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Abstract. In membrane systems, biochemical reactions taking place in
the compartments of a cell are abstracted to evolution rules that specify
which and how many objects are consumed and produced. The recently
proposed reaction systems also investigate processes carried by biochem-
ical reactions, but the resulting computational model is remarkably dif-
ferent. A key difference is that in reaction systems, biochemical reactions
are modeled using a qualitative rather than a quantitative approach.

In this paper, we introduce so-called set membrane systems, a variant of
membrane systems with qualitative evolution rules inspired by reaction
systems. We then relate set membrane systems to Petri nets which leads
to a new class of Petri nets: set-nets with localities. This Petri net model
provides a faithful match with the operational semantics of set membrane
systems.

Keywords: membrane system, reaction system, biochemistry, natural
computing, Petri net, set-net, locality, inhibitor, promoter.

1 Introduction

Membrane systems, or P systems ([12-15,19]) are a computational model in-
spired by the compartmentisation of living cells and the biochemical reactions
taking place in such compartments. These reactions are abstracted to evolution
rules specifying which and how many new objects (molecules) can be produced
from objects of a certain kind and quantity, possibly involving a transfer to a
neighbouring compartment. The dynamic aspects of a membrane system and its
potential behaviour (its computations) derive from these evolution rules. When
a membrane system evolves, the current state of any given compartment is repre-
sented as a multiset of objects, and each computational action is represented as
a multiset of simultaneously executed (multiple copies of) individual evolution
rules. Such strong reliance on counting (through multiple copies of objects and
rules) may lead to potential problems in two respects. First, one may wonder
how realistic is the counting (multiset) mechanism if one needs to represent huge
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numbers of molecules and instances of biochemical reactions. Second, a mem-
brane system would normally have an infinite state space, making the application
of formal verification techniques impractical or indeed impossible (there exists
a rich body of results proving Turing completeness of even very simple kinds of
membrane systems).

A radical solution to the state space problems can be provided by reaction
systems [2—4] which are also a formal framework for the investigation of processes
carried by biochemical reactions. Reaction systems, however, model biochemical
reactions in living cells using qualitative — based on presence and absence of enti-
ties — rather than quantitative term rewriting rules. Hence the semantical model
of reaction systems is remarkably different from those underlying other existing
models of computation, including membrane systems. Moreover, the state of a
(sub)system can be represented by a set rather than a multiset of objects, which
leads to state spaces that are always finite. Further fundamental differences be-
tween membrane systems and reaction systems are the compartmentalization
present in the former, including the possibility of dynamically changing struc-
ture of the membranes. Another one is the non-persistence of objects in reaction
systems, i.e., an object which is not sustained by executed rules is removed from
the system. Also, each rule of a reaction system specifies an inhibition set. It is
important to note that reaction systems are a formal model for the investigation
and understanding of interactions between biochemical reactions in living cells,
leading to an abstract theory of the resulting dynamic processes.

The first aim of this paper is to exploit the qualitative approach to modelling
biochemistry embodied by reaction systems in the realm of membrane systems.
The second aim is to build bridges allowing one to import analytical tools from
more established models and approaches the domain of the new model.

We will address the first aim by defining the set membrane systems model
which is a qualitative variation of the standard quantitative membrane systems
with evolution rules and execution semantics inspired by reaction systems. In
a nutshell, in set membrane systems, all modelling devices as well as execution
rules will be based on sets (of objects or rules) together with the associated set
theoretic operations, rather than on multisets and multiset operations. This is
similar to the operation of the membrane systems discussed in [1], where the
quantitative approach was used when sending objects to the external environ-
ment, and the qualitative one was used in the application of rules within the
membranes.

