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Membrane Systems withQualitative Evolution RulesJetty Kleijn1 and Maiej Koutny2
1 LIACS, Leiden UniversityP.O.Box 9512, NL-2300 RA Leiden, The Netherlandskleijn�lias.nl

2 Shool of Computing Siene, Newastle UniversityNewastle upon Tyne, NE1 7RU, United Kingdommaiej.koutny�nl.a.ukAbstrat. In membrane systems, biohemial reations taking plae inthe ompartments of a ell are abstrated to evolution rules that speifywhih and how many objets are onsumed and produed. The reentlyproposed reation systems also investigate proesses arried by biohem-ial reations, but the resulting omputational model is remarkably dif-ferent. A key di�erene is that in reation systems, biohemial reationsare modeled using a qualitative rather than a quantitative approah.In this paper, we introdue so-alled set membrane systems, a variant ofmembrane systems with qualitative evolution rules inspired by reationsystems. We then relate set membrane systems to Petri nets whih leadsto a new lass of Petri nets: set-nets with loalities. This Petri net modelprovides a faithful math with the operational semantis of set membranesystems.Keywords: membrane system, reation system, biohemistry, naturalomputing, Petri net, set-net, loality, inhibitor, promoter.1 IntrodutionMembrane systems, or P systems ([12�15, 19℄) are a omputational model in-spired by the ompartmentisation of living ells and the biohemial reationstaking plae in suh ompartments. These reations are abstrated to evolutionrules speifying whih and how many new objets (moleules) an be produedfrom objets of a ertain kind and quantity, possibly involving a transfer to aneighbouring ompartment. The dynami aspets of a membrane system and itspotential behaviour (its omputations) derive from these evolution rules. Whena membrane system evolves, the urrent state of any given ompartment is repre-sented as a multiset of objets, and eah omputational ation is represented asa multiset of simultaneously exeuted (multiple opies of) individual evolutionrules. Suh strong reliane on ounting (through multiple opies of objets andrules) may lead to potential problems in two respets. First, one may wonderhow realisti is the ounting (multiset) mehanism if one needs to represent huge



2 Jetty Kleijn and Maiej Koutnynumbers of moleules and instanes of biohemial reations. Seond, a mem-brane system would normally have an in�nite state spae, making the appliationof formal veri�ation tehniques impratial or indeed impossible (there existsa rih body of results proving Turing ompleteness of even very simple kinds ofmembrane systems).A radial solution to the state spae problems an be provided by reationsystems [2�4℄ whih are also a formal framework for the investigation of proessesarried by biohemial reations. Reation systems, however, model biohemialreations in living ells using qualitative �based on presene and absene of enti-ties � rather than quantitative term rewriting rules. Hene the semantial modelof reation systems is remarkably di�erent from those underlying other existingmodels of omputation, inluding membrane systems. Moreover, the state of a(sub)system an be represented by a set rather than a multiset of objets, whihleads to state spaes that are always �nite. Further fundamental di�erenes be-tween membrane systems and reation systems are the ompartmentalizationpresent in the former, inluding the possibility of dynamially hanging stru-ture of the membranes. Another one is the non-persistene of objets in reationsystems, i.e., an objet whih is not sustained by exeuted rules is removed fromthe system. Also, eah rule of a reation system spei�es an inhibition set. It isimportant to note that reation systems are a formal model for the investigationand understanding of interations between biohemial reations in living ells,leading to an abstrat theory of the resulting dynami proesses.The �rst aim of this paper is to exploit the qualitative approah to modellingbiohemistry embodied by reation systems in the realm of membrane systems.The seond aim is to build bridges allowing one to import analytial tools frommore established models and approahes the domain of the new model.We will address the �rst aim by de�ning the set membrane systems modelwhih is a qualitative variation of the standard quantitative membrane systemswith evolution rules and exeution semantis inspired by reation systems. Ina nutshell, in set membrane systems, all modelling devies as well as exeutionrules will be based on sets (of objets or rules) together with the assoiated settheoreti operations, rather than on multisets and multiset operations. This issimilar to the operation of the membrane systems disussed in [1℄, where thequantitative approah was used when sending objets to the external environ-ment, and the qualitative one was used in the appliation of rules within themembranes.The seond of our aims will be addressed by providing a faithful model trans-lation from set membrane systems to a lass of Petri nets. Petri nets are an op-erational model for onurrent systems with distributed states and ations withloal auses and e�ets. In Petri nets, suh as the lassial Plae-Transition nets(pt-nets), resoures and ations are represented in a quantitative way, essen-tially as in the standard membrane systems. This was in part the reason why inprevious work [8, 10℄ we were able to give membrane systems a Petri net seman-tis, through an extension of pt-nets with a onept of transition loality usedto re�et the ompartmentisation of a membrane system. In another strand of



