects,

etc.) are investigated. In this section, we consider another complexity parameter,

the number of rules, for the case of P systems with proteins on membranes. There

are a few results of universal P systems with minimal number of rules and we briefly

mention them here.

In [85], a particular class of tissue P systems, splicing tissue P systems, having

only 8 rules, is proven to be universal. Another result characterizes the P systems

with symport/antiport rules and the proof is based on the constructions from [55],

which show that it is possible to obtain a universal register machine with 8 registers

and 32 instructions of three types (addition, subtraction, and test-for-zero). In this

case, a universal register machine is simulated by a P system with only one membrane

and 44 antiport rules ([35]).

In the following, we recall some concepts and results concerning register ma

chines from [55] and [67]. Various classes of register machines exist, which differ from

each other by the form of their instructions. In this section, we work with determin

istic register machines which consist of a finite number of registers, Rq, . . . , Rm~\

and a finite set of operations of the forms (with the notations from [55]):

1. [RiP\ - add 1 to the content of register Ri (similar with ADD(i));

2. [RiM] - subtract 1 from the content of register Rt if it is a positive value (if Rt

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

128

is empty, its value remains unchanged);

3. (Ri) - check whether or not the value of register Rt is positive;

4. (R i Z M) - test whether the value of register Ri is positive or not and subtract

1 from the content of Ri in the first case (similar with SUB(i)).

The power and the efficiency of a register machine depends on the type of

instructions that are used. The main result from [55] is the construction of C/3 2 , the

universal register machines with 32 instructions of forms [RiP], (Ri), and [RiM] (the

halting operation is not counted in this case). Using different types of instructions,

this result can be improved, and we refer to C/2 2 , the universal register machines with

22 instructions of forms [RiP] and (R iZM), which has the same instructions as in

Definition 2.8, for the deterministic case. The functioning of C/2 2 is depicted in the

scheme from Figure 5.5, following the notations and the construction of C/3 2 from [55].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

129

R5ZMR6P

RIP R7ZM
R7P

R5PR6ZM

R4ZM

R4Z\1 ♦ I Stop

ROZM
R4P

R3ZM R5ZM

ROP

R3P R2P *

Figure 5.2 The universal register machine [/2 2 -

Re produced with permission of the copyright owner. Further reproduction prohibited without permission.

130

The previous universal register machines is defined as U22 = (8 , B , l 0,lh, R) ,

where B = { h , h , ■ • ■ , h i j h } is the set of labels and R is the set of instructions

presented in Figure 5.5 (9 additions, 13 subtractions, and one halting instruction).

l0 : (SUB(1) ,h ,h) , h : (ADD(7),/0),

h : (ADD(6), I3), h : (SUB(5) ,h ,k) ,

l4 : (SUB(6 k : (ADD(5), C6),

l6 : (SUB(7) , l7,l&), l7 : (ADD(l),/4),

l8 : (SUB(6),C9 ,C0), l9 : (ADD(6), C10),

lw : (SUB(4),Z0 ,/ i i) , ln : (SUB(5),Zi2, / 13),

h2 : (SUB(5),C1 4 , / i5), / 13 : (SUB(2),Z1 8 ,Z19),

C14 : (SUB(5), Zi6 , hi), /is : (SUB(3), l\8, ho),

he : (ADD(4),/n), hi : (ADD(2), Z2 i),

hs : (SUB(4), lo, lh), ho : (SUB(0),/o,Ci8),

l20 : (ADD(O), C0), Z21 : (ADD(3) ,h 8),

lh : HALT.

Figure 5.3 The instructions of the universal register machine t/2 2 -

If we consider the P system with proteins on membranes and rules of type

2cpp, from Theorem 5.2, and we suppose that it simulates the register machine C/2 2 ,

we obtain a universal P system with 113 rules (9 • 1 + 13 • 8 = 113).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

131

This result can be improved if we consider new rules for two consecutive in

structions ADD—SUB. For instance, instead of simulating separately the instructions

Z5 and /6, we can use the rules from Table 5.13 and simulate them in the same time.

Table 5.13 The simulation of l5 : (ADD(5),/e) and le : (SUB(7), l7, Z8).

Step Proteins Rules

1 Zg and p Ci5 [1̂ 51 [i^slCZ5

2 1'5 and p [iP|q5 -> ch [xph \ and

-»■ [iP'\a$

3 p' and ph [\Ph\ a 7 0 7 [1 Zy|, if a7 exists, and

chP'\ -»•

4 pi5 or I!} [j/y|c —> cl-J.jl or

[iPiBlc —*• c[i/8|

The same argument can be applied for the sequence of instructions lg, l\g. We

finally get a universal P system with proteins on membranes and 109 rules of type

2cpp (7 - 1 + 1 1 - 8 + 2 -7 = 109).

5.6 Solving SA T in P olynom ial T im e

In this chapter, we propose a way to solve NP-complete problems by simulating

the cell replication machinery. Since the cell division is usually linked to a protein

receptor on the plasma membrane, we are modeling this process with a sequence of

steps: a rule simulating the binding of the signaling molecule to its corresponding

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

132

receptor will be simulated, and then the bound receptor is viewed as a new protein

that starts the division process for the cell.

Using membrane division rules, we are able to solve hard problems (N P -

complete) such as SAT in polynomial time. Several such results have been obtained

recently (see, e.g., [3], [61]), all using the trade-off between space and time made

possible by the membrane division rules. Our approach is novel as it refers to the

systems in which the parallelism is restricted by the number of proteins embedded

in the membranes. Even in this case we are able to obtain fast solutions for SAT.

Once the biology research gives way to the manipulation of cell division, we believe

that such an approach could be both feasible and energy efficient, thus being the best

approach in solving computationally hard problems.

Satisfiability (SAT) is the problem of deciding whether a boolean formula in

propositional logic has an assignment that evaluates to true. SAT occurs as a problem

and as a tool in applications, and it is considered a fundamental problem in theory,

since many problems can be reduced to it. Traditional methods treat SAT as a

discrete decision problem.

We assume that all SAT instances are in conjunctive normal form, i.e., the

conjunction of clauses, where each clause is a disjunction of variables or of their

negation. We may write an instance 7, with n variables, in conjunctive normal form

using m clauses, as follows: 7 = cx A c2 A ... A cm and Cj = yitl V yi<2 V . . . V yitki, where

yitj € { x h -ix 1 | 1 < I < n}, for 1 < j < ki, 1 < i < m.

E xam ple 5.1 For n = 3 variables, we may have the instance 7 = c\ A c2 with m = 2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

133

clauses, where cx = yhl V ylj2 V t/li3, c2 = y2,i and piy = x u yh2 = x 2, y1>3 =

2/2 ,1 = ~'x 2 - If {x \ i x 2 , xa) = (0 , 0 , 0), we have c\ = 1 and c2 = 1 , thus 7 = 1 .

In order to solve SAT using P systems with proteins on membranes, we will

need to encode the instance to be solved by the system using multisets of objects

(since in the P system one cannot have an order imposed on the objects such that

they become strings). A solution to the encoding issue is given below and will be

used in the following construction.

To encode an instance 7 , we use the following notations.

code{7) = code(<7)code(c2) . . . code(cm), andcorie(ct) = »j|Q i2 . . . a in,

with
' bhJ. if Xj appears in <7 ;

b'l 3, if -1 xj appears in <7 ;

, d,hJ. if xj and -1 Xj do not appear in q , for 1 < i < m, 1 < j < n.

E xam ple 5.2 For instance, if we have 7 as in Example 5.1, we obtain the follow

ing when using the encoding idea given above: code{c\) = 6 i i6 ^2 /yi 3, code(c2) =

d2 ,i&2 ;2 d2 ,3, and code(7) = &i,i&i,2 &ii3 d2 ,i&2 i2 d2 ,3.

In addition to the rules from Section 5.1, we need to define a new division rule

in the context of P systems with proteins on membranes. To divide a membrane, we

use the following type of rule, where p, p \ p" are proteins (possible equal):

[M h - [/ I U i P l U

The membrane i is assumed not to have any polarization and it can be non-elementary.

The rule does not change the membrane label i and instead of one membrane, at next

a ij

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

134

step we will have two membranes with the same label i and the same contents, objects

and/or other membranes (although the rule specifies only the proteins involved).

To be consistent in notation, in the following construction we denote by a[ip\b]i

the presence of object a outside of membrane i, object b inside of it, and protein p on

membrane i.