The second of our aims will be addressed by providing a faithful model trans-
lation from set membrane systems to a class of Petri nets. Petri nets are an op-
erational model for concurrent systems with distributed states and actions with
local causes and effects. In Petri nets, such as the classical Place-Transition nets
(PT-nets), resources and actions are represented in a quantitative way, essen-
tially as in the standard membrane systems. This was in part the reason why in
previous work [8, 10] we were able to give membrane systems a Petri net seman-
tics, through an extension of pT-nets with a concept of transition locality used
to reflect the compartmentisation of a membrane system. In another strand of
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our work, we introduced in [11] a new class of Petri nets, called set-nets, as a
net based computational model matching very closely that exhibited by reaction
systems. In this paper, we will combine the ideas contained in [8,10,11] and
introduce a new model of set-nets with localities which provides a behavioural
match for the set membrane systems.

The paper is organised in the following way. In Section 2 we formalise the
basic ideas concerning qualitative membrane systems and in Section 3, we intro-
duce the new class of nets corresponding to basic set membrane systems. The
details of the translation from set membrane systems to nets are presented in
Section 4. Finally, Section 5 explains how to introduce promoters and inhibitors
to basic set membrane systems, and then how to model these features in the
Petri net domain.

2 Basic set membrane systems

In this section, we introduce a simple class of qualitative membrane systems. The
presentation follows in many respects the standard approach to defining mem-
brane systems. The key difference is the ‘qualitative’ rather than ‘quantitative’
application of evolution rules to change the current state of a system.

A membrane structure p (of degree m > 1) is given by a rooted tree with
m nodes identified with the integers 1,...,m. We will write (i,5) € p or i =
parent(j) to mean that there is an edge from ¢ (parent) to j (child) in the
tree of p, and i € p to mean that 4 is a node of u. The nodes of a membrane
structure represent nested membranes which in turn determine compartments.
Compartment j is enclosed by membrane j and lies in-between j and its children
(if any). Figure 1 shows a membrane structure (with m = 5) together with
the corresponding compartments. Note that 1 is the root node, (1,2) € u and
3 = parent(5).

Fig. 1. A membrane structure and its compartments.

Let V be a finite alphabet of objects. A basic set membrane system over the
membrane structure y is a tuple X = (V, p,w?, ..., w%, Ry,..., Ry,) such that,
for every membrane i of p, w? C V is a set of objects, and R; is a finite set of
evolution rules. Each evolution rule r € R; is of the form [hs" — rhs", where
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lhs" C V is a non-empty set of objects, and rhs” C V; is a set of (indexed)
objects, with V; being defined as:

Vi=VU{aou | a € V}U{ain, |a €V and (i,j) € p} .

It is assumed that if 7 is the root of y then no indexed object of the form a,y:
belongs to rhs”. !

The tuple Cy = (w?,...,wY,) is the initial configuration (or initial state) of
Y. In general, a configuration of X is a tuple C' = (w1, ..., wy,) of sets of objects.
Below we assume that X is a fixed basic set reaction system.

We refer to lhs" as the left hand side of the rule r, and rhs” as its right
hand side. [hs" specifies which objects are needed as input for an execution of
this rule, and rhs” specifies which new objects are produced and where they are
deposited. An indexed object ai,,; € rhs" indicates that a newly produced object
a is sent to a child node (compartment) j, and a,,¢ indicates that a is sent to
the parent node. If no index is present, the newly produced object remains in
the same compartment. Figure 2 depicts a basic set membrane system over the
membrane structure 4 shown in Figure 1. Note that V' = {a, b, ¢}, lhs"™' = {a, ¢},
Ths"? = {b, Ciny, Ains }, W) = {a,b} and wd = @.

As a consequence of the execution of evolution rules as outlined above, a
set membrane system evolves from configuration to configuration. There are
different ways to combine evolution rules (see e.g., [6]). We distinguish four
main ezecution modes, all expressed through the notion of a vector set-rule.

A vector set-rule of X is a tuple r = (ry,...,r,,) where, for each membrane
1 of u, r; is a set of rules from R;. For two vector set-rules, r and r’, we denote
rCrifr, Cr/;, foreachi < mj;andr Cr' if r C 1’ and r # r’. We also lift
the notion of left and right hand sides of rules to sets of rules in vector set-rules.
For a vector set-rule r and ¢ < m, we respectively denote by:

lhs; = U lhs" and rhs; = U rhs”

TEr; rer;

the set of all the objects in the left hand sides of the rules in r;, and the set of
all the (indexed) objects in their right hand sides. Intuitively, hs] specifies the
objects needed for the execution of the evolution rules in r;.

