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hool of Computing S
ien
e, New
astle UniversityNew
astle upon Tyne, NE1 7RU, United Kingdomma
iej.koutny�n
l.a
.ukAbstra
t. In membrane systems, bio
hemi
al rea
tions taking pla
e inthe 
ompartments of a 
ell are abstra
ted to evolution rules that spe
ifywhi
h and how many obje
ts are 
onsumed and produ
ed. The re
entlyproposed rea
tion systems also investigate pro
esses 
arried by bio
hem-i
al rea
tions, but the resulting 
omputational model is remarkably dif-ferent. A key di�eren
e is that in rea
tion systems, bio
hemi
al rea
tionsare modeled using a qualitative rather than a quantitative approa
h.In this paper, we introdu
e so-
alled set membrane systems, a variant ofmembrane systems with qualitative evolution rules inspired by rea
tionsystems. We then relate set membrane systems to Petri nets whi
h leadsto a new 
lass of Petri nets: set-nets with lo
alities. This Petri net modelprovides a faithful mat
h with the operational semanti
s of set membranesystems.Keywords: membrane system, rea
tion system, bio
hemistry, natural
omputing, Petri net, set-net, lo
ality, inhibitor, promoter.1 Introdu
tionMembrane systems, or P systems ([12�15, 19℄) are a 
omputational model in-spired by the 
ompartmentisation of living 
ells and the bio
hemi
al rea
tionstaking pla
e in su
h 
ompartments. These rea
tions are abstra
ted to evolutionrules spe
ifying whi
h and how many new obje
ts (mole
ules) 
an be produ
edfrom obje
ts of a 
ertain kind and quantity, possibly involving a transfer to aneighbouring 
ompartment. The dynami
 aspe
ts of a membrane system and itspotential behaviour (its 
omputations) derive from these evolution rules. Whena membrane system evolves, the 
urrent state of any given 
ompartment is repre-sented as a multiset of obje
ts, and ea
h 
omputational a
tion is represented asa multiset of simultaneously exe
uted (multiple 
opies of) individual evolutionrules. Su
h strong relian
e on 
ounting (through multiple 
opies of obje
ts andrules) may lead to potential problems in two respe
ts. First, one may wonderhow realisti
 is the 
ounting (multiset) me
hanism if one needs to represent huge



2 Jetty Kleijn and Ma
iej Koutnynumbers of mole
ules and instan
es of bio
hemi
al rea
tions. Se
ond, a mem-brane system would normally have an in�nite state spa
e, making the appli
ationof formal veri�
ation te
hniques impra
ti
al or indeed impossible (there existsa ri
h body of results proving Turing 
ompleteness of even very simple kinds ofmembrane systems).A radi
al solution to the state spa
e problems 
an be provided by rea
tionsystems [2�4℄ whi
h are also a formal framework for the investigation of pro
esses
arried by bio
hemi
al rea
tions. Rea
tion systems, however, model bio
hemi
alrea
tions in living 
ells using qualitative �based on presen
e and absen
e of enti-ties � rather than quantitative term rewriting rules. Hen
e the semanti
al modelof rea
tion systems is remarkably di�erent from those underlying other existingmodels of 
omputation, in
luding membrane systems. Moreover, the state of a(sub)system 
an be represented by a set rather than a multiset of obje
ts, whi
hleads to state spa
es that are always �nite. Further fundamental di�eren
es be-tween membrane systems and rea
tion systems are the 
ompartmentalizationpresent in the former, in
luding the possibility of dynami
ally 
hanging stru
-ture of the membranes. Another one is the non-persisten
e of obje
ts in rea
tionsystems, i.e., an obje
t whi
h is not sustained by exe
uted rules is removed fromthe system. Also, ea
h rule of a rea
tion system spe
i�es an inhibition set. It isimportant to note that rea
tion systems are a formal model for the investigationand understanding of intera
tions between bio
hemi
al rea
tions in living 
ells,leading to an abstra
t theory of the resulting dynami
 pro
esses.The �rst aim of this paper is to exploit the qualitative approa
h to modellingbio
hemistry embodied by rea
tion systems in the realm of membrane systems.The se
ond aim is to build bridges allowing one to import analyti
al tools frommore established models and approa
hes the domain of the new model.We will address the �rst aim by de�ning the set membrane systems modelwhi
h is a qualitative variation of the standard quantitative membrane systemswith evolution rules and exe
ution semanti
s inspired by rea
tion systems. Ina nutshell, in set membrane systems, all modelling devi
es as well as exe
utionrules will be based on sets (of obje
ts or rules) together with the asso
iated settheoreti
 operations, rather than on multisets and multiset operations. This issimilar to the operation of the membrane systems dis
ussed in [1℄, where thequantitative approa
h was used when sending obje
ts to the external environ-ment, and the qualitative one was used in the appli
ation of rules within themembranes.The se
ond of our aims will be addressed by providing a faithful model trans-lation from set membrane systems to a 
lass of Petri nets. Petri nets are an op-erational model for 
on
urrent systems with distributed states and a
tions withlo
al 
auses and e�e
ts. In Petri nets, su
h as the 
lassi
al Pla
e-Transition nets(pt-nets), resour
es and a
tions are represented in a quantitative way, essen-tially as in the standard membrane systems. This was in part the reason why inprevious work [8, 10℄ we were able to give membrane systems a Petri net seman-ti
s, through an extension of pt-nets with a 
on
ept of transition lo
ality usedto re�e
t the 
ompartmentisation of a membrane system. In another strand of