Membrane Systems with Qualitative Evolution Rules 3our work, we introdued in [11℄ a new lass of Petri nets, alled set-nets, as anet based omputational model mathing very losely that exhibited by reationsystems. In this paper, we will ombine the ideas ontained in [8, 10, 11℄ andintrodue a new model of set-nets with loalities whih provides a behaviouralmath for the set membrane systems.The paper is organised in the following way. In Setion 2 we formalise thebasi ideas onerning qualitative membrane systems and in Setion 3, we intro-due the new lass of nets orresponding to basi set membrane systems. Thedetails of the translation from set membrane systems to nets are presented inSetion 4. Finally, Setion 5 explains how to introdue promoters and inhibitorsto basi set membrane systems, and then how to model these features in thePetri net domain.2 Basi set membrane systemsIn this setion, we introdue a simple lass of qualitative membrane systems. Thepresentation follows in many respets the standard approah to de�ning mem-brane systems. The key di�erene is the `qualitative' rather than `quantitative'appliation of evolution rules to hange the urrent state of a system.A membrane struture µ (of degree m ≥ 1) is given by a rooted tree with
m nodes identi�ed with the integers 1, . . . ,m. We will write (i, j) ∈ µ or i =
parent(j) to mean that there is an edge from i (parent) to j (hild) in thetree of µ, and i ∈ µ to mean that i is a node of µ. The nodes of a membranestruture represent nested membranes whih in turn determine ompartments.Compartment j is enlosed by membrane j and lies in-between j and its hildren(if any). Figure 1 shows a membrane struture (with m = 5) together withthe orresponding ompartments. Note that 1 is the root node, (1, 2) ∈ µ and
3 = parent(5). 12 34 5 1

2
3

4
5Fig. 1. A membrane struture and its ompartments.Let V be a �nite alphabet of objets. A basi set membrane system over themembrane struture µ is a tuple Σ = (V, µ, w0

1 , . . . , w
0
m, R1, . . . , Rm) suh that,for every membrane i of µ, w0

i ⊆ V is a set of objets, and Ri is a �nite set ofevolution rules. Eah evolution rule r ∈ Ri is of the form lhsr → rhsr, where



4 Jetty Kleijn and Maiej Koutny
lhsr ⊆ V is a non-empty set of objets, and rhsr ⊆ Vi is a set of (indexed)objets, with Vi being de�ned as:

Vi = V ∪ {aout | a ∈ V } ∪ {ainj
| a ∈ V and (i, j) ∈ µ} .It is assumed that if i is the root of µ then no indexed objet of the form aoutbelongs to rhsr. 1The tuple C0 = (w0

1 , . . . , w
0
m) is the initial on�guration (or initial state) of

Σ. In general, a on�guration of Σ is a tuple C = (w1, . . . , wm) of sets of objets.Below we assume that Σ is a �xed basi set reation system.We refer to lhsr as the left hand side of the rule r, and rhsr as its righthand side. lhsr spei�es whih objets are needed as input for an exeution ofthis rule, and rhsr spei�es whih new objets are produed and where they aredeposited. An indexed objet ainj
∈ rhsr indiates that a newly produed objet

a is sent to a hild node (ompartment) j, and aout indiates that a is sent tothe parent node. If no index is present, the newly produed objet remains inthe same ompartment. Figure 2 depits a basi set membrane system over themembrane struture µ shown in Figure 1. Note that V = {a, b, c}, lhsr21 = {a, c},
rhsr12 = {b, cin2