We then say that a vector set-rule r is:

— free-enabled at a configuration C' = (w1, ..., wy,) if ths] C w;, for each i.
Moreover, a free-enabled r is:
— min-enabled if [r1|+ - + |rp]| = 1;

! In other words, objects sent out to the environment are not relevant anymore, they
do not come back [13]. Note that if it is necessary to send concrete objects to the
external environment as in [1], one can easily introduce another root membrane to
model this environment as an encompassing compartment.
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Fig. 2. A basic membrane system over the membrane structure p shown in Figure 1.
Its initial configuration is shown explicitly underneath using p with each set w? placed
next to the corresponding node <.

— maz-enabled if no r; can be extended to yield a vector set-rule which is
free-enabled at C' (i.e., there is no free-enabled vector set-rule r’ such that
r Cr'); and

— Imaz-enabled if no non-empty r; can be extended to yield a vector set-rule
which is free-enabled at C' (i.e., there is no free-enabled vector set-rule r’
such that r C v’ and r'; = @, whenever r; = @).

For the initial configuration of the running example, we have:

- (@, {ru},2,9,9) is not free-enabled;
- {rm},2,9,9,9) is min-enabled but not lmax-enabled;
- {r11,r12,113}, 9,9, 2, ) is Imax-enabled but not max-enabled; and
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— {r11,r12, 713}, {ree}, @,9,9)  is max-enabled.

If r is free-enabled (free) at a configuration C, then each membrane ¢ contains
all kinds of objects needed for the execution of the evolution rules in r;; it is
worth pointing out that a particular (kind of) object can be used as as input
to different rules in r;. Maximal enabledness (maz) of r requires that any extra
rule demands the presence of objects that C' does not provide. Note that there
is always exactly one max-enabled vector set-rule. Locally maximal enabledness
(Imaz) is similar but in this case only those compartments that are actually
involved in r do not enable any other rules; in other words, each compartment
either uses no rule, or uses all free-enabled rules. Minimal enabling (min) allows
only a single rule to be applied at any time. We next describe the effect of the
execution of the rules for any mode of execution m € {free, min, mazx, Imax}.

We say that a configuration C = (ws, ...w,,) can m-evolve by a vector set-
rule r which is m-enabled at C, to a configuration C’ = (wf],...w!,) such that,
for each compartment 4 of u:

r

w; = wi\lhs;U{a € V | a € ths] V ain, € Th8}rens(iy V 3(i,7) € 12 aour € Ths} .
r
parent
We denote this by C' —= C’. An m-computation is then defined as a (finite or
infinite) sequence of consecutive m-evolutions starting from Cj.

(It is assumed that rhs (s) = @ if i is the root of y.)

The difference between the ‘qualitative’ and the ‘quantitative’ interpretation
of the evolution rules is twofold. First, there may be two enabled evolution
rules in a compartment with a common object in their left hand sides while
there is only a single representant of that object in the current state in the
compartment. In the current qualitative set-up, the two rules can be executed
together. That is, objects are characterised by their presence rather then their
quantity. Second, if two simultaneously executed rules produce the same object
in the same compartment, instead of adding two instances of this object, only
one is added (so that we never have more than a single representant of an object
in any given compartment). As a consequence, there is no need to use multisets
of objects present in any single compartment to represent the current state, and
there is no need to use vectors of multisets of rules in set membrane systems.
In either case, using sets is fully sufficient. One may observe that with this view
of state representation and system execution, maz-evolution is deterministic
in set membrane systems. Other kinds of evolutions can be non-deterministic
in the sense that there may be different vector set-rules executed at a given
configuration C. Figure 3 shows a two-stage lmax-evolution for the example
shown in Figure 2.