We can now pass to the construction for solving SAT using membrane division;

before doing so, we state some basic observations. A clause is satisfied if at least one

of the positive variables contained in the clause is assigned the value true or a negated

variable is assigned the value false. If a clause is not satisfied by one variable (i.e. a

positive variable with the assignment false or a negated variable assigned the value

true), then we will move to the next variable in order and check that one whether it

satisfies the clause. If we reach the nth variable and it still does not satisfy the clause,

then the particular truth assignment does not satisfy the whole instance 7 . On the

other hand, as soon as we satisfy a clause i by the variable j , we move immediately to

the clause % + 1 and variable 1 to continue this process. When reaching and satisfying

the last clause (the clause m) , we know that the instance 7 is satisfied by the current

truth assignment.

We start with an instance 7 of SAT, with n variables and m clauses, encoded

as above into code(7) and placed into the input membrane. We construct the P

system with proteins on membranes and membrane division

II = (O, P , f i ,w 1/ z 1, . . . ,w h/ z h, E , R x, .. . , R 5),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

135

where

O = { d , e , f , g , g ' , y e s , n o } U { a i , f i , t i \ l < i < n }

u K,ji dhj I 1 < * < "h 1 < 3 < n } ,

P = { p , p ' , P n i r o } U { q i | 1 < i < n + 2 } U { p i \ - (3 n + 2) < i < n }

u { p l , p { | 1 < i < n }

U {cj | 0 < i < 2n m + 5 n + 8 } U {r^- , r ' j , r 'P | 1 < i < m + 1 ,1 < j < n + 1} ,

E = 0 , n = [i [2 [s]3]2[4] 4[5 Is! 1’

Wi = d g , w 2 = d i a 2 . . . a n d, w 3 = c o d e (7) / , w 4 = e t \ t 2 . . . t n f i f 2 w 5 = g ,

Zi = p , Z2 = P - (3n + 2), z 3 = r 0 , Z4 = q l t Z5 = Co,

P i = {[iP|yes]i —»• yesfij/l] v {1p\ g ' }1 ^ n o [lP|] 1},

R 2 = { d [2p i \ d] 2 —> d [2p i + 1 \ d] 2 | - (3 r a + 2) < i < - 1 }

u {[2Pi\]2 -*• UpI+i I JJ^+il]21 o < i ™ - 1}

u { t i [2P ti \ a i \ 2 -»■ a i [2P i \ t i \ 2 , f i [2P i \ a i } 2 - > a i [2p i \ f i } 2 | 1 < i < n }

u { e i 2Pn\] 2 -»• [2P n | e] 2 , [2P n | y e s]2 -► y e s [2p ; |] 2},

P s = { e [3r 0 |] 3 -»■ [3r i , i | e] 3 , [3r m + 1A \ f } 3 y e s [3r m + l ! l |] 3}

^ { [3r i , j \d h j]3 * d i , j [3r i , j +l \] 3 ’ d i , j l 3r i , j+l \ ^ ~ * [sr M + 1 3 ’

t j [3 r i , j \bi , j] 3 ~ > bi , j [3r i + l , j \ t j \ 3 i [3^1+1,j l^j] 3 t j [3r i+l , l l] 3 1

f j [3r i , j \^i , j \ 3 ~ > ^i , j [3r i + l , j \ f j \ 3 i [3r t + l , j l / j] 3 * f j [3r i +l , l \] 3?

f j [3r i , j \bi , j \ 3 > bi , j [3r i , j \ f j] 3 i [3 , j I -/"j 13 ~ * f A 3r *,j+l I l a ’

^ A 3r l , j \^i , j \3 ^i , j [3r i, j\^j] 3 ’ [3r i , j \ t j] 3 ^ A 3r i , j+l \] 3»

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ra = {[4 ^ 1] 4 [4 & + 1 I]4 [4 ^+i|] 4 I 1 < * < « + 1 } U {[4qn+2 |e] 4 -> e[4qn+2 |] J

U { [4 9n +2 | ^ i] 4 ^ [4 ^ 7 1 + 2 1] 4) [4 ^ 7 1 + 2 1 4 * / i [4 9 n + 2 |] 4 | 1 ^ ^ ^ } j

^ 5 = {p[gCi|^]g -> ^ [5 Cj+1|^]g I 0 < i < 2nm + 5n + 5}

^ { ^ [s ^ n m + S n + y l f l 1] 5 ^ 9 [^ 2n m + 5n + s \9] s } -

The rules that are used by the system II are of one of the forms 3res, 2cp, 5cp,

or membrane division. Note that on each membrane in the system we have only one

protein. Initially, the environment is empty and will be used to receive the output,

the answer yes or no (no other objects are sent out in the environment during the

computation).

1. Preliminary Phase

We start by generating 2n+1 copies of t l and /j, for 1 < i < n, in region 4. In

the first n + 1 steps, we apply the following membrane division rules:

[M] 4 [4*+il U 4 &+1 I] 4 , 1 < * < n + 1 .

In the initial configuration, we have protein q\ on membrane 4, and after ap

plying the membrane division rules, in the first n + 1 steps, we get protein qn+2

on all 2n + 1 membranes labeled 4 . Now, we can send out, to membrane 1, all

objects from the elementary membranes 4, in 2n + 1 steps, by applying the

following 3res rules:

[4 * 7 7 1 + 2 | ^ i] 4 ¥ ^ i [4 *7r a + 2 |] 4 >

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

137

[4*?n+2|./ i] 4 * f i [^Qn+2\] 45

[4 Q n+ 2 |e] 4 - > e[4 gn+2|]4, 1 < i < n .

In parallel with these rules, in the first 3n + 2 steps, we apply the following 5cp

rule in membrane 2 :

d[2Pi\d]2 -»• d[2pm |d]2 , - (3 n + 2) < i < - 1.

2. Generating Truth-Assignments Phase

When protein p0 is present on membrane 2, we start generating truth-

assignments. The following sequence of rules is applied, and after 2n steps, we

get 2 " membranes labeled 2 , all having similar contents: the initial membrane

3 and the multiset of objects x\x^ ■ ■ ■ xnd, where xt £ { t?. /;} , for 1 < i < n.

\jPi\] 2 * [2^ + 1 1 ̂2 [I] 2 ’ ̂ n ~

[2^ j l ^ t] 2 ̂ [2-^® 1^*] 2 5 I®*] 2 * [2P i l / i] 2 5 f ^

So we are now 5n + 2 steps from the start of the simulation. We can now

check the clauses, starting with the first one. The computation will take place

in region 3, where we have the input, code(7). At this moment, we have in

the membranes labeled 2 all the possible truth-assignments for the n boolean

variables appearing in 7 . On the membrane 3, we currently have the protein

r0. We start checking each clause by changing the protein (which will be some

variant of r) on membrane 3. We change the protein r^j according to the i th

clause and the j th variable that we check. In order to have clause ct satisfied,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

138

we need at least one variable yitj present in c, to be true; for 7 to be satisfied,

we need all clauses to be true.

3. Checking Phase

When we finish generating truth-assignments in region 2, we have protein pn on

membrane 2 , and in 2 steps, we start the checking phase by moving the object

e from region 1 to region 2 and then into region 3:

e [2^nl] 2 * [2^* I®] 2 ’

and then

e[3rol] 3 [3 ri,ile]3-

Now we start a sequence of pairs of steps, an even step followed by an odd one,

and so on. At each moment, there is one protein on membrane 3 that gets

primed (or double primed) in the even steps and then lose the prime in the odd

steps.

If Xj and -ixj are not present in c,, in the even steps we apply the rules:

[3 r*jM*,j] 3 * ll]3’ 1 — ̂ 1 — j ^ n -

In the odd steps the following rules are used and we move to the next variable

to check:

diA z r'i,j+il] 3 -»■ [3 r*,t+ il°U 3> 1 < * < m, 1 < j < n.

If Xj is present and it is true, then clause ct is satisfied, and we move to the

next clause. In the even steps the following rules are used:

iaPiJ 1̂ *j] 3 ̂ 6 <j[3 ri+ ljl^]3» 1 ^ j ^ n -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

139

In the odd steps, t j is sent back to region 2, and we move to check the next

clause by applying the following rules:

UK + iM a -»• * i[3r i+ i . i l] 3> 1 - 1 - m ’ 1 - •? - n.

If - i x j is present and x 3 is false, then clause c t is satisfied and, in the even steps,

the following rules are applied:

-*• bi A / i + i M \ 3 i 1 < * < "b 1 < j < n .

We move to the next clause and f j is sent back to membrane 2 by using the

following rules in the odd steps:

[3 ^ + ij l/j] 3 “ * / t [3 r*+i,i|]3, 1 < i < m, 1 < j < n .

For the cases when the current variable j does not make the clause true, we use

the following rules at the even steps (the move to the next variable happens at

the next step):

f j U r i j \ bi j \ 3 - » 1 < * < 1 < 3 < n , o r

tA3rKi\KJ:i -* 1 < i < m , 1 < j < n .