, ain3
}, w0

1 = {a, b} and w0
5 = ∅.As a onsequene of the exeution of evolution rules as outlined above, aset membrane system evolves from on�guration to on�guration. There aredi�erent ways to ombine evolution rules (see e.g., [6℄). We distinguish fourmain exeution modes, all expressed through the notion of a vetor set-rule.A vetor set-rule of Σ is a tuple r = 〈r1, . . . , rm〉 where, for eah membrane

i of µ, ri is a set of rules from Ri. For two vetor set-rules, r and r
′, we denote

r ⊆ r
′ if ri ⊆ r

′
i, for eah i ≤ m; and r ⊂ r

′ if r ⊆ r
′ and r 6= r

′. We also liftthe notion of left and right hand sides of rules to sets of rules in vetor set-rules.For a vetor set-rule r and i ≤ m, we respetively denote by:
lhsri =

⋃

r∈ri

lhsr and rhsri =
⋃

r∈ri

rhsrthe set of all the objets in the left hand sides of the rules in ri, and the set ofall the (indexed) objets in their right hand sides. Intuitively, lhsri spei�es theobjets needed for the exeution of the evolution rules in ri.We then say that a vetor set-rule r is:� free-enabled at a on�guration C = (w1, . . . , wm) if lhsri ⊆ wi, for eah i.Moreover, a free-enabled r is:� min-enabled if |r1|+ · · ·+ |rm| = 1;1 In other words, objets sent out to the environment are not relevant anymore, theydo not ome bak [13℄. Note that if it is neessary to send onrete objets to theexternal environment as in [1℄, one an easily introdue another root membrane tomodel this environment as an enompassing ompartment.
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1

2

3

4 5

{a, b}
r11 : {b} → {a}
r12 : {a} → {b, cin2

, ain3
}

r13 : {b} → {c}

{a, b}

r21 : {a, c} → {b}
r22 : {b} → {a}

∅
r31 : {a} → {ain4

, bin5
, cout}

r32 : {b} → {ain4
, bin5

}

{b}
r41 :

{a, b} →
{b, bout}

∅

C0 = ({a, b}, {a, b},∅, {b},∅)
1 {a, b}2 {a, b} 3 ∅4 {b} 5 ∅Fig. 2. A basi membrane system over the membrane struture µ shown in Figure 1.Its initial on�guration is shown expliitly underneath using µ with eah set w0

i plaednext to the orresponding node i.� max-enabled if no ri an be extended to yield a vetor set-rule whih isfree-enabled at C (i.e., there is no free-enabled vetor set-rule r
′ suh that

r ⊂ r
′); and� lmax-enabled if no non-empty ri an be extended to yield a vetor set-rulewhih is free-enabled at C (i.e., there is no free-enabled vetor set-rule r

′suh that r ⊂ r
′ and r

′
i = ∅, whenever ri = ∅).For the initial on�guration of the running example, we have:� 〈∅, {r21},∅,∅,∅〉 is not free-enabled;� 〈{r11},∅,∅,∅,∅〉 is min-enabled but not lmax-enabled;� 〈{r11, r12, r13},∅,∅,∅,∅〉 is lmax-enabled but not max-enabled; and



6 Jetty Kleijn and Maiej Koutny� 〈{r11, r12, r13}, {r22},∅,∅,∅〉 is max-enabled.If r is free-enabled (free) at a on�guration C, then eah membrane i ontainsall kinds of objets needed for the exeution of the evolution rules in ri; it isworth pointing out that a partiular (kind of) objet an be used as as inputto di�erent rules in ri. Maximal enabledness (max ) of r requires that any extrarule demands the presene of objets that C does not provide. Note that thereis always exatly one max-enabled vetor set-rule. Loally maximal enabledness(lmax ) is similar but in this ase only those ompartments that are atuallyinvolved in r do not enable any other rules; in other words, eah ompartmenteither uses no rule, or uses all free-enabled rules. Minimal enabling (min) allowsonly a single rule to be applied at any time. We next desribe the e�et of theexeution of the rules for any mode of exeution m ∈ {free,min,max , lmax}.We say that a on�guration C = (w1, . . . wm) an m-evolve by a vetor set-rule r whih is m-enabled at C, to a on�guration C′ = (w′