3 SET-nets with localities

We now introduce basic set-nets with localities (or BSL-nets), the new class of
Petri nets that provides in a natural way a model for the behaviour of basic set
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Fig.3. An Ilmax-computation for the running example with the vector set-
rules defined in the following way: r = ({rii,712,713},9,9,9,9) and r =
(&, {ra1,m22},{rs1}, @, 2).

membrane systems. The BSL-net model is derived from the recently introduced
SET-nets [11] developed as a model for reaction systems [2—4]. In addition, similar
to the Petri net model corresponding to quantitative membrane systems, tran-
sitions in BSL-nets transitions belong to localities which influences the ensuing
execution semantics.

A BSL-net is a tuple N = (P, T, F, ¢, My) such that P and T are finite disjoint

sets of respectively places and transitions, ' C (P x T') U (T x P) is the flow
relation, ¢ : T — N is the locality mapping; in general, any set of places is a
marking and My C P is the initial marking of N.
We use the standard dot-notation: *z = {y | (y,z) € F} for the inputs, and
z* = {y | (z,y) € F} for the outputs, of a given place or transition xz. We lift
this notation in the usual way to sets U of transitions, i.e., *U = J,c;; *t and
U* =Uev t*

In diagrams, like that in Figure 4, places are drawn as circles, and transitions
as boxes. If (z,y) € F then (z,y) is an arc leading from x to y. A marking M
is represented by drawing in each place p € M a token (a small black dot).
Boxes representing transitions belonging to the same localities are displayed on
a grey background of the same shade. Note that the locality mapping ¢ partitions
the transition set by associating with each transition a locality, in this case a
compartment.

As in SET- nets, there is no concept of token counting in BSL-nets. In this sense
they resemble elementary net systems (EN-systems) [16], a fundamental model to
study basic features of concurrent systems. However, the execution semantics is
strikingly different. When a place of a SET-net is marked, this indicates nothing
but non-emptiness or presence of a resource without any quantification. Conse-
quently, this place can be seen as providing input to any number of transitions at
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Fig. 4. BSL-net corresponding to the running example.

the same time (and as a result, there are no conflicts between transitions sharing
an input place). Firing a transition empties all its input places and marks each of
its output places, again without any further logical interpretation or quantifica-
tion. Hence, again in contrast with EN-systems, a transition can fire when it has
a non-empty output place and it can also fire simultaneously with transitions
with which it shares an output place.

In a BSL-net N as above, transition ¢t € T' can occur (is enabled) at a marking
M if *t C M. If t is enabled at M and is executed this leads to a marking M’
given by M’ = (M \ *t)Ut®. Moreover, similar to the reactions in vector set-rules,
transitions may occur simultaneously as steps. It should be noted here, that now
— in contrast to the steps in PT-gsystems or the vector rules in quantitative
membrane systems — multiple occurrences of the same transition in a step are
not allowed, i.e., steps are sets. In fact, since SET-nets are non-counting, executing
multiple copies of the same transition has exactly the same effect as executing
a single it just once.
As for basic set membrane systems, we distinguish four modes of execution.

AstepU CTis

— free-enabled at a marking M if each transition in U is enabled.
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Moreover, a free-enabled step U is:

— min-enabled if |U| = 1;
— maz-enabled if U comprises all transitions enabled at M; and
— Imaz-enabled if U comprises all transitions ¢ enabled at M with £(¢t) € ¢(U).

Note that a step is enabled at a marking M if all input places of its transitions
are marked. For the BSL-net in Figure 4 and its initial marking, we have that:

- {n>} is not free-enabled;
- {r*} is min-enabled but not Imax-enabled;
— e ey is Imax-enabled but not max-enabled; and

— {2, 75?2} is max-enabled.
A step U which is m-enabled at a marking M can be m-executed leading to
another marking M’ given by M’ = (M\*U)UU*®. We denote this by M [U)y, M.
An m-computation of N is then a (finite or infinite) sequence of m-executions

starting from Mj. A possible two-stage lmax-computation for the BSL-net of
Figure 4 is:

Mo [{T1T117T1T127T1T13}>lm036 M’ [{nglngzzaTgm }>lmax M ) (T)

1 _ a b ¢ a b __c _a b _ a b ¢ _a b _a b b
where M" = {7T1,7T1,7T1,7T2,7T2,7T2,7T3,7T4} and M = {7T1,7T1,7T1,7T2,7T2,7T4,7T4,7T5}.

