
Article

Membrane Tension Orchestrates Rear Retraction in
Matrix-Directed Cell Migration

Highlights

d Fast-moving cells in 3D matrix establish low membrane

tension at the rear

d Caveolae form in response to low membrane tension and

recruit the GEF Ect2

d Ect2 activates RhoA to promote F-actin organization and rear

retraction

d Positive feedback between membrane tension and

contractility reinforces retraction

Authors

Joseph H.R. Hetmanski,

Henry de Belly, Ignacio Busnelli, ...,

Ewa K. Paluch, Jean-Marc Schwartz,

Patrick T. Caswell

Correspondence

patrick.caswell@manchester.ac.uk

In Brief

Cell migration through 3Dmatrix is critical

to developmental and disease processes,

but the mechanisms that control rear

retraction are poorly understood.

Hetmanski et al. show that differential

membrane tension allows caveolae to

form at the rear of migrating cells and

activate the contractile actin cytoskeleton

to promote rapid retraction.

Hetmanski et al., 2019, Developmental Cell 51, 460–475

November 18, 2019 ª 2019 The Authors. Published by Elsevier Inc.

https://doi.org/10.1016/j.devcel.2019.09.006

mailto:patrick.caswell@manchester.ac.�uk
https://doi.org/10.1016/j.devcel.2019.09.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.devcel.2019.09.006&domain=pdf


Developmental Cell

Article

Membrane Tension Orchestrates Rear Retraction
in Matrix-Directed Cell Migration

Joseph H.R. Hetmanski,1 Henry de Belly,2,3 Ignacio Busnelli,4,5,6 Thomas Waring,7 Roshna V. Nair,8 Vanesa Sokleva,1

Oana Dobre,1 Angus Cameron,9 Nils Gauthier,10 Christophe Lamaze,11 Joe Swift,1 Aránzazu del Campo,5

Tobias Starborg,1 Tobias Zech,7 Jacky G. Goetz,4,5,6 Ewa K. Paluch,2,3,12 Jean-Marc Schwartz,1

and Patrick T. Caswell1,13,*
1Wellcome Trust Centre for Cell-Matrix Research, School of Biological Sciences, Faculty of Biology, Medicine and Health,

University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
2MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK
3Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK
4INSERM UMR_S1109, Tumor Biomechanics, Strasbourg 67200, France
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SUMMARY

In development, wound healing, and cancer metas-

tasis, vertebrate cells move through 3D interstitial

matrix, responding to chemical and physical guid-

ance cues. Protrusion at the cell front has been

extensively studied, but the retraction phase of the

migration cycle is not well understood. Here, we

show that fast-moving cells guided by matrix cues

establish positive feedback control of rear retraction

by sensing membrane tension. We reveal a mecha-

nism of rear retraction in 3D matrix and durotaxis

controlled by caveolae, which form in response to

lowmembrane tension at the cell rear. Caveolae acti-

vate RhoA-ROCK1/PKN2 signaling via the RhoA gua-

nidine nucleotide exchange factor (GEF) Ect2 to con-

trol local F-actin organization and contractility in this

subcellular region and promote translocation of the

cell rear. A positive feedback loop between cytoskel-

etal signaling and membrane tension leads to rapid

retraction to complete the migration cycle in fast-

moving cells, providing directional memory to drive

persistent cell migration in complex matrices.

INTRODUCTION

Cell migration is a fundamental process that underpins develop-

ment, health, and disease and is characterized by cycles of pro-

trusion of the front and retraction of the rear (Ridley et al., 2003).

In a 3D matrix, cells move both individually and collectively

(Friedl and Alexander, 2011), and in cancer epithelial-mesen-

chymal transition (EMT) drives the dissemination of elongated

single cells to form distant metastases even at very early stages

in tumor development (Harper et al., 2016). While the mecha-

nisms that govern protrusion are well characterized (Caswell

and Zech, 2018), how retraction of the cell rear is controlled to

complete the migration cycle is still under debate (Cramer,

2013). Contractility driven by the action of non-muscle myosin

II (NMII) on actin filaments is key for the generation of force

required to actively retract the rear, and RhoGTPase signaling

(in particular RhoA) is critical in determining NMII activity (Ridley,

2011). However, the mechanisms that control rear retraction in a

restrictive 3D matrix such as the interstitial fibrillar matrix envi-

ronment encountered by metastatic cancer cells in vertebrates

is not well understood.

The plasma membrane is the physical barrier between intra-

cellular and extracellular environments and plays an important

role in cell migration by organizing signaling and exerting force

(tension) on the underlying cytoskeleton (Diz-Muñoz et al.,

2013; Gauthier et al., 2012; Keren, 2011). Membrane tension

resists membrane deformation and is established in cells by

the in-plane tension in the lipid bilayer and membrane to cortex

attachment (Diz-Muñoz et al., 2013). Membrane tension was

thought to propagate rapidly across cells, but recent evidence

indicates that the cytoskeleton plays a role in resisting mem-

brane flow (Shi et al., 2018), allowing cells to establish differential

membrane tension across their surface. Membrane tension has

recently been shown to be amechanical signal that regulates for-

mation of focal adhesion complexes (Pontes et al., 2017) and the

organization of actin networks (Mueller et al., 2017) at the leading

edge of migrating cells on 2D substrates. Biophysical models

have suggested that membrane tension at the cell rear might
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promote retraction by exerting force (Keren et al., 2008);

however, experimental evidence suggests that membrane ten-

sion is lower at the rear of migrating fish keratocytes in 2D (Lieber

et al., 2015). In addition, the movement of membrane through

endocytic traffic has been postulated to play an important role

in gathering membrane from the cell rear for re-utilization at the

front (Bretscher, 1984). We set out to determine how the cell

rear is actively retracted in mammalian cells moving within the

physiological 3Dmatrix, focusing on the dynamics of the plasma

membrane in this subcellular region.

RESULTS

Rear Retraction in 3D Matrix and Durotaxis Is a Fast

Dynamic Process

Invasive cancer cells moving within fibrillar collagen and fibro-

nectin 3D cell-derived matrix (CDM; Cukierman et al., 2001)

followed the topology of fibrils with defined lamellipodial and

filopodial protrusions at the cell front (Caswell and Zech, 2018;

Paul et al., 2015) (Figures 1A and S1A), similar to that on 2D sub-

strates. The retracting rear region of the cell was rounded and

rapidly translocated with few small retraction fibers, and adhe-

sion complexes or long retraction cables were rarely observed

here (Figures 1A and S1G; Video S1). In the absence of a chemo-

tactic gradient, we hypothesized that the direction of migration

along matrix fibrils could be determined by the physical proper-

ties of the matrix. Indeed, atomic force microscopy (AFM) re-

vealed an increase in matrix rigidity directly in front of moving

cells (Figure 1A), suggesting that strain stiffening of matrix by

moving cells (Van Helvert and Friedl, 2016) could maintain or

generate polarity to guide the direction of cell migration. Local

softening of the matrix with magnetic trypsin-coated beads

(which did not destroy matrix architecture; Figure S1B; Petrie

et al., 2012) established a gradient of rigidity up to 2 mm from

the targeted area (Figure 1B), and within this gradient region,

cells moved toward the stiffer matrix at a similar rate to cells in

untreated matrix (Figure 1B; Video S1). On 2D substrates, cells

responded to a steep gradient of rigidity (>30 kPa/mm; Figure 1C)

bymoving toward the stiffer substrate with a similar rounded and

rapidly moving rear that oriented toward the soft substrate (Fig-

ures 1C and S1C; Video S1). These data indicate that cells in 3D

matrix follow mechanical cues and share morphology with cells

migrating in 2D durotactic gradients.