1, . . . w
′

m) suh that,for eah ompartment i of µ:
w′

i = wi\lhs
r

i∪{a ∈ V | a ∈ rhsri ∨ aini
∈ rhsrparent(i) ∨ ∃(i, j) ∈ µ : aout ∈ rhsrj} .(It is assumed that rhsrparent(i) = ∅ if i is the root of µ.)We denote this by C

r

−→m C′. An m-omputation is then de�ned as a (�nite orin�nite) sequene of onseutive m-evolutions starting from C0.The di�erene between the `qualitative' and the `quantitative' interpretationof the evolution rules is twofold. First, there may be two enabled evolutionrules in a ompartment with a ommon objet in their left hand sides whilethere is only a single representant of that objet in the urrent state in theompartment. In the urrent qualitative set-up, the two rules an be exeutedtogether. That is, objets are haraterised by their presene rather then theirquantity. Seond, if two simultaneously exeuted rules produe the same objetin the same ompartment, instead of adding two instanes of this objet, onlyone is added (so that we never have more than a single representant of an objetin any given ompartment). As a onsequene, there is no need to use multisetsof objets present in any single ompartment to represent the urrent state, andthere is no need to use vetors of multisets of rules in set membrane systems.In either ase, using sets is fully su�ient. One may observe that with this viewof state representation and system exeution, max -evolution is deterministiin set membrane systems. Other kinds of evolutions an be non-deterministiin the sense that there may be di�erent vetor set-rules exeuted at a givenon�guration C. Figure 3 shows a two-stage lmax-evolution for the exampleshown in Figure 2.3 set-nets with loalitiesWe now introdue basi set-nets with loalities (or bsl-nets), the new lass ofPetri nets that provides in a natural way a model for the behaviour of basi set
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C01 {a, b}2 {a, b} 3 ∅4 {b} 5 ∅

r
−→lmax

C11 {a, b, c}2 {a, b, c} 3 {a}4 {b} 5 ∅

r
′

−→lmax

C21 {a, b, c}2 {a, b} 3 ∅4 {a, b} 5 {b}Fig. 3. An lmax-omputation for the running example with the vetor set-rules de�ned in the following way: r = 〈{r11, r12, r13},∅,∅,∅,∅〉 and r
′

=

〈∅, {r21, r22}, {r31},∅,∅〉.membrane systems. The bsl-net model is derived from the reently introduedset-nets [11℄ developed as a model for reation systems [2�4℄. In addition, similarto the Petri net model orresponding to quantitative membrane systems, tran-sitions in bsl-nets transitions belong to loalities whih in�uenes the ensuingexeution semantis.A bsl-net is a tuple N = (P, T, F, ℓ,M0) suh that P and T are �nite disjointsets of respetively plaes and transitions, F ⊆ (P × T ) ∪ (T × P ) is the �owrelation, ℓ : T → N is the loality mapping ; in general, any set of plaes is amarking and M0 ⊆ P is the initial marking of N .We use the standard dot-notation: •x = {y | (y, x) ∈ F} for the inputs, and
x• = {y | (x, y) ∈ F} for the outputs, of a given plae or transition x. We liftthis notation in the usual way to sets U of transitions, i.e., •U =

⋃

t∈U
•t and

U• =
⋃

t∈U t•.In diagrams, like that in Figure 4, plaes are drawn as irles, and transitionsas boxes. If (x, y) ∈ F then (x, y) is an ar leading from x to y. A marking Mis represented by drawing in eah plae p ∈ M a token (a small blak dot).Boxes representing transitions belonging to the same loalities are displayed ona grey bakground of the same shade. Note that the loality mapping ℓ partitionsthe transition set by assoiating with eah transition a loality, in this ase aompartment.As in set- nets, there is no onept of token ounting in bsl-nets. In this sensethey resemble elementary net systems (en-systems) [16℄, a fundamental model tostudy basi features of onurrent systems. However, the exeution semantis isstrikingly di�erent. When a plae of a set-net is marked, this indiates nothingbut non-emptiness or presene of a resoure without any quanti�ation. Conse-quently, this plae an be seen as providing input to any number of transitions at