At the next step, the protein r'F will be changed into rlJ+1 so that the checking

can continue with the next variable:

[3 rij l / j] 3 fAsri j +il]3» 1 < j < n , or

[3ri,j N 3 tAari,i+il]3» 1 < i < m , 1 < j < n .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

140

If the protein rvn+i is reached on membrane 3, then the clause ct is not satisfied

and there is no further move (7 is false). If the protein rm+i,i is reached, then all

clauses C\, c2, . . . , c™ are satisfied and we stop (7 is true). The checking phase

takes 2 nm steps.

4. Answering Phase

At the end of the computation, we have to send out the answer, yes or no. In

three steps, the object yes is sent out in the environment, and the total number

of steps needed to get the yes answer is 2nm + 5n + 7.

First, we apply

[3 7̂0+1 , 1 1/]3 * ye s [3 7̂77+1 ,1 1]3)

then

[2Pn |ye s]2 -*■ yeS[2Pnl]2>

and finally

[i P l y e s] 1 -»■ y e s ^ p ' l] r

In parallel, in the membrane 5 (which is used as a counter), the following rules

are applied:

9[5Ci\g\5 -► g[5ci+1\g}5, 0 < i < 2nm + 5n + 5.

Simultaneously with sending out the object yes from region 1, the following

rule is applied:

g\§C2nm+hn+7 Ifl1] 5 * g [50277771+571-1-8]g-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

141

If the object yes is not sent out at the step 2nm + 5n + 7 (thus, we still have

the protein p , not p', on membrane 1), then, in the step 2nm + 5n + 8 , we apply

the rule:

lr

and the computation is completed.

It is now clear that the solution to the satisfiability problem of the instance 7

is given by the system in linear time, observation that completes the proof.

5 .7 U s in g a M o re R e s t r ic t iv e T y p e o f R u le s

Let us consider a type of rules more restrictive than those of type 1 cp, namely

of the following forms:

Up\a -+ [/ | a ,

a \iP\ -»• a l p ' I,

where a is an object and p, p' are proteins (we change the protein, but we do not

move or change the object which assists the change of the protein). We say that these

rules are of type 0 cp.

Another type of rules which deserve to be considered are usual non-cooperative

multiset-rewriting rules, which we write in the form

for a E O, u E O*.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

142

Rules of these types can be considered together with rules of all types from

Section 5.1, for all combinations which are not universal or are not known to be so.

One such combination is considered in the next theorem:

T h e o r e m 5 .9 N O P 2(ncoo,2res,Ocp) — N R E .

Proof. We start from the observation that a set of numbers is in N R E if it is the

length set of a recursively enumerable language over the one-letter alphabet and from

the fact that each recursively enumerable language can be generated by a matrix

grammar with appearance checking. Let us consider such a grammar, in the binary

normal form given by Lemma 1.3.7 from [39], hence, the form G = (N, {a}, S, M, F),

where N = N i UN2U{S, # } , with these three sets mutually disjoint, and the matrices

in M of the following forms:

1. (S ^ X A) , X e N u A e n 2,

2 . {X ^ Y , A ^ x) , X , Y E N U A £ N2, x e { N 2 [j{a})*,\x\ < 2 ,

3. (X ^ Y , A ^ #) , X , Y e N ^ A e N ^

4. (X —> A, A —> x'), X £ N\, A £ N2i x £ cl* , |x| ^ 2.

Moreover, there is only one matrix of type 1, and F consists exactly of all rules of

the form A —> ff from matrices of type 3. A matrix of type 4 is used only once - in

the end of a derivation.

Starting from such a grammar, we replace each rule A —> x from matrices of

types 2 and 4 having |x| < 1 with A —> xdP, where d is a new symbol and \xdJ \ = 2.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

143

We denote the obtained grammar with G' and we assume that its matrices of types

1, 2, and 3 are labeled injectively with m i , , m n.

We now construct the P system with proteins on membranes (of degree 2):

n = (0 , P , ^ , w i / z i , w 2/ z 2 , E , R i , R 2,io), with

O = {a, a', a" \ a e N2 U {a, d} } U {b, c, c', # } ,

P = { X i X u X l X ? \ X z N i , l < i < n } U { p } ,

ft ~~ [1 [2 J 2] 1’

wi — bcA, z\ = A,

w2 = A, z2 = X, for (S —> X A) being the initial matrix of G,

E = 0,

io = 2 ,

and the sets Ri, R 2 of rules constructed as follows (we present them with comments

about their use in the simulation of matrices of G').

For any matrix m* : (X —► Y, A —> x) of type 2 we introduce in R 2 the following

rules:

• A[2X I -> i2x \a

. { , X \ A ^ i ^ l A

The object A enters membrane 2 in the presence of protein X , thus starting the

simulation of matrix mt; only one rule of this form can be used because there

is only one occurrence of X on the membrane. If instead of the second rule we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

144

use the next ncoo rule, then two non-terminals will be present inside membrane

2 and the computation will never stop (see below).

• [2A —> a'P"]2, for x = aP, a, P E N2 U {a, d}

The second rule of the matrix is simulated inside membrane 2, and no other

rule can be used as long as Xi is present on the membrane.

• [2X i\a' —> [2X '|a'

. [2 x , v - . q/[2 x;i

The primed object a' introduced when simulating the rule A —> a p helps the

protein Xi to get primed, and in the presence of X[exits membrane 2.

• [2q' -* #] 2

• [2 # ^ #] 2

Only one primed object can exit membrane 2 in one step, because there is only

one protein on the membrane; if there are further primed objects in membrane

2 , then they introduce the trap-object # , which will evolve forever by means of

the rule [2# -»■ #] 2.

. [2 X ' r - > / ? " [2X'|

. P"[2X [| ^ P"[2X'l |

The double primed object P" exits membrane 2 and, from outside, helps the

protein to get double primed. Note that P" cannot exit before a' otherwise, a'

introduces the trap-object.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The change of X[into X" should be done immediately; otherwise, b enters

membrane 2 and introduces here the trap-object.

• f>[2V "l -> ^ 1

After the protein on membrane 2 gets double primed, the auxiliary object b

changes X" into Y, thus completing the simulation of the first rule of the matrix;

this happens simultaneously with using the rules of R\ presented below, and

this completes the simulation of the matrix ra*. The possible copies of d do not

further evolve in membrane 1 , while the copies of a wait in the skin region until

the end of the simulation and then are introduced in membrane 2 (see below).

For a matrix like the one above, we introduce in R\ the following rules:

For a matrix m* : (X —* A, A —► x) of type 4, we introduce in R 2 and R\ the

same rules as above, with the exception of the rule b[2X"\ —> b[2Y\, which is replaced

with the rule:

• b[2X ''| -*• b[2p\

The protein p is produced on membrane 2 in the end of derivations of G'; then,

we also add the following rules:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the derivation in G' is not terminal, then any remaining non-terminal A can

enter membrane 2 , and either evolve here by a rule [2A —> ol Q"\ 2 associated

with a rule of G', and this leads to introducing # (because the primed symbols

cannot leave the membrane), or it directly introduces the trap-object. Using

the rule [2A —> #] 2 during the simulation of a matrix as above leads to a

computation which never stops; hence, no wrong result is obtained.

We also introduce in R 2 the following rule:

• a[2P\ -> M a

It is used to introduce in the output membrane each occurrence of a, after

completing the simulation of a terminal derivation in G'. Note that if the

computation halts, then membrane 2 contains only copies of the object a and

nothing else.

For a matrix m* : (X —► Y, A —► #) of type 3, we introduce in R 2 the following

rules:

• c[2 X | ► c[2Xi\

The auxiliary object c non-deterministically chooses a matrix m, of type 3 to

simulate, and, after changing the protein into Xi, enters membrane 2 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

147

• A[2Xi\ [2Xi\A

The move of object c across membrane 2, in the presence of protein Xi, is done

in competition with the move of object A from the second rule of matrix

if this object exists and if it enters membrane 2 , then it evolves here either

by a rule of the form A —► a '(5" from a matrix of types 2 or 4, or by the rule

[2A —>■ jf\ 2 considered above. In the first case, the objects a', (3" cannot exit the

membrane, because we have rules for them only for proteins X t with i associated

with matrices of other types than of type 3 - the matrices are injectively labeled.

Thus, in all cases, the computation never halts.

• [2c ^ c '] 2

. [2x , \ d ^ [, x y

If any occurrence of A exists, then it has to enter membrane 2 , either before c

or after, because c spends one step inside membrane 2 , changing to d , and only

after that it can change the protein from to X[.

. [2xy -* c^x'i

. d [2x[\ d i 2r \

After changing the protein to X[, object d can exit membrane 2 and, from

outside, it can help the protein to change into Y , thus completing the simulation

of the matrix.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

148

What still remains to be done is to return the auxiliary object d to its non

primed version, and this is done by the following rule which is introduced in R\\

• ti c ' - ^ c] 1

From the previous explanations, it is clear that the computation in II halts

if and only if it corresponds to a correct simulation of a terminal derivation in G'.