Membrane Systems with Qualitative Evolution Rules 3our work, we introdu
ed in [11℄ a new 
lass of Petri nets, 
alled set-nets, as anet based 
omputational model mat
hing very 
losely that exhibited by rea
tionsystems. In this paper, we will 
ombine the ideas 
ontained in [8, 10, 11℄ andintrodu
e a new model of set-nets with lo
alities whi
h provides a behaviouralmat
h for the set membrane systems.The paper is organised in the following way. In Se
tion 2 we formalise thebasi
 ideas 
on
erning qualitative membrane systems and in Se
tion 3, we intro-du
e the new 
lass of nets 
orresponding to basi
 set membrane systems. Thedetails of the translation from set membrane systems to nets are presented inSe
tion 4. Finally, Se
tion 5 explains how to introdu
e promoters and inhibitorsto basi
 set membrane systems, and then how to model these features in thePetri net domain.2 Basi
 set membrane systemsIn this se
tion, we introdu
e a simple 
lass of qualitative membrane systems. Thepresentation follows in many respe
ts the standard approa
h to de�ning mem-brane systems. The key di�eren
e is the `qualitative' rather than `quantitative'appli
ation of evolution rules to 
hange the 
urrent state of a system.A membrane stru
ture µ (of degree m ≥ 1) is given by a rooted tree with
m nodes identi�ed with the integers 1, . . . ,m. We will write (i, j) ∈ µ or i =
parent(j) to mean that there is an edge from i (parent) to j (
hild) in thetree of µ, and i ∈ µ to mean that i is a node of µ. The nodes of a membranestru
ture represent nested membranes whi
h in turn determine 
ompartments.Compartment j is en
losed by membrane j and lies in-between j and its 
hildren(if any). Figure 1 shows a membrane stru
ture (with m = 5) together withthe 
orresponding 
ompartments. Note that 1 is the root node, (1, 2) ∈ µ and
3 = parent(5). 12 34 5 1

2
3

4
5Fig. 1. A membrane stru
ture and its 
ompartments.Let V be a �nite alphabet of obje
ts. A basi
 set membrane system over themembrane stru
ture µ is a tuple Σ = (V, µ, w0

1 , . . . , w
0
m, R1, . . . , Rm) su
h that,for every membrane i of µ, w0

i ⊆ V is a set of obje
ts, and Ri is a �nite set ofevolution rules. Ea
h evolution rule r ∈ Ri is of the form lhsr → rhsr, where
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lhsr ⊆ V is a non-empty set of obje
ts, and rhsr ⊆ Vi is a set of (indexed)obje
ts, with Vi being de�ned as:

Vi = V ∪ {aout | a ∈ V } ∪ {ainj
| a ∈ V and (i, j) ∈ µ} .It is assumed that if i is the root of µ then no indexed obje
t of the form aoutbelongs to rhsr. 1The tuple C0 = (w0

1 , . . . , w
0
m) is the initial 
on�guration (or initial state) of

Σ. In general, a 
on�guration of Σ is a tuple C = (w1, . . . , wm) of sets of obje
ts.Below we assume that Σ is a �xed basi
 set rea
tion system.We refer to lhsr as the left hand side of the rule r, and rhsr as its righthand side. lhsr spe
i�es whi
h obje
ts are needed as input for an exe
ution ofthis rule, and rhsr spe
i�es whi
h new obje
ts are produ
ed and where they aredeposited. An indexed obje
t ainj
∈ rhsr indi
ates that a newly produ
ed obje
t

a is sent to a 
hild node (
ompartment) j, and aout indi
ates that a is sent tothe parent node. If no index is present, the newly produ
ed obje
t remains inthe same 
ompartment. Figure 2 depi
ts a basi
 set membrane system over themembrane stru
ture µ shown in Figure 1. Note that V = {a, b, c}, lhsr21 = {a, c},
rhsr12 = {b, cin2