A Front-Rear Membrane Tension Differential in Fast-

Moving Cells

The analysis of membrane dynamics at the rear of rapidly moving

cells in 3D matrix suggested that over the timescale of rapid

retraction the plasma membrane accumulated, but significant

internalization of labeled membrane was not observed (Figures

S1D and S1E; Video S2). Membrane accumulation could result

in lower plasma membrane tension (Diz-Muñoz et al., 2013),

and we therefore assessed membrane tension by pulling mem-

brane tethers at the cell front and rear (Lieber et al., 2015; Pontes

et al., 2017). Tethers were extracted using an optical trap, and

the restoring force on the trap was used as a readout of effective

membrane tension, which depends on the in-plane tension and

the level of attachment between the membrane and the underly-

ing cytoskeleton (Diz-Muñoz et al., 2013). We found that there

was no significant difference in membrane tension at the cell

front versus the cell rear in cells migrating on uniform stiff sub-

strates or on glass (Figures 1D, 1E, and S1F). However, in duro-

tactic cells migrating toward stiffer substrate in a 2D rigidity

gradient, membrane tension was significantly lower at the cell

rear than the front (Figures 1D, 1E, and S1F), suggesting that dur-

otactic cells show front-rear polarity through the establishment

of a membrane tension differential.

In order to analyze membrane tension in cells within a 3D ma-

trix (and therefore inaccessible via optical trapping), we used

Flipper-TR, a small molecule that intercalates into membranes

and indicates in-plane membrane tension through changes in

fluorescence lifetime of the probe (Colom et al., 2018). Live cells

showed a striking decrease in fluorescence lifetime specifically

at the cell rear (Figure 1F), suggesting that in-plane membrane

tension is significantly lower at the rear of cells moving in a 3D

matrix.

Caveolae Accumulate at the Rear of Fast-Moving Cells

Caveolae are plasma membrane invaginations that can act as a

route for endocytosis, but they also play a mechanoprotective

role by flattening in response to increased membrane tension

(Cheng et al., 2015; Garcia et al., 2017; Lim et al., 2017; Parton

and del Pozo, 2013; Sinha et al., 2011). Caveolin-1 (a major

component of caveolae) and caveolae have previously been

shown to polarize at the rear of migrating endothelial cells, fibro-

blasts, and neurons (Beardsley et al., 2005; Lentini et al., 2008;

Parat et al., 2003), although in metastatic cancer cells, this is

not always observed (Urra et al., 2012). We hypothesized that

caveolae may form as a consequence of the decrease in mem-

brane tension at the cell rear. We observed caveolin-1 localized

to the rear of fast-moving cancer cells in 3D matrix (Figures S1G

and S2A). Cavin-1, a critical structural component of caveolae

(Parton and del Pozo, 2013), was also found to accumulate

around the rear of fast-moving cancer cells in 3D matrix (Figures

2A, S2B, and S2C) and co-localized with caveolin-1 (Figure 2A).

Caveolin-1- and cavin-1-containing structures appeared close

to the plasma membrane around the rear of cells moving in 3D

and on 2D rigidity gradients (Figures 2A–2C and S2D–S2H) and

in cancer cells escaping spheroids in 3D matrix (which share

the elongated morphology of cells moving in 3D CDM; Figures

2D–2F). Fibroblasts (mouse embryonic fibroblasts [MEFs] and

telomerase immortalized fibroblasts [TIFs]) were, on average,

slow-moving, elongated, and poorly polarized in 3D matrix (Fig-

ures S2I–S2K) and were not persistently motile and did not show

a membrane tension differential on 2D rigidity gradients (Fig-

ure S2L). However, a proportion of fibroblasts migrated rapidly

in 3D matrix with similar morphology to cancer cells and showed

cavin-1 accumulation at the cell rear (Figures S2M–S2O;

Video S3).

Cavin-1 also co-localized closely with EHD2 (Figure 2G),

which stabilizes caveolae at the plasma membrane (Hoernke

et al., 2017), suggesting that relatively stable caveolae form at

the rear of fast-moving cells. By correlating light microscopy

with serial block-face scanning electron microscopy (EM), we

observed structures that resembled caveolae where caveolin-1

accumulated at the rear of moving cells but not in other regions

of the cells (e.g., perinuclear mCherry-caveolin-1; Figure S2P;

Video S4). We correlated light microscopy with higher-resolution
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serial transmission EM (sTEM) and acquired stitched high-reso-

lution transmission EM (TEM) images of serial sections (every

100 nm, 65 sections, 6.5 mm) to fully reconstruct migrating cells

at the nanoscale. TEM demonstrated that caveolae were en-

riched at the membrane at the rear of the cells in 3D matrix (Fig-

ure 2H). Segmentation of caveolae and caveolae-associated

Figure 1. Cell Rear Dynamics in Matrix-Directed Cells

(A) A2780 cells in 3D CDM, confocal sections are shown 300 s apart. Dashed yellow line indicates the rearmost part of the cell in frame 1; Top right: Matrix rigidity

immediately in front of and behind cells assessed by AFM,N = 20 cells (3 repeats); bottom right: orientation ofmigration shown by rose plot (N>35 cells, 3 repeats).

(B) Cells imaged as in (A) in gradient softened CDM; top right: rigidity across gradient softened CDM assessed by AFM before seeding cells (N=3; bars = SEM);

bottom right: orientation of migration (locally softened matrix at 0�) shown by rose plot (N>35 cells, 3 repeats).

(C) A2780 cells on 2D FN-coated durotactic gradients imaged as in (A); top right: rigidity of 2D durotactic gradients assessed by AFM (N=3; bars = SEM); bottom

right: orientation of migration with respect to the gradient shown by rose plot (N=58 cells, 3 repeats).

(D) Representative images from optical trap membrane tether experiments; white dotted line indicates separation of images.

(E) Paired trap forcemeasurements at the front and rear of cells on durotactic gradients (left; N=29 cells, 3 repeats); or on uniform stiff gels (right; N=10, 3 repeats).

(F) Left, center: Cells migrating in CDM stained with Flipper-TR membrane tension probe; photon counts per pixel (left) and fluorescent lifetime imaging (FLIM)

lifetime per pixel with a 16-color LUT (center); right: pairwise average Flipper-TR lifetime in manually identified membrane regions at the front and rear of cells

(N=9 cells, 3 repeats; lower lifetime corresponds to lower membrane tension). Yellow arrows indicate direction of movement. *p < 0.05; **p < 0.01; ****p < 0.0001;

ns, not significant. See also Figure S1 and Videos S1 and S2.
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Figure 2. Low Membrane Tension Promotes Caveolae Formation at the Rear of Fast-Moving Cells in 3D and Durotactic Gradients

(A) A2780 cells expressing EGFP-cavin-1 and mCherry-caveolin-1 were imaged as in Figure 1A; pairwise Pearson’s correlation coefficient for co-localization of

EGFP-cavin-1 and mCherry-caveolin-1 in rear compared to peri-nuclear regions (N=28 cells, mean value above).

(legend continued on next page)
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vesicles at the rear of the cell revealed numerous individual

and multilobed structures, and interestingly, many of these

possessed a clear ‘‘neck’’ connected to the plasma membrane

(Ludwig et al., 2013). These data indicate that fast-moving cells

in 3D matrix accumulate caveolae at the rear, which could act

as a membrane reservoir to collect accumulating membrane.

Caveolae Respond to LowMembrane Tension to Format

the Cell Rear

Because caveolae formation is sensitive to membrane tension

(Sinha et al., 2011), we used osmotic shock to acutely manipu-

late membrane tension (Pontes et al., 2017; Sinha et al., 2011).