4 From basic set membrane systems to BSL-nets

To model a basic membrane system as a BSL-net, we construct a separate place
m§, for each object a and membrane j € p. Moreover, for each evolution rule r
associated with a membrane 7, we introduce a transition 7;" with locality 4. If the
transformation described by an evolution rule 7 of compartment i consumes a,
then we introduce an arc from place 7¢ to transition 7", and similarly for objects
being produced. Finally, we put a token into place 77 whenever compartment j
contains initially object a. Formally, we proceed as follows.

Given a basic set membrane system X = (V, pu,w?,...,wl, R1,..., Ry) over
the membrane structure u, the BSL-net corresponding to X'is Ny, = (P, T, F, ¢, M),
where the places, transitions and the initial marking are respectively given by:

P ={rfli<mAaeV}
T ={7|i<mAreR;}
My ={r¢|i<mAacuwl},

and, for every transition 7 = 77, we have £(7) = ¢ as well as:

r ={n¥laclhs"}
T ={n{ [a€rhs"} U AmS [ain; € rhs"} U {7], i) | Gout € Ths"}

parent

Figure 4 shows the translation for the running example.
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The tight correspondence between the membrane system X' and the BSL-
net Ny is captured by a translation from configurations of X' to markings of
Ny, based on the correspondence of object locations and places as well as the
correspondence of vector set-rules and steps. More precisely, the marking v(C)
corresponding to a configuration C' = (w1, ..., w,,) of X is defined by v(C) =
{m¢ | i <mAa € w}, and the step p(r) corresponding to a vector set-rule
r = (r1,...,ry) of X by p(r) = {77 | r € r;}. For example, if we take the
Imax-computation of the running example given in Figure 3, and the lmax-
computations of the corresponding BSL-net given in (f), then we have p(r') =
{m?*, 15?2, 13} and v(Cy) = M. It follows directly from the definitions that
v and p are bijections with the initial configuration of X corresponding to the
initial marking of Ny.

Proposition 1. The two mappings, v and p, are two bijections such that, for
every marking M of Nx:

v (M) = ({a|nf € M},... {a|m, € M}),
and, for every step U of Nx, we have p~*(U) = ({r | 77 € U},..., {r |77, € U}).
Proposition 2. v(Cy) = M.

For a translation from one dynamic system to another to be useful, it is essen-
tial to ensure that the latter provides a faithful representation of the behaviour
of the former. Here, it is possible to establish the desired relationship between
the operation of set membrane systems and BSL-nets at the system level. The
fundamental link between the dynamics of a set membrane system and that of
its corresponding BSL-net is formulated next.

Theorem 1. Given a set membrane system X and the corresponding BSL-net
Ny, we have that:

C5nC in X ifand only if v(C) [p(r))m v(C') in N,
for each mode of execution m.

Proof. Below C = (w1,...,wn), C' = (wi,...,w},) and r = (r1,...,r,). We
will first show that

r is min-enabled at C' iff p(r) is min-enabled at v(C) .

Indeed, in such a case, there are an i < m and an r € R; such that r; = {r} and
r; = @, for all j # i. Hence p(r) = {7} where 7 = 77. Let lhs" = {a',...,a"}
which means that *7 = {79 , ... ,wfk}. We than have:

7

r is min-enabled at C iff {a',...,a*} Cw; iff {x%,....7%"} Cv(C)

1 0

it *7 Cv(C) iff p(r) is min-enabled at v(C) .
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In view of what we have just established, and the fact that the enabledness of a
set of evolution rules (transitions) is equivalent to the enabledness of individual
evolution rules (transitions), we immediately obtain that:

r is free-enabled at C' iff p(r) is free-enabled at v(C) .