, ain3
}, w0

1 = {a, b} and w0
5 = ∅.As a 
onsequen
e of the exe
ution of evolution rules as outlined above, aset membrane system evolves from 
on�guration to 
on�guration. There aredi�erent ways to 
ombine evolution rules (see e.g., [6℄). We distinguish fourmain exe
ution modes, all expressed through the notion of a ve
tor set-rule.A ve
tor set-rule of Σ is a tuple r = 〈r1, . . . , rm〉 where, for ea
h membrane

i of µ, ri is a set of rules from Ri. For two ve
tor set-rules, r and r
′, we denote

r ⊆ r
′ if ri ⊆ r

′
i, for ea
h i ≤ m; and r ⊂ r

′ if r ⊆ r
′ and r 6= r

′. We also liftthe notion of left and right hand sides of rules to sets of rules in ve
tor set-rules.For a ve
tor set-rule r and i ≤ m, we respe
tively denote by:
lhsri =

⋃

r∈ri

lhsr and rhsri =
⋃

r∈ri

rhsrthe set of all the obje
ts in the left hand sides of the rules in ri, and the set ofall the (indexed) obje
ts in their right hand sides. Intuitively, lhsri spe
i�es theobje
ts needed for the exe
ution of the evolution rules in ri.We then say that a ve
tor set-rule r is:� free-enabled at a 
on�guration C = (w1, . . . , wm) if lhsri ⊆ wi, for ea
h i.Moreover, a free-enabled r is:� min-enabled if |r1|+ · · ·+ |rm| = 1;1 In other words, obje
ts sent out to the environment are not relevant anymore, theydo not 
ome ba
k [13℄. Note that if it is ne
essary to send 
on
rete obje
ts to theexternal environment as in [1℄, one 
an easily introdu
e another root membrane tomodel this environment as an en
ompassing 
ompartment.
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1

2

3

4 5

{a, b}
r11 : {b} → {a}
r12 : {a} → {b, cin2

, ain3
}

r13 : {b} → {c}

{a, b}

r21 : {a, c} → {b}
r22 : {b} → {a}

∅
r31 : {a} → {ain4

, bin5
, cout}

r32 : {b} → {ain4
, bin5

}

{b}
r41 :

{a, b} →
{b, bout}

∅

C0 = ({a, b}, {a, b},∅, {b},∅)
1 {a, b}2 {a, b} 3 ∅4 {b} 5 ∅Fig. 2. A basi
 membrane system over the membrane stru
ture µ shown in Figure 1.Its initial 
on�guration is shown expli
itly underneath using µ with ea
h set w0

i pla
ednext to the 
orresponding node i.� max-enabled if no ri 
an be extended to yield a ve
tor set-rule whi
h isfree-enabled at C (i.e., there is no free-enabled ve
tor set-rule r
′ su
h that

r ⊂ r
′); and� lmax-enabled if no non-empty ri 
an be extended to yield a ve
tor set-rulewhi
h is free-enabled at C (i.e., there is no free-enabled ve
tor set-rule r

′su
h that r ⊂ r
′ and r

′
i = ∅, whenever ri = ∅).For the initial 
on�guration of the running example, we have:� 〈∅, {r21},∅,∅,∅〉 is not free-enabled;� 〈{r11},∅,∅,∅,∅〉 is min-enabled but not lmax-enabled;� 〈{r11, r12, r13},∅,∅,∅,∅〉 is lmax-enabled but not max-enabled; and
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iej Koutny� 〈{r11, r12, r13}, {r22},∅,∅,∅〉 is max-enabled.If r is free-enabled (free) at a 
on�guration C, then ea
h membrane i 
ontainsall kinds of obje
ts needed for the exe
ution of the evolution rules in ri; it isworth pointing out that a parti
ular (kind of) obje
t 
an be used as as inputto di�erent rules in ri. Maximal enabledness (max ) of r requires that any extrarule demands the presen
e of obje
ts that C does not provide. Note that thereis always exa
tly one max-enabled ve
tor set-rule. Lo
ally maximal enabledness(lmax ) is similar but in this 
ase only those 
ompartments that are a
tuallyinvolved in r do not enable any other rules; in other words, ea
h 
ompartmenteither uses no rule, or uses all free-enabled rules. Minimal enabling (min) allowsonly a single rule to be applied at any time. We next des
ribe the e�e
t of theexe
ution of the rules for any mode of exe
ution m ∈ {free,min,max , lmax}.We say that a 
on�guration C = (w1, . . . wm) 
an m-evolve by a ve
tor set-rule r whi
h is m-enabled at C, to a 
on�guration C′ = (w′