Introduction of 50% hypo-osmotic medium into the imaging

chamber opposed caveolae formation at the rear of cells in 3D

matrix and in durotactic gradients, while internal mCherry-cav-

eolin-1 in the perinuclear region was relatively unchanged, and

forward movement of the rear was suppressed (Figures 3A,

3B, and S3A–S3C; Video S5). Returning cells to isotonic medium

was sufficient to allow re-establishment of caveolae and rear

retraction (Figures 3A and 3B; Video S5). Live imaging of

mCherry-caveolin-1 in cells transferred from hypo-osmotic to

isotonic medium demonstrated a rapid increase in the average

fluorescence intensity of caveolin-1 structures around the cell

rear concomitant with re-establishment of rear retraction, while

the average intensity of caveolin-1 structures in the rest of the

cell remained relatively constant (Figure 3C). This indicates that

caveolin-1 accumulation at the cell rear does not coincide with

removal of caveolin-1 structures from other regions of the cell;

rather, caveolin-1 accumulation is perhaps consistent with

diffusion in the plasma membrane giving rise to higher average

intensity structures. These data suggest caveolae are dynamic

structures that can form spontaneously in response to lowmem-

brane tension at the rear rather than being trafficked from other

regions of the cell.

In order to locally influence membrane tension in live cells, we

expressed constitutively active (CA) ezrin mutant (ezrin T567D-

GFP; relieves autoinhibition [Gautreau et al., 2000]) to promote

membrane-cortex attachment and increase membrane tension

(Ben-Aissa et al., 2011; Rouven Br€uckner et al., 2015) and took

advantage of the finding that this protein accumulates specif-

ically around the rear of cells in 3D matrix (Figure 3D). CA-ezrin

significantly abrogated the rate of rear retraction, to a greater

extent than wild-type ezrin (Figure 3D) and prevented cavin-1

accumulation at the cell rear (Figure 3E). Furthermore, this

mutant opposed the membrane tension differential observed in

cells moving on 2D durotactic gradients (Figure 3F). Taken

together, these data show that caveolae respond to a local

decrease in membrane tension to form and become stabilized

at the cell rear and promote retraction of the migrating cell rear.

Caveolae Activate RhoA at the Cell Rear to Promote

Retraction

Caveolin-1 has been implicated in the regulation of

RhoGTPases, cell polarity, cell migration, and wound healing in

the mouse dermis (Grande-Garcı́a et al., 2007; Parton and del

Pozo, 2013; del Pozo et al., 2005), but the function of caveolae

at the rear of migrating cells or role in rear retraction is not known.

In 3D matrix, knockdown of caveolin-1 with either of two inde-

pendent siRNAs significantly reduced the speed of migration

over long timelapses and increased cell length (Figures S4A–

S4D). Caveolin-1 knockdown had little impact on the ability of

cells to generate and extend protrusions but reduced the dis-

tance that the cell rear translocated (Figures 4A, S4E, and

S4F), demonstrating a clear retraction defect in 3D migration.

EHD2 knockdown resulted in loss of caveolin-1 localization at

the rear of cells moving in 3Dmatrix (Figure S4G) and decreased

speed ofmigration, and cells were elongated and showed defec-

tive cell rear translocation (Figures S4G–S4H), supporting a role

for caveolae in rear retraction.

Because caveolae have previously been implicated in the

regulation of RhoGTPases (Parton and del Pozo, 2013), we hy-

pothesized that caveolae could play a role in the activation of

RhoA to organize the actin cytoskeleton andmediate rear retrac-

tion. Using a location biosensor to report on active RhoA locali-

zation (GFP-AHPH [Piekny and Glotzer, 2008; Priya et al., 2015]),

we observed a punctate distribution of active RhoA concen-

trated around the retracting rear of cells moving in 3D matrix

and in durotaxis (Figures S4I and S4J). Active RhoA and caveo-

lin-1 co-distributed at the rear of cells moving in 3D matrix and

durotactic gradients (Figures 4B and S4K), and high-resolution

imaging revealed partial co-localization (Figure 4C), suggesting

that caveolae and active RhoA localize in close proximity at the

rear of migrating cells. Next, we used a RhoA fluorescence reso-

nance energy transfer (FRET) biosensor to show that RhoA activ-

ity, as expected, was elevated at the rear of cells migrating in 3D

matrix, but knockdown of caveolin-1 significantly abrogated

RhoA activation at the cell rear (Figure 4D). Increasingmembrane

tension with osmotic shock (which impairs caveolae formation;

Figures 3A–3C) similarly impaired the activation of RhoA (Figures

4E and S4L), suggesting that caveolae sense and respond to low

(B) A2780 cells expressing Lifeact-EGFP andmCherry-caveolin-1 imaged as (A), maximum intensity projection (MIP) shown for whole cell (left), individual Z-slices

for rear regions (right).

(C) Left: A2780 cells expressing mCherry-caveolin-1 seeded onto 2D durotactic gradients and imaged as in (A), yellow line indicates outline of the cell; right:

orientation of caveolae with respect to the gradient shown by rose plot (N=58 cells, 3 repeats).

(D and E) A2780 (D) or N15A (E) cell spheroids within collagen and fibronectin hydrogels stained for F-actin (phalloidin) and Cavin-1. Spheroid edge denoted by

yellow dotted line; inset: higher-resolution image of the highlighted individual invading cells. MIPs of Z-stacks shown.

(F) Pairwise normalized rear and nuclear Cavin-1 intensity in individual invading A2780 and N15 cells (N>8 cells analyzed, 3 repeats).

(G) A2780 cell seeded in 3D CDM and fixed and stained for F-actin, cavin-1, and EHD2; whole cell and separately captured zoomed rear MIPs of confocal

stacks shown.

(H) Serial transmitted electron microscopy (sTEM, 100-nm sections) of A2780 cell expressing mCherry-Caveolin-1 in CDM. Manual segmentation of the nucleus,

the plasma membrane and caveolae are displayed as a 3D model over the entire cell. Both caveolae connected to the plasma membrane (yellow) and caveolae-

associated vesicles (pink) were segmented (segm. + sTEM image). Both structures were merged in yellow in the overall model. An individual sTEM image is

presented. Insets show higher-resolution images ofmultilobed (arrows) or membrane-attached (arrowhead) caveolae (different z-section of the same cells). Scale

bar, 500 nm (inset: 100 nm). ***p < 0.001; ****p < 0.0001. See also Figure S2 and Videos S3 and S4.
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Figure 3. Increasing Membrane Tension Abrogates Rear Caveolae Formation and Forward Translocation

(A) A2780 cell in 3D CDM imaged before and during hypo-osmotic shock and after recovery in isotonic media.

(B) Rear mCherry-caveolin-1 intensity before and during osmotic shock, and after recovery in isotonic medium. N=12 cells, 3 repeats, bars = SEM.

(legend continued on next page)
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membrane tension at the cell rear and activate RhoA in this sub-

cellular region.