Because the object d, does not evolve and does not enter the output membrane, it

follows that the number of copies of a introduced in membrane 2 is exactly the length

of the string produced by the derivation in grammar G, hence jV(II) is the length set

of G.

It remains as an open problem to consider the case of using rules of type 0cp

in the same system with rules of types Ires or 4res (or of a more powerful type then

these two).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 6

REWRITING P SYSTEMS WITH SYMPORT RULES

6.1 T h e M odel

In standard membrane computing (with symbol objects), the rules are used

in a non-deterministic and maximally parallel manner, but in our case, the rewriting

rules are applied in a sequential way and, because at each step there is only one string

present in the system, the symport rules are also applied in a sequential mode, at

most one at a time. Another particular aspect is that we do not need to bring in

objects from the environment, which we assume to be empty at the beginning of the

computation.

We introduce now the new type of P systems that uses context-free rewriting

rules for the evolution of objects placed inside compartments of a cell, and symport

rules for communication between membranes. The strings circulate across membranes

depending on their membership to regular languages given by means of regular ex

pressions.

D efin ition 6.1 A rewriting-symport P system is a construct of the form

II = (V ,T ,H , //, w, (Rh, Ch)h&H, h0),

where:

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

150

1 . V is the total alphabet,

2. T C V is the terminal alphabet,

3. i f is a finite set of labels for membranes,

4. fi is the membrane structure, with the membranes labeled, in a one-to-one

manner, with elements of H,

5. w EV* is the starting string, placed in the skin region at the beginning of the

computations,

6 . Rh, with h E H, are finite sets of context-free rewriting rules of the form a —» x,

for a E V and x E V*, associated with regions h of //,

7. Ch, with h E H, are finite sets of symport rules of the form (E, in) or (E, out),

where E is a regular expression over V, associated with membranes h of /i,

8 . ho E H is (the label of) the output region of the system.

Note that we work with a single string introduced initially in the system,

namely, in the skin region; this restrictive assumption can be relaxed, using sets of

strings (maybe empty), placed in each region of the initial configuration. Note also the

fact that the rewriting rules are associated with the regions (they correspond to the

bio-chemistry taking place in the compartments of a cell), while the communication

rules are associated with the membranes (and they correspond to the selective protein

channels embedded on membranes).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

151

The idea is that the rewriting rules process the string present in the system, in

the usual string rewriting mode, while the symport rules transport the string across

membranes. A string 2 present in a region h can exit this region if 2 G L (E), for

a rule (E , out) G Ch. A string z present in the region surrounding membrane h can

enter region h if z G L(E), for a rule (E ,in) G Ch- In both cases, we say that the

rules (E , out) and (E , in) were applied to the string z.

In each step, only one rule can be applied to the string present in the system,

and this rule can be any rewriting or any communicating rule which can act on the

string. That is, the rewriting is sequential (only one rule is applied to the string),

and there is no priority between rewriting and communicating rules, the kind of rules

and the specific rule to apply are chosen non-deterministically.

The computation starts in the initial configuration, which is defined by fi and

w, and continues indefinitely. Each string x G T*, which appears in region ho of

the system is said to be computed by system II, and introduced into the language

L(II) (generated/computed by II). No restriction to halting computations is imposed,

while a string x G T* already introduced in 1/(11) can continue its evolution, maybe

producing further strings which will be included in L(II).

E xam ple 6.1 Let II be the rewriting-symport P system

n = (V,T, {1,2}, [,[,],]„ A, (fl„0),(R2,cy,2),

where

V = {A ,B ,a } ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

152

T = {a},

R 1 = {A —> B B },

R2 = {B —>• A, B -» a},

C2 = {(R + ,m), (A + ,out)}.

The computation starts with the axiom A (non-terminal symbol) in the skin

region; assume that we have a string An, for n > 1. The rule A B B must be

used for all occurrences of A and only after obtaining the string B 2n we can move to

region 2. If we use the rule B —> A, then all occurrences of B must be replaced by

A, and the string A2n can then go to region 1. Thus, the doubling of the number of

occurrences of A can be repeated. If the rule B —> a is used in region 2 , then the

rule B —> A should not be used; otherwise, the string will remain blocked in region

2, without turning to a terminal string. Therefore, L(II) = {a2” \ n > 1}.

6.2 C om p u tation al R esu lts

The control ensured by the regular expressions from the symport rules reminds

the conditional grammars from the regulated rewriting area, [39], so it is no surprise

that rewriting-symport P systems are universal. We start by presenting an easy proof

of this result, also obtaining interesting suggestions from the proof about restrictive

forms of the communication rules.

T heorem 6.1 Rewriting-symport P systems with two membranes can compute all

recursively enumerable languages.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

153

Proof. Let us consider a type-0 grammar G — (TV, T, S, P) in Kuroda normal form,

hence with P = P\ U P2, where Pi contains context-free rules of the forms A —> BC,

A —> a, A —> A, where A, B ,C € N ,a G T, and

P2 = {ri : A B —► C D \ A ,B ,C ,D e N ,1 < i < k}

is a set of non-context-free rules (which we assume to be injectively labeled with

n , . . . , r k).

We construct the P system

n = (V, T, { 1 , 2 }, [x [2]2]1, S, (Ri, 0), (R2, c 2), 1),

where

V = iV U T U {«', a'f | a G TV, 1 < i < k},

Ri = P i U { 4̂ —> C', B -* D ’f | n : A B C D e P 2 , 1 < i < k},

R 2 = {a' —>■ a, a" —»■ a \ a E N, 1 < i < k},

C2 = {((TV U T)*{a'/?" | a , 0 E N ,1 < i < k } (N UT)*,in), ((TV U T)*, out)}.

The equality L(G) = 1/(11) is obvious: a sentential form of the grammar G

(initially, S) placed in region 1 can be rewritten by the context-free rules of P x any

number of steps; if any rule A —► C[or B —»• D ” associated with a rule r\ : A B —>

C D G P 2 , for 1 < i < k, is used, then both these rules should be used on neighboring

positions; otherwise, the string cannot enter membrane 2 and hence it will never

produce a terminal string; in membrane 2, we just return the symbols C-, D" to

C, D, and the string is sent back to the skin region. Any terminal derivation in G

corresponds to a successful (and halting) computation in II.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

154

What is of interest in this proof is the particular form of the regular expressions

from the symport rules: they are either of the form U* or of the form U*FU*, for

a given alphabet U and a finite language F. This suggests to us to consider regular

expressions of the following normal forms:

(n/1) E = U*WU£ or E = U*,

(n/2) E = U*W, E = WU*, or E = U*,

(n/3) E = U*,

where U, Ui, U2 are alphabets and W is a set of symbols.

Note that the finite set W consists of symbols, not of pairs of symbols as in

the proof of Theorem 6.1. The alphabets U, U2 may be empty, hence (n/1) is more

general than (n/2), which is more general than (n/3).

We denote by ELSPm(rw, symnfj) the family of languages generated by

rewriting-symport P systems with at most m membranes, using symport rules with

the regular expressions of the form (nfj), j = 1,2,3. Of course, the alphabets U and

the set W can be different from a rule to another one. If the number of membranes

is not bounded, then we replace the subscript m with *. If T = V (hence no specific

terminal alphabet is considered), then we remove the front letter E (we say then that

the system is non-extended, a terminology usual in the L systems area [8 6]).

The following inclusions are direct consequences of the definitions (the appear

ance of [E] means that the respective relation is true both with E in the two sides of

the relation and without E).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

155

L em m a 6.1 (i) [E]LSPm(rw, symnfj) C [E]LSPm+i(rw, symnfj) C

[E]LSP*(rw, symnfj) C RE, for all m > 1, and j = 1, 2, 3.

(ii) [E\LSPm(rw,symnf3) C [P]LS'.Prn(ru;, symnf2) C [E]LSPm(rii;, si/ran/i) , for all

m > 1 or m = * .

(iii) LSPm(rw, symnfj) C E LSPm(rw, symnfj), for all m > 1 or m = *, and j =

1,2,3.

Somewhat surprisingly, taking into account the weak control imposed by sym

port rules of this type, already the systems with regular expressions of the form (n /2)

are universal (even in the non-extended case).

T h eorem 6.2 LSP*(rw, symnf2) = RE.

Proof. In view of Lemma 6.1, we only prove the inclusion R E C LSP*(rw, sym nf 2),

and to this aim we use the so-called rotate-and-simulate technique much used in the

DNA computing area.