8 Jetty Kleijn and Maiej Koutny
πa

1 πb

1

πc

1τ
r13

1

τ
r11

1

τ
r12

1

πa

2 πb

2

πc

2

τ
r21

2

τ
r22

2

πa

3

πb

3

πc

3

τ
r31

3

τ
r32

3

πa

4

πb

4

πc

4

τ
r41

4

πa

5

πb

5

πc

5

Fig. 4. bsl-net orresponding to the running example.the same time (and as a result, there are no on�its between transitions sharingan input plae). Firing a transition empties all its input plaes and marks eah ofits output plaes, again without any further logial interpretation or quanti�a-tion. Hene, again in ontrast with en-systems, a transition an �re when it hasa non-empty output plae and it an also �re simultaneously with transitionswith whih it shares an output plae.In a bsl-net N as above, transition t ∈ T an our (is enabled) at a marking
M if •t ⊆ M . If t is enabled at M and is exeuted this leads to a marking M ′given byM ′ = (M \•t)∪t•. Moreover, similar to the reations in vetor set-rules,transitions may our simultaneously as steps. It should be noted here, that now� in ontrast to the steps in PT-systems or the vetor rules in quantitativemembrane systems � multiple ourrenes of the same transition in a step arenot allowed, i.e., steps are sets. In fat, sine set-nets are non-ounting, exeutingmultiple opies of the same transition has exatly the same e�et as exeutinga single it just one.As for basi set membrane systems, we distinguish four modes of exeution.A step U ⊆ T is� free-enabled at a marking M if eah transition in U is enabled.



Membrane Systems with Qualitative Evolution Rules 9Moreover, a free-enabled step U is:� min-enabled if |U | = 1;� max-enabled if U omprises all transitions enabled at M ; and� lmax-enabled if U omprises all transitions t enabled at M with ℓ(t) ∈ ℓ(U).Note that a step is enabled at a marking M if all input plaes of its transitionsare marked. For the bsl-net in Figure 4 and its initial marking, we have that:� {τr212 } is not free-enabled;� {τr111 } is min-enabled but not lmax-enabled;� {τr111 , τr121 , τr131 } is lmax-enabled but not max-enabled; and� {τr111 , τr121 , τr131 , τr222 } is max-enabled.A step U whih is m-enabled at a marking M an be m-exeuted leading toanother markingM ′ given byM ′ = (M\•U)∪U•. We denote this byM [U〉m M ′.An m-omputation of N is then a (�nite or in�nite) sequene of m-exeutionsstarting from M0. A possible two-stage lmax-omputation for the bsl-net ofFigure 4 is:
M0 [{τr111 , τr121 , τr131 }〉lmax M ′ [{τr212 , τr222 , τr313 }〉lmax M , (†)whereM ′ = {πa

1 , π
b
1, π

c
1, π

a
2 , π

b
2, π

c
2, π

a
3 , π

b
4} andM = {πa

1 , π
b
1, π

c
1, π

a
2 , π

b
2, π

a
4 , π

b
4, π

b
5}.4 From basi set membrane systems to bsl-netsTo model a basi membrane system as a bsl-net, we onstrut a separate plae

πa
j , for eah objet a and membrane j ∈ µ. Moreover, for eah evolution rule rassoiated with a membrane i, we introdue a transition τri with loality i. If thetransformation desribed by an evolution rule r of ompartment i onsumes a,then we introdue an ar from plae πa

i to transition τri , and similarly for objetsbeing produed. Finally, we put a token into plae πa
j whenever ompartment jontains initially objet a. Formally, we proeed as follows.Given a basi set membrane system Σ = (V, µ, w0
1 , . . . , w

0
m, R1, . . . , Rm) overthe membrane struture µ, the bsl-net orresponding to Σ isNΣ = (P, T, F, ℓ,M0),where the plaes, transitions and the initial marking are respetively given by:

P = {πa
i | i ≤ m ∧ a ∈ V }

T = {τri | i ≤ m ∧ r ∈ Ri}

M0 = {πa
i | i ≤ m ∧ a ∈ w0

i } ,and, for every transition τ = τri , we have ℓ(τ) = i as well as:
•τ = {πa

i | a ∈ lhsr}

τ• = {πa
i | a ∈ rhsr} ∪ {πa

j | ainj
∈ rhsr} ∪ {πa

parent(j) | aout ∈ rhsr} .Figure 4 shows the translation for the running example.