RhoA Coordinates Rear Retraction by Organizing

F-Actin at the Cell Rear

RhoA plays a key role in regulating actomyosin contractility and

retraction of the rear in migrating cells in 2D (Ridley et al., 2003),

and we found that RhoA knockdown cells showed a clear defect

in rear retraction in 3D migration (Jacquemet et al., 2013; Fig-

ure S4M). Having identified a rear retraction defect associated

with a caveolae-RhoA pathway, we analyzed how this pathway

influenced the organizationof actin in cellsmigrating in 3D. Knock-

down of caveolin-1 had very little effect on the intensity of F-actin

toward the front of cells moving in 3D matrix, but strikingly

decreased F-actin intensity at the rear (Figure 4F). Similarly,

Y27632, an inhibitor of ROCK and PKN RhoA effector kinases

(Bain et al., 2007), decreased F-actin intensity in the rear portion

of the cell (Figure S4O). Knockdown of RhoA and ROCK1 and

PKN2 (PRK2 but not ROCK2, PKN1, or PKN3) selectively abro-

gated migration speed, F-actin intensity, and organization at the

cell rear (Figures 4G–4J and S4N–S4Q). Strikingly, high-resolution

imaging revealed that F-actin was organized into cables oriented

along the front-rear axis at the cell rear, which were lost upon

ROCK1 and PKN2 depletion (Figures 4H and S4Q). Inhibition of

Rho-effector kinases or knockdown of caveolin-1 significantly

abrogated rear retraction independently but had no additive effect

(Figure 4K), suggesting that caveolin-1 and RhoA effector kinases

form part of the same regulatory pathway. These data indicate

that caveolae activate RhoA-ROCK1 and RhoA-PKN2 signaling

modules which organize F-actin specifically at the cell rear and

promote actin organization and contractility.

Ect2 Is Recruited by Caveolae to Activate RhoA and

Promote Rear Retraction

Caveolae have been linked to RhoA activity, at least in part by

preventing RhoA inactivation by p190RhoGAP (Grande-Garcı́a

et al., 2007). However, guanidine nucleotide exchange factors

(GEFs) that specifically activate RhoA in this context are not

known. By using a GFP-trap and mass spectrometry approach

to identify GFP-RhoA binding proteins, we uncovered six candi-

dates potentially involved in RhoGTPase activation, the GEFs

Ect2, Vav2, ARHGEF2 (GEF-H1), PLEKHG5, DOCK1, and its

co-factor ELMO2 (Figure S5A; data not shown). Knockdown of

these candidates revealed that Ect2, Vav2, ARHGEF2, and

PLEKHG5 played a role in motility in 3D matrix (Figures S5A–

S5C). While knockdown of Ect2 and PLEKHG5 resulted in an

elongatedmorphology consistent with a defect in retraction (Fig-

ures S5B–S5D), knockdown of Ect2 alone caused a clear defect

in rear retraction in cells moving on 3D matrix (Figure 5A).

Moreover, knockdown of Ect2, but not Vav2 or PLEKHG5, signif-

icantly reduced the activation of RhoA at the rear of cells moving

in 3D matrix (Figure 5B), suggesting that Ect2 acts as the main

GEF that activates RhoA to mediate rear retraction.

Ect2 is targeted to the membrane after nuclear envelope

breakdown to activate RhoA and execute cytokinesis (Kotýn-

ková et al., 2016; Matthews et al., 2012; Su et al., 2011), and

although it is localized predominantly to the nucleus in inter-

phase cells, Ect2 activates RhoA at cell-cell junctions to promote

their stability (Priya et al., 2015; Ratheesh et al., 2012). In fast-

moving cells in 3D matrix, Ect2 was nucleocytoplasmic and

accumulated at the cell rear where it co-localized with cavin-1

(Figure 5C). Knockdown of caveolin-1, however, suppressed

the accumulation of Ect2 at the cell rear without markedly

influencing the nucleocytoplasmic balance (Figure 5D). This

suggests that Ect2 is specifically recruited to the cell rear by

caveolae to activate RhoA and promote rear retraction.

Computational Models Describe Persistent Movement

in Mechanically Guided Cell Migration

In order to gain further insight into the dynamic signaling andme-

chanical events leading to rear retraction of cells within durotac-

tic gradients and upon strain stiffening of 3D-ECM, we built a

mathematical model based on ordinary differential equations

to describe the mechanochemical signaling that controls rear

retraction (reactions/nodes and parameters described in

STAR Methods). Because we observe caveolae formation in

durotactic migration, polarized substrate stiffness is the only

external input, transduced from cell-matrix adhesion complexes

at the cell front to initiate forward translocation of the cell and

establish a front-rear membrane tension differential (Figures 6A

and 6B). Our model recapitulates signaling occurring at the cell

rear in response to mechanical inputs, leading to F-actin organi-

zation and phosphorylation of MLC via ROCK1/PKN2 (Figures

6A and 6B). We explicitly modeled initial polarized substrate stiff-

ness (set to 100%) to mimic the strain-stiffened state of matrix in

front of cells moving in 3D matrix and the substrate encountered

by cells on 2D rigidity gradients, while all other initial (non-inhib-

itory) variables were set as zero. Simulations of this non-homog-

enous modeled domain showed the output ‘‘rear retraction’’

(conceptualized as directional rear movement, such that a high

value corresponds to persistent, fast movement, and a low value

corresponds to slow migration and/or random, non-persistent

directionality) to rapidly increase to a high steady state, while

without the external polarized substrate input (uniform

throughout), rear retraction levels were negligible (Figure 6C).

Sensitivity analysis (Figure S6A) revealed critical model parame-

ters, and halving or doubling critical parameters had little effect

on modeled outputs (Figure S6B), suggesting that the model

(C) Top left: cells as in (A) imaged every 30 s immediately after media change; top right: average normalized mCherry-caveolin-1 intensity in 10% rear mask

(white inset in images) and rest of cell regions over time following osmotic to isotonic switch (N=17 cells, 3 repeats, bars = SEM, fitted quadratic curves showed in

red and blue); bottom: montage of zoomed, 90� rotated rear region (highlighted by yellow box) imaged every 30 s post- osmotic-isotonic switch showing

mCherry-caveolin-1 accumulation.

(D) Left: A2780 cell in CDM expressing GFP-membrane (left), Ezrin wild type (WT, center) or Ezrin constitutively active (CA, right); center: pairwise normalized peak

Ezrin intensity within front and rear regions (N>32 cells/condition, 3 repeats); right: average rear forward movement over 5 min (N > 39, 3 repeats).

(E) Left: cells in CDM stained for F-actin (phalloidin) and caveolin-1, MIPs shown; center: rear/nuclear peak caveolin-1 intensity ratio (N>11 cells/condition, 3

repeats); right: paired trap force measurements at the front and rear of cells expressing CFP Ezrin-CA on durotactic gradients (N=10 cells, 3 repeats).

**p < 0.01; ****p < 0.0001; ns, not significant. See also Figure S3 and Video S5.
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Figure 4. Caveolae Activate RhoA at the Cell Rear to Control Contractility and F-actin Architecture

(A) Lifeact-mRFP expressing, control or caveolin-1 knockdown A2780 cells in 3D CDM and forward movement of cells over 5 min (N>74 cells/condition, 3 repeats).

(B) GFP-AHPH expressing A2780 cells seeded in CDM, stained for endogenous caveolin-1, MIP shown.

(legend continued on next page)
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and its overall network topology was robust. Interestingly, simu-

lation of a transition from polarized to uniform substrate indi-

cated that the rear retraction output was near identical to within

a gradient, while transition from uniform to polarized substrate

simulations indicate that the rear would begin retracting accord-

ingly after the transition (Figure 6C). This suggests that once a

rear begins to rapidly retract, it can continue to do so indepen-

dently of the external polarization conditions. This may reflect

the ability of cells to move persistently in the disordered 3D

matrix and suggests that rear retraction could act as a directional

memory to conserve persistent migration in complex matrix.

Simulations of this model were in close agreement with our

experimental findings: independent depletion of caveolae

(knockdown of caveolin-1 and EHD2) or RhoA severely reduced

F-actin alignment and rear retraction ‘‘speed’’ (Figure 6D)

in silico. We could also mimic the reversible osmotic shock pro-

tocol, whereby increasing the transition from low to high mem-

brane tension reduced caveolae formation and halted rear

retraction, while returning the membrane tension to a decreased

state rapidly restored rear caveolae accumulation and efficient

retraction (Figure 6E). This gave confidence in the topology

and structure of our model and suggested that it could serve

as a predictive tool.