As in the proof of Theorem 6.1, we consider a type-0 grammar G = (N , T, S, P)

in Kuroda normal form, with P = Pi U P 2 , where P1 is the set of context-free rules,

of the forms A —► BC, A —> a, A —> A , with A, B , C E N ,a G T, and

P2 = i n : AB -> C D | A, B, C, D e N, 1 < i < k}

is the set of non-context-free rules (injectively labeled with r i , . . . , r^). Let AT be a

new symbol, and denote U = iV U T U { J } .

We construct the rewriting-symport P system

n = (V, V, H, n, X X S , (Ru 0) , (Ri, Ci)i<i<k j (Ri', C V) l<i<kj

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

156

(Ra, C(x)a€.U j (R/i j C/i)) (R/2) Cf2); /b) j

where

1/ = {a*, a' | a E iV, 1 < i < /c}

U { a 7, a " , a '" | a E N }

U { a , a , a | a E U } ,

H = { i , i ' I 1 < i < k} U U U { s , f 1, f 2},

/ 7

Rs

U

R * =

c, =

R i ' =

u

c, =

Rn =

U

R / i =

R /2 =

L t J l ' l l ' l l • • • [Jfe' Ife'lfe (L IcJ0^*7 [/ J / 2] / 2l / J s ’

Ri U {B -> D u C'" C \ ^ : AB C D e P 2, l < i < k }

a —> a, a ^ a | a E E/},

Di - A , C " - > C " " , A C ' } ,

(U*Di,in), (C"'U*,out)},

C ' - > A }

a —>• C"Da | a E E7},

(E/*C;, in), (CT'EE*, out)}, for all r< : AB -► C£> E P 2, 1 < i < k,

a —>• A }

/? - d/? | /? E EE},

(U*a,in), (dEE*, owf)}, for all a E E7,

X - A } ,

(XU*, in)},

X ^ X } ,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

157

Ch = {(X T * ,in)} .

This system functions as follows. The sentential forms z of grammar G are

present in the system II in the form z2X X z \ , for z = Z\Z2 , with 2 1 , 2 2 £ (X U T)*

(hence circularly permuted, with the new symbol X marking the correct beginning

of the original string - by means of X X) . The context-free rules of P will be simply

applied to the string in the skin region of II. The non-context-free rules : A B —>

C D £ P2, l < i < k are simulated with the help of membranes i and i', in the rotate-

and-simulate style: the symbols A, B are removed from the right hand end of the

string and C, D are appended in the left hand of the string - we will discuss this in

detail below.

In order to make available in the end of the strings the necessary symbols AB,

the strings can be circularly permuted, with the help of membranes with label a € U.

This is done as follows. Assume that we have a string za in the skin region, with

2 € U*,a G U. By means of the rule a —> a, one occurrence of a is barred; if this is

not the end one, the string will never enter membrane / 1 . If the barred symbol is the

rightmost one, and no symbol different from those in U appears in the string, then

we can move the string in the membrane with the label a (note that this membrane

is precisely associated with a), where d is removed, and the front symbol, (3, of 2

(there is such a symbol, because 2 consists of at least the two copies of X) introduces

a. The string can exit membrane a only if both these rules are used (with the rule

(3 —> a d used indeed for 6 being the first letter of 2). In the skin region, the front

letter a is replaced by a; hence, we get the string az. This process can be repeated

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

158

as many times as needed (and it handles in the same way terminal and non-terminal

symbols of G. as well as the occurrences of X).

Assume now that we have in the skin region a string of the form zAB , for some

r* : A B —> C D G P2 , and we want to simulate this rule. The end occurrence of B can

be replaced with Dt - and only in this case the string can lead to a terminal string in

L(U). The string zAD, enters region i (for the membrane i uniquely associated with

the rule r*). There are two rules which can be used here, A —> A and A C[. No

further step is possible if we do not use both these rules, with the latter one applied

to the occurrence of A from the right hand end of the string. Therefore, we get the

string zC[which passes to membrane i'. Again, two rules must be used here, C[A

and a —» C"Da, for some a G U (the second rule rewrites the front symbol of z):

otherwise, the string cannot leave this membrane. If the string leaves membrane

then it is of the form C"Dz. In region i the front symbol C" is replaced with C'", and

only in this case the string can leave membrane i (if we use again the rule A —> C[.

even if A is the rightmost symbol of z, the string remains blocked in region i). Thus,

we return to the skin region with the string C"'Dz\ we replace C'" with C and the

simulation of the rule n is complete.

Note that any other way of using the rules leads to a deadlock, either with the

string blocked in a membrane i or i', or with it in the skin region, but unable to enter

any lower level membrane.

The simulation of rules in G can continue as long as necessary. At any moment,

a string of the forms X X z or X z X can enter the membrane / 1 , where it can lose one

or both symbols X . In the latter case, the string remains forever here. If the string z

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

159

was a terminal one, and if we have erased only one occurrence of X , still preserving

one in the leftmost position, then the string can enter the output membrane, / 2,

where the last symbol X is removed.

Thus, the only way to send a string from T* to the output membrane is to

follow correctly a derivation in G and to have in the end the string in the same

order of symbols as in the grammar G (this is ensured by the condition to have at

least one symbol X in the leftmost position when entering membrane / 2). Note the

way the selection by the symport rule of membrane / 2 also ensures that the string is

terminal; hence, it is not necessary to take explicitly the alphabet T as a subset of

V. Consequently, L(G) = L(I1).

The proof of a similar result, but with a bound on the number of membranes,

is left as an open problem.

C o ro lla ry 6 .1 [E]LSP*{rw, syrrinff) = [E]LSP*(rw, symnfi) = RE.

For the most restricted form of regular expressions, (n/3), the power of our

systems is strictly smaller: in this case, we get a characterization of the family of

ETOL languages.

T h e o r e m 6 .3 ETOL = LSPm(rw, symnf3) = E LSPm(rw, symnf3), for all m > 3

or m = *.

Proof, (i) ETOL C LSPm(rw, sym nf3).

Let G = (V, T, w, Pi, P2) be an ETOL system in the two-table normal form.

Let us consider the alphabets Vt = {a* | a € V }, i = 1,2, where ai, a2 are new symbols

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

160

associated with a E V. We also consider the morphisms (codings) hi : V* — > V*,

defined by ht(a) = a*, for all a G V, i = 1,2.

We construct the P system

n = (U, U, {1, 2,3}, [J2]2[3 y !, w, (Pi, 0), (P2, c2), (0, C3), 3),

where

U = 'P U V iU '^ ,

R 1 = {a —> hi(x) | a —> a; € Pi}

U (a —»■ fi2(^) | a —>■ ^ € P2 },

R2 = (a! —>■ a, a2 —> a | a G W},

C2 = { (V {,in) , (V*,in), (V*, out)},

C3 = {(T*, in)}.

The rules of the tables Pi, P2 of G can be simulated in the skin region, with the

symbols introduced by these rules having subscripts 1 for rules in P1 and subscripts 2

for rules in P2. These rules should not be mixed; otherwise, the string remains blocked

in region 1. Moreover, all symbols of the string should be rewritten; otherwise, the

string cannot enter membrane 2. In membrane 2, the symbols lose their subscripts

and only after that the string can exit. The process can be iterated. At any moment,

any terminal string can enter membrane 3 and it remains there.

Consequently, L(G) = L(H), which concludes the proof of the inclusion

ETOL C LSPm(rw ,sym nf3).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

161

(ii) ELSP*(rw, syrrinfz) C ETOL.

Consider now the following rewriting-symport P system with an arbitrary

number of membranes,

II = (V, T, H, /i, w, (Rh, Ch)h£H, ho).

For simplicity, we relabel the membranes with numbers; hence, we assume H =

{ 1 ,2 , . . . ,m }, where to is the number of membranes from y. Without loss of the

generality, we may also assume that the skin membrane has now label 1 and the

output membrane has label to.

For each symbol a E V, we consider the symbols a t, for 0 < i < rn. Note that

we have also used the subscript 0; we denote H0 = H U {0} and Vh0 = {cm \ a E

V, 0 < i < to}. For each i E Ho, we consider the morphism (coding) / , : V* — > V^Q

defined by fi(cx) = a i: for a E V.

We construct the ETOL system G — (IF, T, f \ (w) ,V) , with

» ' = V , , U 7 ’ U { #) ,

where # is a new symbol, and with the tables constructed below.

The idea behind this construction is to encode the fact that the string of the P

system II is present in region i by adding the subscript i to all symbols of the strings

- with 0 representing the environment of the system (the string can exit the system

and can come back by symport rules from C\). Then, the ETOL system will work

on such a string with subscripted symbols - the rules from Ri will rewrite symbols of

the form a, and produce symbols with the same subscript. In order to prevent the

application of rules from a region j on the strings present in region i, we introduce

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

162

the trap-symbol # for each symbol a3 in all tables associated with rules from regions

j different from i. These ideas are implemented in the next tables in the following

way:

1. For i € H and each rule r : a —► x £ Ri, we introduce in V the table

Pr = {a.i f i(x)}

U {a* —> cti | a £ V }

U { qj -* # | a G V, j £ H0 - { i} }

U {a —>■ a | a e T } U { # —> # } .