10 Jetty Kleijn and Maiej KoutnyThe tight orrespondene between the membrane system Σ and the bsl-net NΣ is aptured by a translation from on�gurations of Σ to markings of
NΣ , based on the orrespondene of objet loations and plaes as well as theorrespondene of vetor set-rules and steps. More preisely, the marking ν(C)orresponding to a on�guration C = (w1, . . . , wm) of Σ is de�ned by ν(C) =
{πa

i | i ≤ m ∧ a ∈ wi}, and the step ρ(r) orresponding to a vetor set-rule
r = 〈r1, . . . , rm〉 of Σ by ρ(r) = {τri | r ∈ ri}. For example, if we take thelmax-omputation of the running example given in Figure 3, and the lmax-omputations of the orresponding bsl-net given in (†), then we have ρ(r′) =
{τr212 , τr222 , τr313 } and ν(C2) = M . It follows diretly from the de�nitions that
ν and ρ are bijetions with the initial on�guration of Σ orresponding to theinitial marking of NΣ.Proposition 1. The two mappings, ν and ρ, are two bijetions suh that, forevery marking M of NΣ:

ν−1(M) = ({a | πa
1 ∈ M}, . . . , {a | πa

m ∈ M}),and, for every step U of NΣ, we have ρ−1(U) = 〈{r | τr1 ∈ U}, . . . , {r | τrm ∈ U}〉.Proposition 2. ν(C0) = M0.For a translation from one dynami system to another to be useful, it is essen-tial to ensure that the latter provides a faithful representation of the behaviourof the former. Here, it is possible to establish the desired relationship betweenthe operation of set membrane systems and bsl-nets at the system level. Thefundamental link between the dynamis of a set membrane system and that ofits orresponding bsl-net is formulated next.Theorem 1. Given a set membrane system Σ and the orresponding bsl-net
NΣ , we have that:

C
r

−→m C′ in Σ if and only if ν(C) [ρ(r)〉m ν(C′) in NΣ ,for eah mode of exeution m.Proof. Below C = (w1, . . . , wm), C′ = (w′

1, . . . , w
′

m) and r = 〈r1, . . . , rm〉. Wewill �rst show that
r is min-enabled at C i� ρ(r) is min-enabled at ν(C) .Indeed, in suh a ase, there are an i ≤ m and an r ∈ Ri suh that ri = {r} and

rj = ∅, for all j 6= i. Hene ρ(r) = {τ} where τ = τri . Let lhsr = {a1, . . . , ak}whih means that •τ = {πa1

i , . . . , πak

i }. We than have:
r is min-enabled at C i� {a1, . . . , ak} ⊆ wi i� {πa1

i , . . . , πak

i } ⊆ ν(C)i� •τ ⊆ ν(C) i� ρ(r) is min-enabled at ν(C) .



Membrane Systems with Qualitative Evolution Rules 11In view of what we have just established, and the fat that the enabledness of aset of evolution rules (transitions) is equivalent to the enabledness of individualevolution rules (transitions), we immediately obtain that:
r is free-enabled at C i� ρ(r) is free-enabled at ν(C) .Moreover, given that the loality of the transition τri orresponding to an evo-lution rule r ∈ Ri is i, it follows that, for every exeution mode m:
r is m-enabled at C i� ρ(r) is m-enabled at ν(C) .All what remains now to be shown is that the exeutions of r and ρ(r) lead toequivalent results. This, however, is learly the ase given the way the results ofthe exeutions of vetor set-rules and steps of transitions are de�ned as well asthe equivalene stemming from the exeutions of a single evolution rule and theorresponding transition.To demonstrate the latter point, let us onsider an evolution rule r ∈ Ri andthe orresponding transition τ = τr1 . Moreover, let lhsr = {a1, . . . , ak} and:

rhsr = {b1, . . . , bn} ∪ {c1out , . . . , c
s
out} ∪ {d11inj1

, . . . , d
1q1
inj1

, . . . , d
p1
injp

, . . . , d
pqjp
injp

} ,where jz 6= jx for z 6= x. Then, by the de�nition of NΣ , we have:
•τ = {πa1

i , . . . , πak

i }

τ• = {πb1

i , . . . , πbn

i } ∪ {πc1

parent(i), . . . , π
cs

parent(i)}

∪ {πd11

j1
, . . . , πd

1qj1

j1
, . . . , πdp1

jp
, . . . , πd

pqjp

jp
} .We then observe that exeuting r suh that ri = {r} and rj = ∅, for all j 6= i,leads to a on�guration C′ suh that, for all x ≤ m:

w′

x =







































(wx \ {a1, . . . , ak}) ∪ {b1, . . . , bn} if x = i

wx ∪ {c1, . . . , cs} if x = parent(i)

wx ∪ {d11, . . . , d1q1} if x = j1

. . . . . .