Positive Feedback Reinforcement of RhoA-Mediated

Contractility

We theorized that a gradient of stiffness, transduced by actomy-

osin contractility from integrin adhesion complexes, would

decrease rear membrane tension and promote formation of

caveolae. Because caveolae formation at the cell rear promotes

RhoA activation, we predicted a positive feedback loop between

RhoA-mediated contractility within the rear domain and caveo-

lae formation via a further decrease in membrane tension (Fig-

ures 6A and 6B). Simulations showed that this feedback loop

was a plausible feature of the model and predicted that it could

be broken (and caveolae formation arrested) by inhibition of Rho-

effector kinases (simulated as an increase in both ROCK1 and

PKN2 inactivation rates, in silico Y27632 treatment; Figure 6F).

Similarly, increasing F-actin turnover, either globally or locally,

was predicted to prevent further formation of caveolae and to

halt forward movement of the rear (Figures 6G and 6H).

In order to experimentally verify positive feedback between

RhoA signaling and caveolae formation, we first inhibited Rho-

effector kinases. mCherry-caveolin-1 was rapidly redistributed

from the rear of cells migrating in 3D matrix within 10 min

(Figures 7A and 7B; Video S6), suggesting that signaling down-

stream of RhoA through ROCK1/PKN2 is required to maintain

positive feedback. Similarly, RhoA knockdown cells failed to re-

cruit mCherry-caveolin-1 to the cell rear in 3D matrix (Fig-

ure S7A–S7B). Knockdown of Ect2, RhoA, or ROCK1 sup-

pressed the recruitment of endogenous caveolin-1/cavin-1 to

the cell rear in 3D matrix (Figures 7C–7E, S7C, and S7D), indi-

cating that RhoA signaling is required to form caveolae at the re-

tracting rear. Furthermore, membrane tension at the rear of cells

moving in 3D matrix was increased by inhibition of Rho-effector

kinases (Figure 7G), suggesting that maintenance of low mem-

brane tension requires the RhoA signaling cascade.

Cytochalasin D (CytoD), an agent that can both inhibit actin

polymerization and promote depolymerization (Casella et al.,

1981), was found to disrupt F-actin and rear caveolae in cells

in 3D matrix (Figure S7E). In order to more locally influence

F-actin turnover, we used a caged form of CytoD (Nvoc-CytoD

[Latorre et al., 2018]; Figure S7F) and analyzed the effect of acute

intervention on the formation of caveolae at the rear of cells

actively migrating in 3D matrix. Initiating uncaging to release

the active compound led to a reduction in F-actin intensity at

the rear and the concomitant redistribution of mCherry-caveo-

lin-1 (Figures 7H and S7G; Video S7). These data confirm that

rear retraction is a dynamic process underpinned by a positive

feedback loop centered on the formation of caveolae to amplify

RhoA activity at the rear of migrating cells and effect rear

retraction.

DISCUSSION

Rear retraction in migrating cells requires RhoA-mediated

signaling to the contractile actin cytoskeleton (Ridley et al.,

2003). Our study reveals how membrane tension acts as a key

mechanical feature of cells moving in gradients of rigidity, to

allow formation of caveolae, which in turn recruit Ect2 to coordi-

nate activation of RhoA and the contractile cytoskeleton.

In 2D migration, some mechanistic detail has emerged

revealing how RhoA is regulated and how NMII isoforms orga-

nize front-rear polarity (Raab et al., 2012; Sastry et al., 2006;

Vicente-Manzanares et al., 2009). RhoA activity has also been

implicated in driving rearward cortical actin and membrane

flow to control the migration of amoeboid cells that lack strong

cell-matrix interactions (Neill et al., 2018; Paluch et al., 2016).

Our data demonstrate that in 3D matrix, rapid retraction is medi-

ated by caveolae, which promote contractility signaling by

(C) Cell as in (B) imaged at a high resolution, Pearson correlation 0.52; Spearman’s rank 0.65.

(D) Ratiometric FRET imaging of control or caveolin-1 knockdown A2780 cells expressing Raichu-RhoA in CDM. Average rear RhoA FRET ratio in control/

caveolin-1 knockdown cells (N>36 cells/condition, 3 repeats).

(E) Average rear RhoA FRET ratio of in isotonic versus osmotic shock (N>27 cells/condition, 3 repeats).

(F) Control or caveolin-1 knockdown A2780 cells in CDM, fixed and stained with SiR-actin (MIPs shown); ratio of F-actin intensity of the rear to front of cell

(N>17 cells/condition, 3 repeats).

(G) Control or RhoA knockdown A2780 cells in CDM as in (F).

(H) Control, ROCK1, or ROCK2 knockdown cells in CDM as in (F).

(I) Rear actin intensity of control and RhoA knockdown cells (N=10 cells/condition, 3 repeats).

(J) Rear actin intensity of control, ROCK1, and ROCK2 knockdown cells (N>17 cells/condition, 3 repeats).

(K) Left: Control (left) and caveolin-1 knockdown (right) Emerald-Lifeact expressing A2780 cells seeded in CDM imaged prior to (top) and post- (bottom) treatment

with H1152; right: Rear movement of control and caveolin-1 knockdown cells over 5 min pre- and post-H1152 treatment (N=21 cells/condition, 3 repeats).

***p < 0.001; ****p < 0.0001. See also Figure S4.
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Figure 5. Ect2 Is Recruited by Caveolae to Activate RhoA

(A) Control (left) and Ect2 knockdown (center) A2780 cells expressing membrane-targeted Raichu-RhoA in 3D CDM; right: average forward rear movement over

5 min of control, Ect2, Vav2, and PLEKHG5 knockdown cells (N>46 cells/condition, 3 repeats).

(legend continued on next page)
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recruiting the RhoAGEF Ect2 to activate RhoA and its effectors

ROCK1 and PKN2. Positive feedback can then be established

by actomyosin contractility to promote further reduction in mem-

brane tension, caveolae formation, and hyperactivation of RhoA.

This mechanism explains rapid retraction of the migrating cell

rear, allowing single cells to move fast and persistently in 3D

matrix and on gradients of rigidity.

Cells in 3D matrix can strain stiffen their local environment

(Van Helvert and Friedl, 2016) to create or amplify any differ-

ences in rigidity that might exist. A gradient of rigidity could

generate a membrane tension differential through adhesion

complexes at the front of polarized cells, which would

encounter higher resistive force resulting in net forward move-

ment of the contractile actin cytoskeleton and lower membrane

tension where membrane-cortex interactions are weakened.

Using Flipper-TR, we show that the in-plane membrane tension

is reduced at the rear of cells moving in 3D (Figure 1F). Optical-

trap-based tether pulling shows a very similar trend in cells

on 2D rigidity gradients, where this approach measures

the product of both in-plane membrane tension and mem-

brane-cytoskeleton connections. Interestingly, increasing

membrane-cytoskeleton attachments using CA-ezrin has a

significant effect on caveolae recruitment and rear retraction

(Figure 2D and 2E). This suggests that in the context of caveo-

lae formation, the in-plane membrane tension and membrane-

cytoskeletal linkage could be linked.

While caveolae have been shown to localize to the cell rear in

2D (Beardsley et al., 2005; Lentini et al., 2008; Parat et al., 2003;

Parton and del Pozo, 2013; Urra et al., 2012), their function there

has been poorly understood. Our data demonstrate that

caveolae act to recruit a RhoA GEF, Ect2, which activates

RhoA to coordinate the retraction phase of migration. Polariza-

tion of membrane tension (and caveolae) is less apparent on

uniformly stiff substrates, but it is possible that caveolae play a

similar regulatory role in some cell types during the retraction

phase of the migration cycle on these surfaces.