The rule a —» a: is simulated in the form a t —> /j(x). Note that the table Pr

contains also the rule ccj —» Oj; hence, any number of occurrences of a t - maybe

zero, and then the string remains unchanged - can be rewritten by this rule. It

is not necessary to rewrite all, as otherwise imposed by the parallelism of the

ETOL system if we would not have the rule ct; —> an. If the table is applied

to a “wrong” string, i.e., to the string of II present in a region different from i,

then the trap-symbol is introduced. This symbol is never removed; hence, the

string will never become terminal. The rules a —> a, for a € T, are introduced

in order to make the table complete.

2. Consider now the communication rules. Let (U*,in) & Ci be such a rule, and

let j be the label of the region surrounding membrane i in n (with j = 0 for

i = 1). Then, we introduce in V a table which we denote by P (U ,j —► i), with

the notation telling that the string composed of symbols from U can move from

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

163

region j to region i. Now let ([/*, out) be a rule from some Ck, and let I be the

region surrounding region k. We introduce in V a table P(U, k —> I), with the

same meaning as above. Thus, for all such rules we have to consider tables of

the same form:

P (U ,j —> i) = {a j —> Qfj | a G U}

U

U {a fc -> # | a € V, k G - { j} }

U {a —> a | a € T} U { # —> # } .

If such a table is used, and the string in the ETOL system corresponds to a

string from the region j of II, then the subscripts of all symbols are changed

from j to i, which corresponds to moving the string in region it is important

to note that only symbols from U can change the subscripts, while symbols

not in U will introduce the trap-symbol. The trap-symbol is introduced also

if we apply this table to a string which is not in region j (hence, the current

subscripts of symbols are different from j) .

3. Finally, we introduce the following table:

p 1 m -> a | a e T }

u { Om - # | a e V - T }

u - - # l a e v , j e Ho - {m } }

u {a —*• a | a e T } u { # ^ # } .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

164

This table can be applied in such a way not to introduce the trap-object only

if the string is of the form f m(w), for w e T*, and in this way we get a string

which is terminal with respect to G.

From the previous explanations, we have the equality L(G) = L(II), and this

proves the inclusion ELSP*(rw, sym nf3) C ETOL.

Together with Lemma 6.1 (iii) for j = 3, the previous inclusions prove the

theorem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CHAPTER 7

CONCLUSIONS, OPEN PROBLEMS, AND FURTHER

RESEARCH

This dissertation investigates variants of membrane systems as models for

molecular computing. Thus, we follow the standard approach of research in mem

brane computing: defining a new model of computation for membrane systems, and

investigating the computational power of such computing device. Specifically, we

address issues concerning the power of bio-inspired communication mechanisms with

proteins placed on membranes, and the power of rewriting P systems with communi

cation by symport rules.

In the case of P systems with m ate/drip rules, we prove that P s M A T C

PsOPz(m ate 2 , drip3), but it remains as an open problem the question if the converse

inclusion is also true.

We have introduced and investigated a class of P systems where the multisets of

objects from the compartments of the membrane structure evolve under the control of

multisets of proteins placed on the membranes. Several types of rules were considered

and in many cases universality was obtained, even for systems with the minimal

number of membranes, one. In some cases, also the number of proteins present at

any moment on the membrane is rather small (this can be considered as a descriptive

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

166

complexity measure of the systems). In [76], we left as an open problem the possibility

to bound the number of proteins also in Theorem 5.3 and Theorem 5.6.

Some of these questions had been already answered in [56]. The unbound

number of proteins for Theorem 5.3 is reduced to 7 and for Theorem 5.6 to 10 pro

teins; also other combinations of rules axe considered. We give a complete list of

the universality results from [56], mentioning only the types of rules used and the

bounded number of proteins placed on a membrane (see Table 7.1).

Table 7.1 Universality results from [56].

Rules Number of Proteins

3ffp 7

2ffp, 4ffp 7

2 ffp, lffp 7

2 ffp, Ires 1 0

2ffp, 3res 9

2ffp, 5res 8

lffp, 2 res 9

lffp, 3res 8

4ffp, 3res 9

Another question is whether rules of pure forms are strictly weaker than rules

of the general form of types cp and / / .

Here we had investigated the computational power of several classes of P sys

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

167

tems of the types mentioned above; for many cases, we got characterizations of re

cursively enumerable sets of numbers, hence Turing completeness, while for some

restricted cases only singleton sets can be computed. Some combinations of types of

rules remain to be further investigated. No other classes of P systems using only one

type of rules can be universal besides the ones already investigated (2cpp, 3cpp, and

3f f p) . In all cases, we work in the maximally parallel semantics; other possibilities

(sequential use of rules [37], [41], minimally parallel use of rules [4], etc.) remain as

research topics. Another possible direction is to redefine the result of a computation,

e.g., taking the length of the computation as result, in the sense of [51] or [68].

It remains as an open problem to consider the case of using rules of type 0cp,

considered in Section 5.7, in the same system with rules of types Ires or 4res (or of

a more powerful type then these two).

In the case of rewriting-symport P systems, the proof of a similar result to the

one from Theorem 6.2, but with a bound on the number of membranes, is left as an

open problem.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

BIBLIO G RAPH Y

[1] L.M. Adleman: Molecular Computation of Solutions to Combinatorial Problems.
In Science, vol. 226, 1994, 1021-1024.

[2] B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter: Molecular
Biology of the Cell, 4th ed. Garland Science, New York, 2002.

[3] A. Alhazov: Solving SAT by Symport/Antiport P Systems with Memebrane Di
vision. In Proceedings of the ESF Exploratory Workshop on Cellular Computing
(Complexity Aspects), Sevilla, Spain, 2005, Fenix Editora, Sevilla, 2005, 1-6.

[4] A. Alhazov: Minimal Parallelism and Number of Membrane Polarizations. In
Pre-proceedings of Membrane Computing, International Workshop, Leiden, The
Netherlands, 2006, WMC7, Leiden, 2006, 74-87.

[5] A. Alhazov, T.-O. Ishdorj: Membrane Operations in P Systems with Active
Membranes. In Proceedings of the Second Brainstorming Week on Membrane
Computing, Sevilla, Spain, 2004, BWMC 2004, Report RGNC 01/04, University
of Sevilla, 2004, 37-52.

[6] A. Alhazov, M. Margenstern, V. Rogozhin, Y. Rogozhin, S. Verlan: Commu
nicative P Systems with Minimal Cooperation. In Membrane Computing. 5th
International Workshop, Milan, Italy, 2004■ Revised Selected and Invited Pa
pers, WMC5, LNCS 3365, Springer-Verlag, Berlin, 2005, 162-178.

[7] A. Alhazov, C. Martin-Vide, L. Pan: Solving Graph Problems by P Systems with
Restricted Elementary Active Membranes. In Aspects of Molecular Computing,
LNCS 2950, Springer, Berlin, 2004, 1-22.

[8] A. Alhazov, D. Sburlan: Static Sorting Algorithms for P Systems. In Pre-
Proceedings of the Workshop on Membrane Computing, Tarragona, Spain, 2003,
WMC 2003, GRLMC Report 28/03, Tarragona, 2003, 17-40.

[9] A. Alhazov, D. Sburlan: Static Sorting P Systems. In [34], 215-252.

[10] 1.1. Ardelean, D. Besozzi, M.H. Garzon, G. Mauri, S. Roy: P System Models for
Mechanosensitive Channels. In [34], 43-81.

[11] 1.1. Ardelean, M. Cavaliere: Modeling Biological Processes by Using a Proba
bilistic P System Software. In Natural Computing, vol. 2(2), 2003, 173-197.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

169

[12] J.J. Arulanandham: Implementing Bead-Sort with P Systems. In Unconventional
Models of Computation 2002, LNCS 2509, Springer, Berlin, 2002, 115-125.

[13] J. Bartosik: Paun’s Systems in Modeling of Human Resource Management. In
Proceedings of Second Conference of Tools and Methods of Data Transformation,
WSU Kielce, 2004.

[14] G. Bel Enguix, M.D. Jimenez-Lopez: Linguistic Membrane Systems and Appli
cations. In [34], 347-388.

[15] F. Bernardini, M. Gheorghe: Population P Systems. In Journal of Universal
Computer Science, vol. 10(5), 2004, 509-539.

[16] F. Bernardini, M. Gheorghe, N. Krasnogor, R.C. Muniyandi, M.J. Perez-
Jimenez, F.J. Romero-Campero: On P Systems as a Modelling Tool for Biolog
ical Systems. In Pre-Proceedings of Sixth International Workshop on Membrane
Computing, Vienna, Austria, 2005, WMC6, Vienna, 2005, 193-213.