Moreover, given that the locality of the transition 7] corresponding to an evo-
lution rule r € R; is 4, it follows that, for every execution mode m:

r is m-enabled at C' iff p(r) is m-enabled at v(C) .

All what remains now to be shown is that the executions of r and p(r) lead to
equivalent results. This, however, is clearly the case given the way the results of
the executions of vector set-rules and steps of transitions are defined as well as
the equivalence stemming from the executions of a single evolution rule and the
corresponding transition.

To demonstrate the latter point, let us consider an evolution rule r € R; and

the corresponding transition 7 = 7. Moreover, let lhs” = {a!,...,a*} and:
rhs" = {bl,...,b"}U{c})ut,...,csout}U{d%}bh,...,d}ﬁ;l,...,df;jp,...,dfgjz} ,
where j, # j, for z # x. Then, by the definition of Ny, we have:
T = {wfl,...,ﬂ'fk}
T = {wfl, LT U {w;;mm(i), . 77T;fzrent(i)}
U {w?ln, .. .,ﬂ';lllqjl Ve ,W?ZI, . ,w?:qu} )

We then observe that executing r such that r; = {r} and r; = @, for all j # i,
leads to a configuration C” such that, for all z < m:

we \ {at,...,a*H)u{bt,...; "} ifx =i
( 1\{ ’ ’ ’ )
w, U{ct, ... ¢} if © = parent (i)
, we U{dM, ... d'} ifx=75
wh, =
we U{dPL, ... dPir} itz =j,
Wy, otherwise .

It is then not difficult to check that:

1 k 1 n 1 s
AN a a b b c c
v(C")=v(C)\ {n¢ ,...;¢% &), ... 7, W parent (i) - ’ﬂ-parent(i)}
qit a1 qrt dP%p
UA{msg, e, Y T }.

which is exactly (¢(C) \ *7) U T*, as required by the equivalence result.

Together with Propositions 1 and 2, this means that the (finite and infinite)
m-computations of the basic set reaction system X' coincide with the (finite and
infinite) m-computations of the corresponding BSL-net Ny;.
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5 Set membrane systems with promoters and inhibitors

Basic (quantitative) membrane systems have over the past decade been extended
in several different directions, motivated either by their potential applications,
or by their computational properties. For some of these extensions, like cata-
lysts and symport/antiport rules, there exist straightforward translation to Petri
nets (see, for example, [5]). For others, like i/0 communication and rule cre-
ation/consumption, the correspondence between evolution rules and Petri net
transitions is more involved, and the resulting nets are additionally equipped
with inhibitor and/or activator arcs (see, e.g., [8]).

Given the nature of many biochemical reactions, we feel that presumably a
key extension is one allowing evolution rules to be triggered or blocked by the
presence of certain objects. In fact, this is exactly the view followed in the reac-
tion system model which inspired the work presented in this paper. To capture
such an extension in set membrane systems, we consider evolution rules r of the
form:

r r
Ihs" = Ths" | pror | inhr

where pro” and inh" are sets of objects specifying respectively the promoters
and inhibitors or r. This definition is derived from [13] where (multisets of)
promoters and inhibitors were considered in the context of (quantitative) mem-
brane systems. The intuition behind pro” and inh” is that they only test for the
presence and absence, respectively, of certain objects inside a compartment.

In order for r to occur, each object in pro™ must be present in its associated
compartment, and each object in inh” must be absent. In the formalisation of
the extended evolution rules we retain the definitions and notations introduced
for the set basic membrane systems, except for the notion of a free-enabled (and
its derivations of min-enabled, max-enabled and lmax-enabled) vector set-rule
r = (r1,...,ry). This is strengthened by additionally requiring that, for each
membrane ¢ € p and evolution rule r € r;, we have prol C w; and inh" Nw; = @.
The resulting X is called a set membrane reaction system (with promoters and
inhibitors). We then extend the BsL-net model to provide a matching class of
nets.