Caveolae are known to function as endocytic carriers (Parton

and del Pozo, 2013), but in our study, the role of caveolae ap-

pears to be related to their described capacity (Parton and

del Pozo, 2013) to form where the plasma membrane is under

low tension. Indeed, acute temporal or spatial manipulation of

membrane tension (using osmotic shock or rear-localized

CA-ezrin) abrogates caveolae formation and rear retraction

(Figure 3). sTEM demonstrated the accumulation of caveolae

around the retracting rear membrane, including multilobed

structures and caveolae with clear membrane-associated

neck structures (Figure 2H). In support of this EHD2, which sta-

bilizes the neck of caveolae, is required for rear retraction and

localizes to caveolae at the cell rear (Figures 2G and S4G).

However, in our sTEM images, many caveolae are present

close to the retracting rear plasma membrane with no apparent

neck (Figure 2H), and it is not clear whether this is a limitation of

the z-sectioning approach, or if these represent internal

caveolae structures. Given that some caveolin-1 puncta appear

to internalize after breaking the positive feedback loop that

establishes rapid retraction (Figure 7), it remains possible that

caveolae internalization can occur from the cell rear and could

act as an important step particularly when migrating cells

change direction or arrest.

Caveolin-1 has been shown to promote RhoA activity by

suppressing Src and the RhoA inactivator p190RhoGAP

(Grande-Garcı́a et al., 2007) and is implicated in the generation

of actomyosin contractility in cancer-associated fibroblasts,

activating RhoA to promote reorganization of stromal matrix

(Goetz et al., 2011). In addition, it is now clear that caveolae

play a role in protecting against mechanical strain in numerous

cell systems by buffering against increasing membrane tension

(Cheng et al., 2015; Lim et al., 2017; Parton and del Pozo,

2013; Sinha et al., 2011). Our study extends these findings, sug-

gesting that when cells generate directional traction force in a

durotactic gradient, contractility within the actin cytoskeleton

along the front-rear axis transmits a signal through decreased

rear membrane tension that is sensed by caveolae to promote

RhoA activation via Ect2, which could itself be directed to the

membrane by interaction with lipids, as is the case prior to cyto-

kinesis (Kotýnková et al., 2016; Su et al., 2011).

Downstream of RhoA, the effector kinases ROCK1 and PKN2

each play key roles in actin organization and rear retraction (Fig-

ures 4 and S4). A specific requirement for PKN2 in cell migration

has previously been shown in cancer cells and in vivo (Lachmann

et al., 2011; Quétier et al., 2016), suggesting that RhoA effector

kinases synergize to control F-actin organization and contrac-

tility in rear retraction. Surprisingly, the effects of caveolae

disruption and RhoA signaling intervention are confined to a

large region at the back of migrating cells, suggesting that this

signal-regulating F-actin is compartmentalized to the cell rear.

The nucleus is limiting in migration through complex environ-

ments and can even rupture under force exerted on it (Denais

et al., 2016; Irianto et al., 2017; Raab et al., 2016; Wolf et al.,

2013), and it is therefore possible that this large organelle acts

to partition cytoskeletal regulation.

Cell migration is a widely studied phenomenon in 2D yet still is

relatively poorly characterized in more physiological 3D environ-

ments such as the interstitial matrix encountered by metastatic

cancer cells and fibroblasts in wounding (Caswell and Zech,

2018). Here, we have identified a mechanism that controls the

least well-understood phase of the migration cycle, rear retrac-

tion. By establishing a positive feedback loop resulting in hyper-

activation of RhoA, membrane tension could act as amechanical

signal that allows cells to move rapidly with high directional

persistence into fibrotic areas (e.g., wounds) or promote cancer

invasion.

(B) Ratiometric FRET imaging of control, Ect2, Vav2, and PLEKHG5 knockdown cells; average rear RhoA FRET ratio in control, Ect2, Vav2, and PLEKHG5

knockdown cells (N>32 cells/condition, 3 repeats).

(C) Endogenous Ect2 and cavin-1 in A2780 cells in 3D-CDM;MIPs of whole cell and separately captured zoomed rear region. Right: peak Ect2 staining intensity in

rear, nuclear, and front regions (N=17 cells, 3 repeats).

(D) Control (left) and caveolin-1 knockdown cells (right) in CDM stained for F-actin (phalloidin) and Ect2, MIPs shown; Rear peak/front peak Ect2 intensity levels

(N>20 cells/condition, 3 repeats).

***p < 0.001; ****p < 0.0001; ns, not significant. See also Figure S5.
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Figure 6. Mathematical Modeling Implicates a Positive-Feedback-Based Mechanism of Rear Retraction

(A) Schematic summary of key rear retraction events for migrating cells in 3D or durotaxis.

(B)Wiring diagram ofmechanochemical signaling interactions that lead to coordinated retraction, uponwhich the ordinary differential equations (ODE) model and

simulations are based.

(C) Simulations output of rear recoil speed (% activity) against time with polarized substrate stiffness remaining at 100% (red) or at 0% throughout the time course

(yellow), or transitioning from 100% to 0% (gradient to uniform, blue, hidden by red line) or 0% to 100% (uniform to gradient, green) at time t = 4,000 s.

(D) Simulation outputs for rear recoil speed and F-actin alignment for unperturbed, RhoA, and caveolae knockdown initial conditions.

(E) Simulation of reversible osmotic shock, where membrane tension is increased at t = 4,000 s and returned to basal level at t = 7,000 s; rear recoil speed and

caveolae formation shown.

(F) Predictive simulation of Y-27632 treatment effect on caveolae dynamics and rear recoil speed, where at t = 5,000 s ROCK1/PKN-2 inactivation rates are greatly

increased.

(G) Predictive simulation of ‘‘global’’ cytochalasin-D treatment on caveolae dynamics/rear recoil speed, where at t = 5,000 s, F-actin turnover rate is greatly increased.

(H) As in G but for ‘‘local’’ cytochalasin-D, where at t = 5,000 s, F-actin turnover rate is moderately increased.

See also Figure S6.
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Figure 7. F-Actin Stability and Contractility Maintain Caveolar Rear Localization in Migrating cells

(A) mCherry-caveolin-1 expressing A2780 cells in 3D CDM imaged before (left panels) and after treatment with Y27632.

(B) Rear caveolin-1 intensity of cells as in (A) (N=23 cells, 3 repeats).

(legend continued on next page)
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J.G.G.), and we are grateful to Luc Mercier for help with the CLEM approach

and Cathy Royer (INCI, Strasbourg) for access to TEM.

AUTHOR CONTRIBUTIONS

Conceptualization, J.H.R.H., H.d.B., A.C., N.G., C.L., J.G.G., E.K.P., J.-M.S.,

and P.T.C.; Methodology, J.H.R.H., H.d.B., I.B., T.W., R.V.N., O.D., J.S.,

A.d.C., T.S., T.Z., J.G.G., E.K.P., J.-M.S., and P.T.C.; Validation, J.H.R.H.,

H.d.B., I.B., T.W., V.S., T.S., J.G.G., and P.T.C.; Formal Analysis, J.H.R.H.,

H.d.B., I.B., T.W., V.S., T.S., and P.T.C.; Investigation, J.H.R.H., H.d.B., I.B.,

T.W., V.S., T.S., and P.T.C.; Resources, J.H.R.H., H.d.B., I.B., T.W., A.C.,

R.V.N., C.L., A.d.C., T.S., T.Z., J.G.G., E.W.K., and P.T.C.; Data Curation,

J.H.R.H., H.d.B., T.S., J.G.G., E.K.P., and P.T.C.; Writing, all authors; Visuali-

zation, J.H.R.H., H.d.B., I.B., V.S., T.S., J.G.G., and P.T.C.; Supervision:

J.H.R.H., J.G.G., E.K.P., J.-M.S., and P.T.C.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: September 5, 2018

Revised: July 2, 2019

Accepted: September 10, 2019

Published: October 10, 2019

REFERENCES

Bain, J., Plater, L., Elliott, M., Shpiro, N., Hastie, C.J., Mclauchlan, H.,

Klevernic, I., Arthur, J.S.C., Alessi, D.R., and Cohen, P. (2007). The selectivity

of protein kinase inhibitors: a further update. Biochem. J. 408, 297–315.