1, . . . w
′

m) su
h that,for ea
h 
ompartment i of µ:
w′

i = wi\lhs
r

i∪{a ∈ V | a ∈ rhsri ∨ aini
∈ rhsrparent(i) ∨ ∃(i, j) ∈ µ : aout ∈ rhsrj} .(It is assumed that rhsrparent(i) = ∅ if i is the root of µ.)We denote this by C

r

−→m C′. An m-
omputation is then de�ned as a (�nite orin�nite) sequen
e of 
onse
utive m-evolutions starting from C0.The di�eren
e between the `qualitative' and the `quantitative' interpretationof the evolution rules is twofold. First, there may be two enabled evolutionrules in a 
ompartment with a 
ommon obje
t in their left hand sides whilethere is only a single representant of that obje
t in the 
urrent state in the
ompartment. In the 
urrent qualitative set-up, the two rules 
an be exe
utedtogether. That is, obje
ts are 
hara
terised by their presen
e rather then theirquantity. Se
ond, if two simultaneously exe
uted rules produ
e the same obje
tin the same 
ompartment, instead of adding two instan
es of this obje
t, onlyone is added (so that we never have more than a single representant of an obje
tin any given 
ompartment). As a 
onsequen
e, there is no need to use multisetsof obje
ts present in any single 
ompartment to represent the 
urrent state, andthere is no need to use ve
tors of multisets of rules in set membrane systems.In either 
ase, using sets is fully su�
ient. One may observe that with this viewof state representation and system exe
ution, max -evolution is deterministi
in set membrane systems. Other kinds of evolutions 
an be non-deterministi
in the sense that there may be di�erent ve
tor set-rules exe
uted at a given
on�guration C. Figure 3 shows a two-stage lmax-evolution for the exampleshown in Figure 2.3 set-nets with lo
alitiesWe now introdu
e basi
 set-nets with lo
alities (or bsl-nets), the new 
lass ofPetri nets that provides in a natural way a model for the behaviour of basi
 set
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C01 {a, b}2 {a, b} 3 ∅4 {b} 5 ∅

r
−→lmax

C11 {a, b, c}2 {a, b, c} 3 {a}4 {b} 5 ∅

r
′

−→lmax

C21 {a, b, c}2 {a, b} 3 ∅4 {a, b} 5 {b}Fig. 3. An lmax-
omputation for the running example with the ve
tor set-rules de�ned in the following way: r = 〈{r11, r12, r13},∅,∅,∅,∅〉 and r
′

=

〈∅, {r21, r22}, {r31},∅,∅〉.membrane systems. The bsl-net model is derived from the re
ently introdu
edset-nets [11℄ developed as a model for rea
tion systems [2�4℄. In addition, similarto the Petri net model 
orresponding to quantitative membrane systems, tran-sitions in bsl-nets transitions belong to lo
alities whi
h in�uen
es the ensuingexe
ution semanti
s.A bsl-net is a tuple N = (P, T, F, ℓ,M0) su
h that P and T are �nite disjointsets of respe
tively pla
es and transitions, F ⊆ (P × T ) ∪ (T × P ) is the �owrelation, ℓ : T → N is the lo
ality mapping ; in general, any set of pla
es is amarking and M0 ⊆ P is the initial marking of N .We use the standard dot-notation: •x = {y | (y, x) ∈ F} for the inputs, and
x• = {y | (x, y) ∈ F} for the outputs, of a given pla
e or transition x. We liftthis notation in the usual way to sets U of transitions, i.e., •U =

⋃

t∈U
•t and

U• =
⋃

t∈U t•.In diagrams, like that in Figure 4, pla
es are drawn as 
ir
les, and transitionsas boxes. If (x, y) ∈ F then (x, y) is an ar
 leading from x to y. A marking Mis represented by drawing in ea
h pla
e p ∈ M a token (a small bla
k dot).Boxes representing transitions belonging to the same lo
alities are displayed ona grey ba
kground of the same shade. Note that the lo
ality mapping ℓ partitionsthe transition set by asso
iating with ea
h transition a lo
ality, in this 
ase a
ompartment.As in set- nets, there is no 
on
ept of token 
ounting in bsl-nets. In this sensethey resemble elementary net systems (en-systems) [16℄, a fundamental model tostudy basi
 features of 
on
urrent systems. However, the exe
ution semanti
s isstrikingly di�erent. When a pla
e of a set-net is marked, this indi
ates nothingbut non-emptiness or presen
e of a resour
e without any quanti�
ation. Conse-quently, this pla
e 
an be seen as providing input to any number of transitions at
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2