[17] F. Bernardini, V. Manca: Dynamical Aspects of P Systems. In BioSystems,
vol. 70, 2002, 85-93.

[18] F. Bernardini, A. Paun: Universality of Minimal Symport/Antiport: Five Mem
branes Suffice. In Proceedings of Membrane Computing. International Workshop,
Tarragona, Spain, 2003, Revised Papers, WMC 2003, LNCS 2933, Springer,
Berlin, 2004, 43-54.

[19] D. Besozzi, D. Busi, G. Franco, R. Freund, Gh. Paun: Two Universality Results
for (Mem)Brane Systems. In Proceedings of the Fourth Brainstorming Week on
Membrane Computinq, Sevilla, Spain, 2006, BWMC 2006, vol. I, Fenix Editora,
Sevilla, 2006, 49-62.

[20] L. Bianco: Introduction to Psim. Manuscript, 2004. Available at:
http://psystems.disco.unimib.it/software/Bianco/psim.pdf

[21] L. Bianco, F. Fontana, G. Franco, V. Manca: P Systems for Biological Dynamics.
In [34], 83-128.

[22] N. Busi: On the Computational Power of the M ate/Bud/Drip Brane Calculus:
Interleaving vs. Maximal Parallelism. In Pre-Proceedings of Sixth Workshop on
Membrane Computing, Vienna, Austria, 2005, WMC6, Vienna, 2005, 235-252.

[23] L. Cardelli: Brane Calculi - Interactions of Biological Membranes. In Compu
tational Methods in Systems Biology. International Conference, Paris, France,
2004- Revised Selected Papers, CMSB 2004, LNCS 3082, Springer-Verlag, Berlin,
2005, 257-280.

[24] L. Cardelli. Gh. Paun: An Universality Result for a (Mem)Brane Calculus Based
on Mate/Drip Operations. In Proceedings of the ESF Exploratory Workshop on
Cellular Computing (Complexity Aspects), Sevilla, Spain, 2005, Fenix Editora,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://psystems.disco.unimib.it/software/Bianco/psim.pdf

170

Sevilla, 2005, 75-94, and in International Journal of Foundations of Computer
Science, vol. 17(1), 2006, 49-68.

[25] J. Castellanos, Gh. Paun, A. Rodriguez-Paton: P Systems with Worm-Objects.
In IEEE 7th International Conference on String Processing and Information Re
trieval, La Coruna, Spain, 2000, SPIRE 2000, La Coruna, 64-74, and CDMTCS
TR 123, University of Auckland, 2000 (www.cs.auckland.ac.nz/CDMTCS).

[26] M. Cavaliere: Evolution-Communication P Systems. In Membrane Comput
ing, International Workshop, Curtea de Arge§, Romania, 2002. Revised Papers,
WMC-CdeA 2002, LNCS 2597, Springer, Berlin, 2003, 134-145.

[27] M. Cavaliere, 1.1. Ardelean: Modeling Respiration in Bacteria and Respira
tion/Photosynthesis Interaction in Cyanobacteria Using a P System Simulator.
In [34], 129-158.

[28] M. Cavaliere, A. Riscos-Nunez, R. Brijder, G. Rozenberg: Membrane Systems
with Marked Membranes. Manuscript, 2005.

[29] R. Ceterchi, R. Gramatovici, N. Jonoska, K.G. Subramanian: Generating Pic
ture Languages with P Systems. In Proceedings of the Brainstorming Week on
Membrane Computing, BWMC 2003, Technical Report 26/03, Rovira i Virgili
University, Tarragona, 2003, 85-100.

[30] R. Ceterchi, C. Martm-Vide: P Systems with Communication for Static Sorting.
In Pre-Proceedings of Brainstorming Week on Membrane Computing, Tarragona,
Spain, 2003, BWMC 2003, Technical Report 26/03, Rovira i Virgili University,
Tarragona, 2003, 101-117.

[31] H. Chen, M. Ionescu, A. Paun, Gh. Paun, B. Popa: On Trace Languages Gener
ated by Spiking Neural P Systems. In Proceedings of the Fourth Brainstorming
Week on Membrane Computing, Sevilla, Spain, 2006, BWMC 2006, vol. I, 2006,
207-224.

[32] G. Ciobanu: Modeling Cell-Mediated Immunity by Means of P Systems. In [34],
159-180.

[33] G. Ciobanu, D. Dumitriu, D. Huzum, G. Moruz, B. Tanasa: Client-Server P Sys
tems in Modeling Molecular Interaction. In Membrane Computing, International
Workshop, Curtea de Arge§, Romania, 2002. Revised Papers, WMC-CdeA 2002,
LNCS 2597, Springer, Berlin, 2003, 203-218.

[34] G. Ciobanu, Gh. Paun, M.J. Perez-Jimenez, eds.: Applications of Membrane
Computing, Springer-Verlag (Natural Computing Series), Berlin, 2006.

[35] E. Csuhaj-Varju, M. Margenstern, G. Vaszil, S. Verlan: Small Computationally
Complete Symport/Antiport P Systems. In Proceedings of the Fourth Brain-
storminq Week on Membrane Computinq, Sevilla, Spain, 2006, BWMC 2006,
vol. I, 2006, 267-281.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cs.auckland.ac.nz/CDMTCS

171

[36] E. Czeizler: Self-Activating P Systems. In Membrane Computing. International
Workshop, Curtea de Arge§, Romania, 2002. Revised Papers, WMC-CdeA 2002,
LNCS 2597, Springer, Berlin, 2003, 234-246.

[37] Z. Dang, O.H. Ibarra: On P Systems Operating in Sequential and Limited Par
allel Modes. In Pre-Proceedings of the Workshop on Descriptional Complexity of
Formal Systems, London, Canada, 2004, DCFS 2004, London, 2004, 164-177.

[38] V. Danos, S. Pradalier: Projective Brane Calculus. In Computational Methods in
Systems Biology: International Conference, Paris, France, 2004■ Revised Selected
Papers, CMSB 2004, LNCS 3082, Springer-Verlag, Berlin, 2005, 134-148.

[39] J. Dassow, Gh. Paun: Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

[40] G. Franco, V. Manca: A Membrane System for the Leukocyte Selective Re
cruitment. In Membrane Computing. International Workshop, Tarragona, Spain,
2003, Revised Papers, WMC 2003, LNCS 2933, Springer, Berlin, 2004, 181-190.

[41] R. Freund: Asynchronous P Systems and P Systems Working in the Sequential
Mode. In Membrane Computing. International Workshop, Milano, Italy, 2004,
WMC5, LNCS 3365, Springer-Verlag, Berlin, 2005, 36-62.

[42] R. Freund, L. Kari, M. Oswald, P. Sosik: Computationally Universal P Systems
without Priorities: Two Catalysts Are Sufficient. Theoretical Computer Science,
vol. 330(2), 2005, 251-266.

[43] R. Freund, M. Oswald: Tissue P Systems with Symport/Antiport rules of One
Symbol Are Computationally Universal. In Proceedings of the ESF Exploratory
Workshop on Cellular Computing (Complexity Aspects), Sevilla, Spain, 2005,
187-200.

[44] R. Freund, A. Paun: P Systems with Active Membranes and without Polar
izations. In Proceedings of the Second Brainstorming Week on Membrane Com
puting, Sevilla, Spain, 2004, BWMC 2004, Report RGNC 01/04, University of
Sevilla, 2004, 193-205, and in Soft Computing, vol. 9(9), 2005, 657-663.

[45] M.R. Garey, D.S. Johnson: Computer and Intractability. A Guide to the Theory
of NP-Completeness. W.H. Freeman and Company, New York, 1979.

[46] A. Georgiou: SubLP-Studio Software, 2003. Available at:
http://psystems.disco.unimib.it/software.html

[47] A. Georgiou, M. Gheorghe, F. Bernardini: Membrane-Based Devices Used in
Computer Graphics. In [34], 253-282.

[48] J.-L. Giavitto, G. Malcolm, O. Michel: Rewriting Systems and the Modeling
of Biological Systems. In Comparative and Functional Genomics, vol. 5, 2004,
95-99.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://psystems.disco.unimib.it/software.html

172

[49] R. Gramatovici, G. Bel Enguix: Parsing with P Automata. In [34], 389-410.

[50] T. Head: Formal Language Theory and DNA: An Analysis of the Generative Ca
pacity of Specific Recombinant Behaviors. In Bulletin of Mathematical Biology,
vol. 49, 1987, 737-759.

[51] O.H. Ibarra, A. Paun: Counting Time in Computing with Cells. In Proceedings of
DNA Based Computing, London, Canada, 2005, D N A ll, London, 2005, 25-36.