Beardsley, A., Fang, K., Mertz, H., Castranova, V., Friend, S., and Liu, J. (2005).

Loss of caveolin-1 polarity impedes endothelial cell polarization and direc-

tional movement. J. Biol. Chem. 280, 3541–3547.

Ben-Aissa, K., Liu, Y., Park, C., Patino-Lopez, G., Shaw, S., Hao, J.-J., von

Andrian, U.H., Nambiar, R., Belkina, N.V., Qi, H., et al. (2011). Constitutively

active ezrin increasesmembrane tension, slowsmigration, and impedes endo-

thelial transmigration of lymphocytes in vivo in mice. Blood 119, 445–453.

Breitsprecher, D., and Goode, B.L. (2013). Formins at a glance. J. Cell Sci.

126, 1–7.

Bretscher, M.S. (1984). Endocytosis: relation to capping and cell locomotion.

Science 224, 681–686.

Cardona, A., Saalfeld, S., Schindelin, J., Arganda-Carreras, I., Preibisch, S.,

Longair, M., Tomancak, P., Hartenstein, V., and Douglas, R.J. (2012).

TrakEM2 software for neural circuit reconstruction. PLoS One 7, e38011.

Carlier, M.F., Laurent, V., Santolini, J., Melki, R., Didry, D., Xia, G.X., Hong, Y.,

Chua, N.H., and Pantaloni, D. (1997). Actin depolymerizing factor (ADF/cofilin)

enhances the rate of filament turnover: implication in actin-based motility.

J. Cell Biol. 136, 1307–1322.

(C) Endogenous cavin-1 and F-actin in control or ROCK1 knockdown cells in CDM, MIPs shown.

(D) Line profiles of cavin-1 intensity across the rear portion of cells as in (C) (N>20 cells/condition, 3 repeats, bars = SEM).

(E) Distance of peak cavin-1 intensity from the rear of cells as in (C) (N>20 cells/condition, 3 repeats).

(F) Endogenous cavin-1 and F-actin in control or Ect2 knockdown cells in CDM, MIPs shown.

(G) A2780 cell in CDM stained with Flipper-TR as in Figure 1F, pre- and 30min post-Y27632 treatment. Top shows photon counts per pixel, bottom shows lifetime

per pixel; right: unpaired (top) and pairwise (bottom) average rear—front Flipper-TR lifetime difference pre- and post-Y27632 treatment (N>9 cells/condition,

3 repeats).

(H) A2780 cells in CDM imaged in the presence of caged-CytoD before and after uncaging of a specific region behind the cell rear (indicated by yellow box).

Rear caveolin-1 intensity in cells before and 10 min after uncaging (N>30 cells/condition, 3 repeats).

**p < 0.01; ***p < 0.001; ****p < 0.0001. See also Figure S7 and Videos S6 and S7.

Developmental Cell 51, 460–475, November 18, 2019 473

https://doi.org/10.1016/j.devcel.2019.09.006
https://doi.org/10.1016/j.devcel.2019.09.006
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref1
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref1
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref1
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref2
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref2
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref2
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref3
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref3
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref3
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref3
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref4
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref4
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref5
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref5
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref6
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref6
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref6
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref7
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref7
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref7
http://refhub.elsevier.com/S1534-5807(19)30735-X/sref7


Casella, J.F., Flanagan, M.D., and Lin, S. (1981). Cytochalasin D inhibits actin

polymerization and induces depolymerization of actin filaments formed during

platelet shape change. Nature 293, 302–305.

Caswell, P.T., Spence, H.J., Parsons, M., White, D.P., Clark, K., Cheng, K.W.,

Mills, G.B., Humphries, M.J., Messent, A.J., Anderson, K.I., et al. (2007).

Rab25 associates with alpha5beta1 integrin to promote invasive migration in

3D microenvironments. Dev. Cell 13, 496–510.

Caswell, P.T., and Zech, T. (2018). Actin-based cell protrusion in a 3D matrix.

Trends Cell Biol. 28, 823–834.

Cheng, J.P.X., Mendoza-Topaz, C., Howard, G., Chadwick, J., Shvets, E.,

Cowburn, A.S., Dunmore, B.J., Crosby, A., Morrell, N.W., and Nichols, B.J.

(2015). Caveolae protect endothelial cells from membrane rupture during

increased cardiac output. J. Cell Biol. 211, 53–61.

Colom, A., Derivery, E., Soleimanpour, S., Tomba, C., Molin, M.D., Sakai, N.,
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse anti-Fibronectin Abcam Cat#ab6328; RRID: AB_305428

Rabbit anti-Caveolin-1 BD Biosciences Cat# 610060

Mouse anti-EHD2 Santa Cruz Biotechnology Cat# sc-100724; RRID:AB_2246399

Goat anti-EHD2 Abcam Cat# ab23935; RRID:AB_2097328

Rabbit anti-PTRF Abcam Cat# ab48824; RRID:AB_882224

Rabbit anti-RhoA Santa Cruz Biotechnology Cat# sc-179, RRID:AB_632346

Rabbit anti-ROCK1 Cell Signalling Cat# 4035; RRID:AB_2238679

Rabbit anti-ROCK2 Cell Signalling Cat# 9029; RRID:AB_11127802

Mouse anti-Ect2 Santa Cruz Biotechnology (for IF) Cat# sc-514750

Rabbit anti-Ect2 Gift from Dr M. Petronczki (for WB) Su et al., 2011

Rabbit anti-Vav2 Abcam Cat# ab52640; RRID:AB_2241456

Rabbit anti-ARHGEF2 GeneTex Cat# GTX125893; RRID:AB_11177391

Mouse anti-PLEKHG5 Novus Biologicals Cat# H00057449-M01; RRID:AB_2166792

Rabbit anti-DOCK1 ProteinTech Cat# 20244-1-AP; RRID:AB_10665358

Goat anti-ELMO2 Abcam Cat# ab2240; RRID:AB_2099432

Mouse anti-Tubulin Abcam Cat# ab7291; RRID:AB_2241126

Mouse anti-Akt-2 Santa Cruz Biotechnology Cat# sc-5270; RRID:AB_626659

Rabbit anti-Erk Santa Cruz Biotechnology Cat# sc-154; RRID: AB_2141292

Chemicals, Peptides, and Recombinant Proteins

Y-27632 2HCl AdooQ Bioscience Cat #: A11001

H-1152 Tocris Cat #: 2412

Cytochalasin-D Sigma Aldrich Cat#: C8273

Caged Cytochalasin-D Latorre et al., 2018 N/A

Deposited Data

ODE model ‘Hetmanski 2019 cell rear’ BioModels (La Novere et al., 2006) ebi.ac.uk/biomodels/MODEL1908290001

Experimental Models: Cell Lines

Human: A2780 ovarian cancer cell line Gift from Prof. Gordon Mills Caswell et al., 2007

Human: H1299 lung cancer cell line ATCC CRL-5803

Human: N15A Pseudomyxoma

peritonei (PMP)

Gift from Prof. A Renehan Roberts et al., 2015

Mouse: Embryonic fibroblasts (MEFs) Gift from Dr M. Bass N/A

Rat: Telomerase immortalized

fibroblasts (TIFs)