πc

2

τ
r21

2

τ
r22

2

πa

3

πb

3

πc

3

τ
r31

3

τ
r32

3

πa

4

πb

4

πc

4

τ
r41

4

πa

5

πb

5

πc

5

Fig. 4. bsl-net 
orresponding to the running example.the same time (and as a result, there are no 
on�i
ts between transitions sharingan input pla
e). Firing a transition empties all its input pla
es and marks ea
h ofits output pla
es, again without any further logi
al interpretation or quanti�
a-tion. Hen
e, again in 
ontrast with en-systems, a transition 
an �re when it hasa non-empty output pla
e and it 
an also �re simultaneously with transitionswith whi
h it shares an output pla
e.In a bsl-net N as above, transition t ∈ T 
an o

ur (is enabled) at a marking
M if •t ⊆ M . If t is enabled at M and is exe
uted this leads to a marking M ′given byM ′ = (M \•t)∪t•. Moreover, similar to the rea
tions in ve
tor set-rules,transitions may o

ur simultaneously as steps. It should be noted here, that now� in 
ontrast to the steps in PT-systems or the ve
tor rules in quantitativemembrane systems � multiple o

urren
es of the same transition in a step arenot allowed, i.e., steps are sets. In fa
t, sin
e set-nets are non-
ounting, exe
utingmultiple 
opies of the same transition has exa
tly the same e�e
t as exe
utinga single it just on
e.As for basi
 set membrane systems, we distinguish four modes of exe
ution.A step U ⊆ T is� free-enabled at a marking M if ea
h transition in U is enabled.



Membrane Systems with Qualitative Evolution Rules 9Moreover, a free-enabled step U is:� min-enabled if |U | = 1;� max-enabled if U 
omprises all transitions enabled at M ; and� lmax-enabled if U 
omprises all transitions t enabled at M with ℓ(t) ∈ ℓ(U).Note that a step is enabled at a marking M if all input pla
es of its transitionsare marked. For the bsl-net in Figure 4 and its initial marking, we have that:� {τr212 } is not free-enabled;� {τr111 } is min-enabled but not lmax-enabled;� {τr111 , τr121 , τr131 } is lmax-enabled but not max-enabled; and� {τr111 , τr121 , τr131 , τr222 } is max-enabled.A step U whi
h is m-enabled at a marking M 
an be m-exe
uted leading toanother markingM ′ given byM ′ = (M\•U)∪U•. We denote this byM [U〉m M ′.An m-
omputation of N is then a (�nite or in�nite) sequen
e of m-exe
utionsstarting from M0. A possible two-stage lmax-
omputation for the bsl-net ofFigure 4 is:
M0 [{τr111 , τr121 , τr131 }〉lmax M ′ [{τr212 , τr222 , τr313 }〉lmax M , (†)whereM ′ = {πa

1 , π
b
1, π

c
1, π

a
2 , π

b
2, π

c
2, π

a
3 , π

b
4} andM = {πa

1 , π
b
1, π

c
1, π

a
2 , π

b
2, π

a
4 , π

b
4, π

b
5}.4 From basi
 set membrane systems to bsl-netsTo model a basi
 membrane system as a bsl-net, we 
onstru
t a separate pla
e

πa
j , for ea
h obje
t a and membrane j ∈ µ. Moreover, for ea
h evolution rule rasso
iated with a membrane i, we introdu
e a transition τri with lo
ality i. If thetransformation des
ribed by an evolution rule r of 
ompartment i 
onsumes a,then we introdu
e an ar
 from pla
e πa

i to transition τri , and similarly for obje
tsbeing produ
ed. Finally, we put a token into pla
e πa
j whenever 
ompartment j
ontains initially obje
t a. Formally, we pro
eed as follows.Given a basi
 set membrane system Σ = (V, µ, w0
1 , . . . , w

0
m, R1, . . . , Rm) overthe membrane stru
ture µ, the bsl-net 
orresponding to Σ isNΣ = (P, T, F, ℓ,M0),where the pla
es, transitions and the initial marking are respe
tively given by:

P = {πa
i | i ≤ m ∧ a ∈ V }

T = {τri | i ≤ m ∧ r ∈ Ri}

M0 = {πa
i | i ≤ m ∧ a ∈ w0

i } ,and, for every transition τ = τri , we have ℓ(τ) = i as well as:
•τ = {πa

i | a ∈ lhsr}

τ• = {πa
i | a ∈ rhsr} ∪ {πa

j | ainj
∈ rhsr} ∪ {πa

parent(j) | aout ∈ rhsr} .Figure 4 shows the translation for the running example.