ESL-nets
An eztended set-net with localities (or ESL-net) is a tuple
N = (P, T, F, Inh, Act, £, My)

such that (P, T, F, ¢, Myp) is a BSL-net and the two new components, Inh C P xT
and Act C P x T, are its sets of inhibitor and activator arcs. We also denote
°U={p|3teU:(pt) € Inh} and *U = {p | It € U : (p,t) € Act}, for
every set of transitions U. The definitions and notations concerning the marking
change in N are the same as for the underlying BsL-net (P, T, F, ¢, My) with one
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exception, namely a set of transitions U is free-enabled at a marking M if we
have:
‘UUUCM and UNM=2.

Thus, each place connected by an activator arc to a transition in U should carry
a token, while each place connected by an inhibitor arc to a transition in U
should be empty. The notions of (finite or infinite) m-computations of N for the
four distinguished execution modes m are then defined as before.

From set membrane systems to ESL-nets

The translation from set membrane systems with promoters and inhibitors to
ESL-nets proceeds as in the case of the basic set membrane system. The only
additional feature is that for each transition 77" and place 7, we introduce an

inhibitor arc (7{,7]) whenever a € inh", and we introduce an activator arc
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(7¢,77) whenever a € pro”. It then turns out that the properties of the extended

translation are very similar to those obtained in the basic case; in particular, we
obtain the following.

Theorem 2. Given a set membrane system with promoters and inhibitors X
and the corresponding ESL-net Nx, we have that:

C—5nC in X ifandonlyif v(C)[p(r))mv(C') in Nx,
for each mode of execution m.

Proof. Similar to the proof of Theorem 1. The impact of promoters/inhibitors
and activator/inhibitor arcs on the enabledness of an evolution rule and the
corresponding transition is equivalent. Moreover, the resulting configuration and
marking do not depend on promoters/inhibitors nor activator/inhibitor arcs.

6 Concluding remarks

As already in the introduction, qualitative membrane systems were indepen-
dently introduced in [1] with the aim of characterising their language theoretic
properties. The present paper looked at such a model from a totally different
perspective, focussing on aspects relating to different semantical interpretations,
and the relationship to Petri nets.

Moving from quantitative to qualitative membrane systems is an abstraction
which may lead to a more tractable approach when it comes to answering vital
questions concerning the evolution of systems. However, to take advantage of this
fact, the existing concrete analysis tools developed for the classical, quantitative,
Petri net models need to be adapted for set-nets.

For one thing, the process concept underlying the causality semantics of
standard Petri net models (see, e.g., [7]) has to be reconsidered. As can be
seen from examples in [11], the cause and effect relation in set-nets (and hence
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membrane systems with qualitative evolution rules) will have to be interpreted
in a completely new fashion.

In [9], we have already made preliminary investigation into the synthesis
problem which aims at an automatic construction of set-nets exhibiting a be-
haviour given in terms of a transition system. For set membrane systems this
should contribute to insight in which evolution rules lead to certain observed
behaviour.

Finally, by bringing qualitative (set rather than multiset) aspects to mem-
brane systerns, also interesting questions relating to expressive (generative) power
emerge. For every mode, one can consider the possible evolutions of a system of
a set membrane system (i.e., the computations of BSL-nets) as a language. These
languages are regular subset languages. The study of subset languages of Petri
nets was initiated in [17, 18] but still for the standard (quantitative) interpreta-
tion. There are a number of interesting theoretical questions and topics for the
regular subset languages generated by BSL/ESL-nets under the four execution
modes as well all regular subset languages. For example, one can consider: inclu-
sion hierarchies; closure properties; and the complexity of equivalence/inclusion
checking. Another group of problems here would be motivated by the target
application area, i.e., biochemistry. For example, one can investigate: oscilla-
tory behaviour (is it possible to have cycles from some point with at least/at
most/specific evolution rules only); or vitality of the system (possible deadlock
or partial death, i.e., some rules that can no longer be executed) or other state-
related properties, like whether it would be possible for two objects to appear
in a given compartment at some point together.
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