wx ∪ {dp1, . . . , dpqp} if x = jp

wx otherwise .It is then not di�ult to hek that:
ν(C′) = ν(C) \ {πa1

i , . . . , πak

i , πb1

i , . . . , πbn

i , πc1

parent(i), . . . , π
cs

parent(i)}

∪ {πd11

j1
, . . . , πd

1qj1

j1
, . . . , πdp1

jp
, . . . , πd

pqjp

jp
} .whih is exatly (ν(C) \ •τ) ∪ τ•, as required by the equivalene result.Together with Propositions 1 and 2, this means that the (�nite and in�nite)

m-omputations of the basi set reation system Σ oinide with the (�nite andin�nite) m-omputations of the orresponding bsl-net NΣ .



12 Jetty Kleijn and Maiej Koutny5 Set membrane systems with promoters and inhibitorsBasi (quantitative) membrane systems have over the past deade been extendedin several di�erent diretions, motivated either by their potential appliations,or by their omputational properties. For some of these extensions, like ata-lysts and symport/antiport rules, there exist straightforward translation to Petrinets (see, for example, [5℄). For others, like i/o ommuniation and rule re-ation/onsumption, the orrespondene between evolution rules and Petri nettransitions is more involved, and the resulting nets are additionally equippedwith inhibitor and/or ativator ars (see, e.g., [8℄).Given the nature of many biohemial reations, we feel that presumably akey extension is one allowing evolution rules to be triggered or bloked by thepresene of ertain objets. In fat, this is exatly the view followed in the rea-tion system model whih inspired the work presented in this paper. To apturesuh an extension in set membrane systems, we onsider evolution rules r of theform:
lhsr → rhsr|pror , inhrwhere pror and inhr are sets of objets speifying respetively the promotersand inhibitors or r. This de�nition is derived from [13℄ where (multisets of)promoters and inhibitors were onsidered in the ontext of (quantitative) mem-brane systems. The intuition behind pror and inhr is that they only test for thepresene and absene, respetively, of ertain objets inside a ompartment.In order for r to our, eah objet in pror must be present in its assoiatedompartment, and eah objet in inhr must be absent. In the formalisation ofthe extended evolution rules we retain the de�nitions and notations introduedfor the set basi membrane systems, exept for the notion of a free-enabled (andits derivations of min-enabled, max-enabled and lmax-enabled) vetor set-rule

r = 〈r1, . . . , rm〉. This is strengthened by additionally requiring that, for eahmembrane i ∈ µ and evolution rule r ∈ ri, we have pror
i ⊆ wi and inhr∩wi = ∅.The resulting Σ is alled a set membrane reation system (with promoters andinhibitors). We then extend the bsl-net model to provide a mathing lass ofnets.esl-netsAn extended set-net with loalities (or esl-net) is a tuple

N = (P, T, F, Inh ,Act , ℓ,M0)suh that (P, T, F, ℓ,M0) is a bsl-net and the two new omponents, Inh ⊆ P ×Tand Act ⊆ P × T , are its sets of inhibitor and ativator ars. We also denote
◦U = {p | ∃t ∈ U : (p, t) ∈ Inh} and �U = {p | ∃t ∈ U : (p, t) ∈ Act}, forevery set of transitions U . The de�nitions and notations onerning the markinghange in N are the same as for the underlying bsl-net (P, T, F, ℓ,M0) with one



Membrane Systems with Qualitative Evolution Rules 13exeption, namely a set of transitions U is free-enabled at a marking M if wehave:
•U ∪ �U ⊆ M and ◦U ∩M = ∅ .Thus, eah plae onneted by an ativator ar to a transition in U should arrya token, while eah plae onneted by an inhibitor ar to a transition in Ushould be empty. The notions of (�nite or in�nite) m-omputations of N for thefour distinguished exeution modes m are then de�ned as before.From set membrane systems to esl-netsThe translation from set membrane systems with promoters and inhibitors toesl-nets proeeds as in the ase of the basi set membrane system. The onlyadditional feature is that for eah transition τri and plae πa

i , we introdue aninhibitor ar (πa
i , τ

r
i ) whenever a ∈ inhr, and we introdue an ativator ar

(πa
i , τ

r
i ) whenever a ∈ pror. It then turns out that the properties of the extendedtranslation are very similar to those obtained in the basi ase; in partiular, weobtain the following.Theorem 2. Given a set membrane system with promoters and inhibitors Σand the orresponding esl-net NΣ , we have that:
C