10 Jetty Kleijn and Ma
iej KoutnyThe tight 
orresponden
e between the membrane system Σ and the bsl-net NΣ is 
aptured by a translation from 
on�gurations of Σ to markings of
NΣ , based on the 
orresponden
e of obje
t lo
ations and pla
es as well as the
orresponden
e of ve
tor set-rules and steps. More pre
isely, the marking ν(C)
orresponding to a 
on�guration C = (w1, . . . , wm) of Σ is de�ned by ν(C) =
{πa

i | i ≤ m ∧ a ∈ wi}, and the step ρ(r) 
orresponding to a ve
tor set-rule
r = 〈r1, . . . , rm〉 of Σ by ρ(r) = {τri | r ∈ ri}. For example, if we take thelmax-
omputation of the running example given in Figure 3, and the lmax-
omputations of the 
orresponding bsl-net given in (†), then we have ρ(r′) =
{τr212 , τr222 , τr313 } and ν(C2) = M . It follows dire
tly from the de�nitions that
ν and ρ are bije
tions with the initial 
on�guration of Σ 
orresponding to theinitial marking of NΣ.Proposition 1. The two mappings, ν and ρ, are two bije
tions su
h that, forevery marking M of NΣ:

ν−1(M) = ({a | πa
1 ∈ M}, . . . , {a | πa

m ∈ M}),and, for every step U of NΣ, we have ρ−1(U) = 〈{r | τr1 ∈ U}, . . . , {r | τrm ∈ U}〉.Proposition 2. ν(C0) = M0.For a translation from one dynami
 system to another to be useful, it is essen-tial to ensure that the latter provides a faithful representation of the behaviourof the former. Here, it is possible to establish the desired relationship betweenthe operation of set membrane systems and bsl-nets at the system level. Thefundamental link between the dynami
s of a set membrane system and that ofits 
orresponding bsl-net is formulated next.Theorem 1. Given a set membrane system Σ and the 
orresponding bsl-net
NΣ , we have that:

C
r

−→m C′ in Σ if and only if ν(C) [ρ(r)〉m ν(C′) in NΣ ,for ea
h mode of exe
ution m.Proof. Below C = (w1, . . . , wm), C′ = (w′

1, . . . , w
′

m) and r = 〈r1, . . . , rm〉. Wewill �rst show that
r is min-enabled at C i� ρ(r) is min-enabled at ν(C) .Indeed, in su
h a 
ase, there are an i ≤ m and an r ∈ Ri su
h that ri = {r} and

rj = ∅, for all j 6= i. Hen
e ρ(r) = {τ} where τ = τri . Let lhsr = {a1, . . . , ak}whi
h means that •τ = {πa1

i , . . . , πak

i }. We than have:
r is min-enabled at C i� {a1, . . . , ak} ⊆ wi i� {πa1

i , . . . , πak

i } ⊆ ν(C)i� •τ ⊆ ν(C) i� ρ(r) is min-enabled at ν(C) .



Membrane Systems with Qualitative Evolution Rules 11In view of what we have just established, and the fa
t that the enabledness of aset of evolution rules (transitions) is equivalent to the enabledness of individualevolution rules (transitions), we immediately obtain that:
r is free-enabled at C i� ρ(r) is free-enabled at ν(C) .Moreover, given that the lo
ality of the transition τri 
orresponding to an evo-lution rule r ∈ Ri is i, it follows that, for every exe
ution mode m:
r is m-enabled at C i� ρ(r) is m-enabled at ν(C) .All what remains now to be shown is that the exe
utions of r and ρ(r) lead toequivalent results. This, however, is 
learly the 
ase given the way the results ofthe exe
utions of ve
tor set-rules and steps of transitions are de�ned as well asthe equivalen
e stemming from the exe
utions of a single evolution rule and the
orresponding transition.To demonstrate the latter point, let us 
onsider an evolution rule r ∈ Ri andthe 
orresponding transition τ = τr1 . Moreover, let lhsr = {a1, . . . , ak} and:

rhsr = {b1, . . . , bn} ∪ {c1out , . . . , c
s
out} ∪ {d11inj1

, . . . , d
1q1
inj1

, . . . , d
p1
injp

, . . . , d
pqjp
injp

} ,where jz 6= jx for z 6= x. Then, by the de�nition of NΣ , we have:
•τ = {πa1

i , . . . , πak

i }

τ• = {πb1

i , . . . , πbn

i } ∪ {πc1

parent(i), . . . , π
cs

parent(i)}

∪ {πd11

j1
, . . . , πd

1qj1

j1
, . . . , πdp1

jp
, . . . , πd

pqjp

jp
} .We then observe that exe
uting r su
h that ri = {r} and rj = ∅, for all j 6= i,leads to a 
on�guration C′ su
h that, for all x ≤ m:

w′

x =







































(wx \ {a1, . . . , ak}) ∪ {b1, . . . , bn} if x = i

wx ∪ {c1, . . . , cs} if x = parent(i)

wx ∪ {d11, . . . , d1q1} if x = j1

. . . . . .

wx ∪ {dp1, . . . , dpqp} if x = jp

wx otherwise .It is then not di�
ult to 
he
k that:
ν(C′) = ν(C) \ {πa1

i , . . . , πak

i , πb1

i , . . . , πbn

i , πc1

parent(i), . . . , π
cs

parent(i)}

∪ {πd11

j1
, . . . , πd

1qj1

j1
, . . . , πdp1

jp
, . . . , πd

pqjp

jp
} .whi
h is exa
tly (ν(C) \ •τ) ∪ τ•, as required by the equivalen
e result.Together with Propositions 1 and 2, this means that the (�nite and in�nite)

m-
omputations of the basi
 set rea
tion system Σ 
oin
ide with the (�nite andin�nite) m-
omputations of the 
orresponding bsl-net NΣ .
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iej Koutny5 Set membrane systems with promoters and inhibitorsBasi
 (quantitative) membrane systems have over the past de
ade been extendedin several di�erent dire
tions, motivated either by their potential appli
ations,or by their 
omputational properties. For some of these extensions, like 
ata-lysts and symport/antiport rules, there exist straightforward translation to Petrinets (see, for example, [5℄). For others, like i/o 
ommuni
ation and rule 
re-ation/
onsumption, the 
orresponden
e between evolution rules and Petri nettransitions is more involved, and the resulting nets are additionally equippedwith inhibitor and/or a
tivator ar
s (see, e.g., [8℄).Given the nature of many bio
hemi
al rea
tions, we feel that presumably akey extension is one allowing evolution rules to be triggered or blo
ked by thepresen
e of 
ertain obje
ts. In fa
t, this is exa
tly the view followed in the rea
-tion system model whi
h inspired the work presented in this paper. To 
apturesu
h an extension in set membrane systems, we 
onsider evolution rules r of theform:
lhsr → rhsr|pror , inhrwhere pror and inhr are sets of obje
ts spe
ifying respe
tively the promotersand inhibitors or r. This de�nition is derived from [13℄ where (multisets of)promoters and inhibitors were 
onsidered in the 
ontext of (quantitative) mem-brane systems. The intuition behind pror and inhr is that they only test for thepresen
e and absen
e, respe
tively, of 
ertain obje
ts inside a 
ompartment.In order for r to o

ur, ea
h obje
t in pror must be present in its asso
iated
ompartment, and ea
h obje
t in inhr must be absent. In the formalisation ofthe extended evolution rules we retain the de�nitions and notations introdu
edfor the set basi
 membrane systems, ex
ept for the notion of a free-enabled (andits derivations of min-enabled, max-enabled and lmax-enabled) ve
tor set-rule

r = 〈r1, . . . , rm〉. This is strengthened by additionally requiring that, for ea
hmembrane i ∈ µ and evolution rule r ∈ ri, we have pror
i ⊆ wi and inhr∩wi = ∅.The resulting Σ is 
alled a set membrane rea
tion system (with promoters andinhibitors). We then extend the bsl-net model to provide a mat
hing 
lass ofnets.esl-netsAn extended set-net with lo
alities (or esl-net) is a tuple