[52] M. Ito, C. Martfn-Vide, Gh. Paun: Characterization of Parikh Sets of ETOL
Languages in Terms of P Systems. In Words, Semigroups, and Transducers,
World Scientific, Singapore, 2001, 239-254.

[53] R. Karwowski: L-studio v. 3.1. Department of Computer Science, University of
Calgary, 2001. Available at:
http://www.cpsc.ucalgary.ca/Research/bmv/lstudio.

[54] W. Korczynski: Paun’s Systems and Accounting. In Pre-Proceedings of Sixth In
ternational Workshop on Membrane Computing, Vienna, Austria, 2005, WMC6,
Vienna, 2005, 461-464.

[55] I. Korec: Small Universal Register Machines. In Theoretical Computer Science,
vol. 168, 1996, 267 301.

[56] S.N. Krishna: Combining Brane Calculus and Membrane Computing. In Proceed
ings of Bio-Inspired Computing - Theory and Applications Conference, Wuhan,
China, September 2006, Membrane Computing Section, BIC-TA 2006.

[57] S.N. Krishna, A. Paun: Results on Catalytic and Evolution-Communication P
Systems. In New Generation Computing, vol. 22(4), 2004, 377-394.

[58] S.N. Krishna, Gh. Paun: P Systems with Mobile Membranes. In Natural Com
puting, vol. 4(3), 2005, 255-274.

[59] S.N. Krishna, R. Rama: A Variant of P Systems with Active Membranes: Solv
ing NP-Complete Problems. In Romanian Journal of Information Science and
Technology, vol. 2(4), 1999, 357-367.

[60] S.N. Krishna, R. Rama, H. Ramesh: Further Results on Contextual and Rewrit
ing P Systems. In Fundamenta Informaticae, vol. 64(1-4), 2005, 241-253.

[61] A. Leporati, C. Zandron: A Family of P Systems which Solve 3-SAT. In Pro
ceedings of the ESF Exploratory Workshop on Cellular Computing (Complexity
Aspects), Sevilla, Spain, 2005, Fenix Editora, Sevilla, 2005, 247-256.

[62] A. Lindenmayer: Mathematical Models for Cellular Interaction in Development.
In Journal of Theoretical Biology, vol. 18, 1968, 280-315.

[63] L. M. Loew, J. C. Schaff: The Virtual Cell - A software Environment for Compu
tational Cell Biology. In TRENDS in Biotechnology, vol. 19(10), 2001, 401-406.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.cpsc.ucalgary.ca/Research/bmv/lstudio

173

[64] M. Madhu, K. Krithivasan: Improved Results About the Universality of P Sys
tems. In Bulletin of the EATCS, vol. 76, 2002, 162-168.

[65] O. Michel, F. Jacquemard: An Analysis of a Public Key Protocol with Mem
branes. In [34], 283-302.

[66] O. Michel, F. Jacquemard, J.-L. Giavitto: Three Variations on the Analysis of
the Needham-Schroeder Public Key Protocol with MGS. Technical Report LaMI-
98-2004, University d’Evry - CNRS, 2004.

[67] M.L. Minsky: Computation: Finite and Infinite Machines. Prentice Hall, Engle
wood Cliffs, New Jersey, 1967.

[68] H. Nagda, A. Paun, A. Rodriguez-Paton: P Systems with Symport/Antiport
and Time. In Pre-proceedings of Membrane Computing, International Workshop,
Leiden, The Netherlands, 2006, WMC7, Leiden, 2006, 429-442.

[69] T.Y. Nishida: Simulations of Photosynthesis by a A-Subset Transforming Sys
tem with Membranes. In Fundamenta Informaticae, vol. 49(1-3), 2002, 249-259.

[70] T.Y. Nishida: A Membrane Computing Model of Photosynthesis. In [34],
181-202.

[71] T.Y. Nishida: Membrane Algorithms: Approximate Algorithms for N P -
Complete Optimization Problems. In [34], 303-314.

[72] L. Pan, C. Martin-Vide: Solving Multiset 0 — 1 Knapsack Problem by P Sys
tems with Input and Active Membranes. In Proceedings of the Second Brain
storming Week on Membrane Computing, Sevilla, Spain, 2004, BWMC 2004,
Report RGNC 01/04, University of Sevilla, 2004, 342-353.

[73] A. Paun: On P Systems with Membrane Division. In Unconventional Models of
Computation, Springer, London, 2000, 187-201.

[74] A. Paun: Membrane Systems with Symport/Antiport. Universality Results. In
Pre-Proceedings of Second Workshop on Membrane Computing, Curtea de Arge§,
Romania, 2002, 333-344.

[75] A. Paun, Gh. Paun: The Power of Communication: P Systems with Sym
port/Antiport. In New Generation Computing, vol. 20(3), 2002, 295-306.

[76] A. Paun, B. Popa: P Systems with Proteins on Membranes. In Fundamenta
Informaticae, vol. 72(4), 2006, 467-483.

[77] A. Paun, B. Popa: P Systems with Proteins on Membranes and Membrane
Division. In Proceedings of the 10th International Conference on Developments
in Language Theory, Santa Barbara, CA, USA, 2006, DLT 2006, LNCS 4036,
Springer, Berlin, 2006, 292-303.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

174

[78] Gh. Paun: Computing with Membranes. In Journal of Computer and System
Sciences, vol. 61(1), 2000, 108-143 (and Turku Center for Computer Science -
TUCS Report 208, November 1998, w w w .tu cs.fi).

[79] Gh. Paun: Membrane Computing. An Introduction. Springer, Berlin, 2002.

[80] Gh. Paun, J. Pazos, M.J. Perez-Jimenez, A. Rodriguez-Paton: Sym-
port/Antiport P Systems with Three Objects Are Universal. In Fundamenta
Informaticae, vol. 64(1-4), 2005, 353-367.

[81] M.J. Perez-Jimenez, A. Riscos-Nunez: A Linear Time Solution to the Knap
sack Problem Using Active Membranes. In Membrane Computing. International
Workshop, Tarragona, Spain, 2003, Revised Papers, WMC 2003, LNCS 2933,
Springer, Berlin, 2004, 250-268.

[82] M.J. Perez-Jimenez, F.J. Romero-Campero: A Study of the Robustness of the
EGFR Signalling Cascade Using Continuous Membrane Systems. In Mechanisms,
Symbols, and Models Underlying Cognition. First International Work-Conference
on the Interplay between Natural and Artificial Computation, Las Palmas, Spain,
2005, I WIN AC 2005, LNCS 3561, Springer, Berlin, 2005, 268-278.

[83] M.J. Perez-Jimenez, A. Romero-Jimenez, F. Sancho-Caparrini: Complexity
Classes in Models of Cellular Computing with Membranes. In Natural Com
puting, vol. 2(3), 2003, 265-285.

[84] M.J. Perez-Jimenez, A. Romero-Jimenez, F. Sancho-Caparrini: Computationally
Hard Problems Addressed Through P Systems. In [34], 315-346.

[85] Y. Rogozhin, S. Verlan: On the Rule Complexity of Universal Tissue P Systems.
In Membrane Computing, International Workshop, Vienna, Austria, 2005, Se
lected and Invited Papers, WMC6, LNCS 3850, Springer-Verlag, Berlin, 2006,
356 363.

[86] G. Rozenberg, A. Salomaa: The Mathematical Theory of L Systems. Academic
Press, New York, 1980.

[87] G. Rozenberg, A. Salomaa, eds.: Handbook of Formal Languages. Springer-
Verlag, Berlin, 1987.

[88] Y. Suzuki, H. Tanaka: Chemical Evolution among Artificial Proto-Cells. In Ar
tificial Life, vol. 7, 2000, 54-63.

[89] Y. Suzuki, H. Tanaka: Modeling p53 Signaling Pathways by Using Multiset
Processing. In [34], 203-214.

[90] M. Tomita, K. Hashimoto, K. Takahashi, Y. Matsuzaki, R. Matsushima,
K. Saito, K. Yugi, F. Miyoshi, H. Nakano, S. Tanida, Y. Saito, A. Kawase,
N. Watanabe, T. Shimizu, and Y. Nakayama: The E-CELL Project - Towards
Integrative Simulation of Cellular Processes. In New Generation Computing,
vol. 18(1), 2000, 1-12.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.tucs.fi

175

[91] C. Zandron, G. Mauri, C. Ferreti: Universality and Normal Forms on Membrane
Systems. In Proceedings of International Workshop on Grammar Systems, Bad
Ischl, Austria, 2000, Bad Ischl, 2000, 61-74.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	Louisiana Tech University
	Louisiana Tech Digital Commons
	Fall 2006

	Membrane systems with limited parallelism
	Bianca Daniela Popa
	Recommended Citation

	tmp.1563370478.pdf.kVq3A