r

−→m C′ in Σ if and only if ν(C) [ρ(r)〉m ν(C′) in NΣ ,for eah mode of exeution m.Proof. Similar to the proof of Theorem 1. The impat of promoters/inhibitorsand ativator/inhibitor ars on the enabledness of an evolution rule and theorresponding transition is equivalent. Moreover, the resulting on�guration andmarking do not depend on promoters/inhibitors nor ativator/inhibitor ars.6 Conluding remarksAs already in the introdution, qualitative membrane systems were indepen-dently introdued in [1℄ with the aim of haraterising their language theoretiproperties. The present paper looked at suh a model from a totally di�erentperspetive, foussing on aspets relating to di�erent semantial interpretations,and the relationship to Petri nets.Moving from quantitative to qualitative membrane systems is an abstrationwhih may lead to a more tratable approah when it omes to answering vitalquestions onerning the evolution of systems. However, to take advantage of thisfat, the existing onrete analysis tools developed for the lassial, quantitative,Petri net models need to be adapted for set-nets.For one thing, the proess onept underlying the ausality semantis ofstandard Petri net models (see, e.g., [7℄) has to be reonsidered. As an beseen from examples in [11℄, the ause and e�et relation in set-nets (and hene



14 Jetty Kleijn and Maiej Koutnymembrane systems with qualitative evolution rules) will have to be interpretedin a ompletely new fashion.In [9℄, we have already made preliminary investigation into the synthesisproblem whih aims at an automati onstrution of set-nets exhibiting a be-haviour given in terms of a transition system. For set membrane systems thisshould ontribute to insight in whih evolution rules lead to ertain observedbehaviour.Finally, by bringing qualitative (set rather than multiset) aspets to mem-brane systems, also interesting questions relating to expressive (generative) poweremerge. For every mode, one an onsider the possible evolutions of a system ofa set membrane system (i.e., the omputations of bsl-nets) as a language. Theselanguages are regular subset languages. The study of subset languages of Petrinets was initiated in [17, 18℄ but still for the standard (quantitative) interpreta-tion. There are a number of interesting theoretial questions and topis for theregular subset languages generated by bsl/esl-nets under the four exeutionmodes as well all regular subset languages. For example, one an onsider: inlu-sion hierarhies; losure properties; and the omplexity of equivalene/inlusionheking. Another group of problems here would be motivated by the targetappliation area, i.e., biohemistry. For example, one an investigate: osilla-tory behaviour (is it possible to have yles from some point with at least/atmost/spei� evolution rules only); or vitality of the system (possible deadlokor partial death, i.e., some rules that an no longer be exeuted) or other state-related properties, like whether it would be possible for two objets to appearin a given ompartment at some point together.Aknowledgement We would like to thank Grzegorz Rozenberg for explainingto us the ideas underlying reation systems.Referenes1. Alhazov, A.: P SystemsWithout Multipliities of Symbol-objets. Information Pro-essing Letters 100 (2006) 124�1292. Ehrenfeuht, A., Main, M., Rozenberg, G.: Combinatoris of Life and Death forReation Systems. International Journal of Foundations of Computer Siene 22(2009) 345�3563. Ehrenfeuht, A., Rozenberg, G.: Reation Systems. Fundamenta Informatiae 76(2006) 1�184. Ehrenfeuht, A., Rozenberg, G.: Events and Modules in Reation Systems. Theo-retial Computer Siene 376 (2007) 3�165. Ibarra, O.H., Dang, Z., Egeioglu, O.: Catalyti P Systems, Semilinear Sets, andVetor Addition Systems. Theoretial Computer Siene 312 (2004) 379�3996. Ibarra, O.H., Ye, H.C., Dang, Z.: The Power of Maximal Parallelism in P Systems.Leture Notes in Computer Siene 3340 (2004)7. Kleijn, H.C.M., Koutny, M.: Proess Semantis of General Inhibitor Nets. Infor-mation and Computation 190 (2004) 18�698. Kleijn, J., Koutny, M.: Proesses of Membrane systems with Promoters and In-hibitors. Theoretial Computer Siene 404 (2008) 112�126
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