N = (P, T, F, Inh ,Act , ℓ,M0)su
h that (P, T, F, ℓ,M0) is a bsl-net and the two new 
omponents, Inh ⊆ P ×Tand Act ⊆ P × T , are its sets of inhibitor and a
tivator ar
s. We also denote
◦U = {p | ∃t ∈ U : (p, t) ∈ Inh} and �U = {p | ∃t ∈ U : (p, t) ∈ Act}, forevery set of transitions U . The de�nitions and notations 
on
erning the marking
hange in N are the same as for the underlying bsl-net (P, T, F, ℓ,M0) with one
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eption, namely a set of transitions U is free-enabled at a marking M if wehave:
•U ∪ �U ⊆ M and ◦U ∩M = ∅ .Thus, ea
h pla
e 
onne
ted by an a
tivator ar
 to a transition in U should 
arrya token, while ea
h pla
e 
onne
ted by an inhibitor ar
 to a transition in Ushould be empty. The notions of (�nite or in�nite) m-
omputations of N for thefour distinguished exe
ution modes m are then de�ned as before.From set membrane systems to esl-netsThe translation from set membrane systems with promoters and inhibitors toesl-nets pro
eeds as in the 
ase of the basi
 set membrane system. The onlyadditional feature is that for ea
h transition τri and pla
e πa

i , we introdu
e aninhibitor ar
 (πa
i , τ

r
i ) whenever a ∈ inhr, and we introdu
e an a
tivator ar


(πa
i , τ

r
i ) whenever a ∈ pror. It then turns out that the properties of the extendedtranslation are very similar to those obtained in the basi
 
ase; in parti
ular, weobtain the following.Theorem 2. Given a set membrane system with promoters and inhibitors Σand the 
orresponding esl-net NΣ , we have that:
C

r

−→m C′ in Σ if and only if ν(C) [ρ(r)〉m ν(C′) in NΣ ,for ea
h mode of exe
ution m.Proof. Similar to the proof of Theorem 1. The impa
t of promoters/inhibitorsand a
tivator/inhibitor ar
s on the enabledness of an evolution rule and the
orresponding transition is equivalent. Moreover, the resulting 
on�guration andmarking do not depend on promoters/inhibitors nor a
tivator/inhibitor ar
s.6 Con
luding remarksAs already in the introdu
tion, qualitative membrane systems were indepen-dently introdu
ed in [1℄ with the aim of 
hara
terising their language theoreti
properties. The present paper looked at su
h a model from a totally di�erentperspe
tive, fo
ussing on aspe
ts relating to di�erent semanti
al interpretations,and the relationship to Petri nets.Moving from quantitative to qualitative membrane systems is an abstra
tionwhi
h may lead to a more tra
table approa
h when it 
omes to answering vitalquestions 
on
erning the evolution of systems. However, to take advantage of thisfa
t, the existing 
on
rete analysis tools developed for the 
lassi
al, quantitative,Petri net models need to be adapted for set-nets.For one thing, the pro
ess 
on
ept underlying the 
ausality semanti
s ofstandard Petri net models (see, e.g., [7℄) has to be re
onsidered. As 
an beseen from examples in [11℄, the 
ause and e�e
t relation in set-nets (and hen
e



14 Jetty Kleijn and Ma
iej Koutnymembrane systems with qualitative evolution rules) will have to be interpretedin a 
ompletely new fashion.In [9℄, we have already made preliminary investigation into the synthesisproblem whi
h aims at an automati
 
onstru
tion of set-nets exhibiting a be-haviour given in terms of a transition system. For set membrane systems thisshould 
ontribute to insight in whi
h evolution rules lead to 
ertain observedbehaviour.Finally, by bringing qualitative (set rather than multiset) aspe
ts to mem-brane systems, also interesting questions relating to expressive (generative) poweremerge. For every mode, one 
an 
onsider the possible evolutions of a system ofa set membrane system (i.e., the 
omputations of bsl-nets) as a language. Theselanguages are regular subset languages. The study of subset languages of Petrinets was initiated in [17, 18℄ but still for the standard (quantitative) interpreta-tion. There are a number of interesting theoreti
al questions and topi
s for theregular subset languages generated by bsl/esl-nets under the four exe
utionmodes as well all regular subset languages. For example, one 
an 
onsider: in
lu-sion hierar
hies; 
losure properties; and the 
omplexity of equivalen
e/in
lusion
he
king. Another group of problems here would be motivated by the targetappli
ation area, i.e., bio
hemistry. For example, one 
an investigate: os
illa-tory behaviour (is it possible to have 
y
les from some point with at least/atmost/spe
i�
 evolution rules only); or vitality of the system (possible deadlo
kor partial death, i.e., some rules that 
an no longer be exe
uted) or other state-related properties, like whether it would be possible for two obje
ts to appearin a given 
ompartment at some point together.A
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