Gift from Prof. Tom Curran Caswell et al., 2007

Oligonucleotides

Cav-1 - individual Hs_CAV1_9 FlexiTube

50 AAGCATCAACTTGCAGAAAGA

Qiagen Cat# SI00299635

Cav-1 - individual Hs_CAV1_10 FlexiTube

50 AAGCAAGTGTACGACGCGCAC

Qiagen Cat# SI00299642

EHD2 - pooled FlexiTube GeneSolution Qiagen GS30846

RhoA - 50 ATGGAAAGCAGGTAGAGTT Eurofins Custom (Jacquemet et al., 2013)

ROCK1 - Silencer Select Pre-Designed

50 -GCTTGTAGGTGATACACCTTT

Life Technologies ID# s12099

ROCK2 - Silencer Select Pre-Designed

50-GAGATTACCTTACGGAAAATT

Life Technologies ID# s18162

(Continued on next page)
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact,

Patrick Caswell (patrick.caswell@manchester.ac.uk).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Cell Culture and Transient Transfection

A2780 human ovarian cancer cells (female) were maintained in RPMI-1640 medium (Sigma-Aldrich) supplemented with 10% (v/v)

fetal calf serum, 1% (v/v) L-Glutamine and (v/v) 1% Antibiotic-antimycotic (both Sigma-Aldrich); telomerase-immortalized fibroblasts

(TIF) cells, mouse-embryonic fibroblasts (MEF) cells and H1299 human lung cancer cells(male) were maintained in Dulbecco’s modi-

fied Eagle’s medium (DMEM, Sigma-Aldrich) containing L-Glutamine and supplemented with 10% (v/v) fetal calf serum, and (v/v) 1%

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

PKN1 - SMARTpool siRNA Dharmacon Cat# L-004175-00-0005

PKN2- SMARTpool siRNA Dharmacon Cat# L-004612-00-0005

PKN3 - SMARTpool siRNA Dharmacon Cat# L-004647-00-0005

PKN-2 - individual siRNA 50 GGAGC

GCTCTGATGGACA

Eurofins Custom

Ect2 - individual Hs_Ect2_5 FlexiTube

50 TTGCCTAGAGATAGCAAGAAA

Qiagen Cat# SI02643067

Ect2 - individual Hs_Ect2_7 FlexiTube

50 GTCGCCCGTTGTATTGTACAA

Qiagen Cat# SI03106390

Ect2 - pooled FlexiTube GeneSolution Qiagen GS1894

Vav2 - pooled FlexiTube GeneSolution Qiagen GS7410

PLEKHG5 - pooled FlexiTube GeneSolution Qiagen GS57449

DOCK1 - pooled FlexiTube GeneSolution Qiagen GS1793

ELMO2 - pooled FlexiTube GeneSolution Qiagen GS63916

ARHGEF2 - SMARTpool: ON-TARGET

plus ARHGEF2 siRNA

Dharmacon Cat# J-00983-07-0005

Recombinant DNA

Plasmid: FRET biosensor

Raichu-1237X RhoA

Gift from Prof M. Matsuda;

Yoshizaki et al., 2003

N/A

Plasmid: mCherry-Caveolin-1 Gift from Dr M. Bass N/A

Plasmid: GFP-AHPH Anillin Gift from Prof A. Yap; Priya et al., 2015 N/A

Plasmid: Emerald-Lifeact Gift from Dr C. Ballestrem N/A

Plasmid: farnesylGFP (GFP-membrane) Gift from Prof J. Norman N/A

Plasmid: GFP-Paxillin Gift from Prof M. Humphries N/A

Plasmid: GFP-Ezrin wild type (WT) Gautreau et al., 2000 N/A

Plasmid: GFP-Ezrin constitutively

active (CA)

Gautreau et al., 2000 N/A

Software and Algorithms

FIJI v1.51 ImageJ fiji.sc/

Copasi 4.15 Hoops et al., 2006 copasi.org/

Matlab R2017a Mathworks mathworks.com/products/matlab

AtomicJ Hermanowicz et al., 2014 sourceforge.net/projects/jrobust/

Prism 7.03 GraphPad graphpad.com/scientific-software/prism/

Other

Mag-Trypsin beads TaKaRa Cat# 635646

Flipper-TR Spirochrome Cat# SC020; Colom et al., 2016

SIR-Actin Spirochrome Cat# SC001

Alexa Fluor 488 Phalloidin Invitrogen Cat# A12379

Developmental Cell 51, 460–475.e1–e10, November 18, 2019 e2

mailto:patrick.caswell@manchester.ac.uk
http://fiji.sc/
http://copasi.org/
http://mathworks.com/products/matlab
http://sourceforge.net/projects/jrobust/
http://graphpad.com/scientific-software/prism/


Antibiotic-antimycotic (Sigma Aldrich); and N15A(Roberts et al., 2015) Pseudomyxoma peritonei (PMP) cells were maintained in Dul-

becco’s modified Eagle’s medium (DMEM) (Sigma Aldrich) supplemented with 10% FCS, 25 mM HEPES, 5 mg/ml Insulin, 10 mM

L-Glutamine and (v/v) 1% Antibiotic-antimycotic (Sigma Aldrich). All cell lines were incubated at 37 �C in a humidified 5% (v/v)

CO2 atmosphere. All siRNAs and fluorescent constructs were transiently transfected by electroporation using a nucleofector

(Amaxa, Lonza) using solution T, program A-23, 3ug DNA / 5ml 20 mM siRNA as per the manufacturer’s instructions. Experiments

were performed �24 h after nucleofection unless otherwise stated.

METHODS DETAILS

Reagents Usage Conditions

ROCK/PKN inhibitor Y-27632 (Ishizaki et al., 2000) was used at 10 mM; ROCK inhibitor H-1152was used at 2 mM; actin polymerization

inhibitor Cytochalasin-D (Sigma) was used at 2 mM; caged Cytochalasin-D (Latorre et al., 2018) was used at 50 mMas outlined below.

siRNAs were as follows: Cav-1 – individual Hs_CAV1_9 FlexiTube 50 AAGCATCAACTTGCAGAAAGA (Qiagen) and Hs_CAV1_10

FlexiTube 50 AAGCAAGTGTACGACGCGCAC (Qiagen) (referred to as Cav-1 siRNA-A and Cav-1 siRNA-B respectively here, all

Cav-1 knockdown experiments were performed with each individual siRNA at separate times in comparison with separate control

siRNAs); EHD2 – pooled FlexiTube GeneSolution (Qiagen); RhoA – 50 ATGGAAAGCAGGTAGAGTT (Eurofins); ROCK1 – Silencer

Select Pre-Designed (Life Technologies, 50 -GCTTGTAGGTGATACACCTTT); ROCK2 – Silencer Select Pre-Designed (Life Technol-

ogies, 50-GAGATTACCTTACGGAAAATT); PKN1-3- SMARTpool siRNA (Dharmacon); PKN-2 – individual 50 GGAGCGCTCTGAT

GGACA (Eurofins); Ect2 – individual Hs_Ect2_5 FlexiTube 50 TTGCCTAGAGATAGCAAGAAA and Hs_Ect2_7 FlexiTube 50

GTCGCCCGTTGTATTGTACAA; Ect2, Vav2, PLEKHG5, DOCK1, ELMO2 – all pooled Flexitube GeneSolution (Qiagen); ARHGEF2

- SMARTpool: ON-TARGET plus ARHGEF2 siRNA. Sufficient knockdown was achieved with a single transfection after 24h for

Cav-1-A; after 72h for ROCK1 and ROCK2; and double transfection after 2x24h for Cav-1-B, RhoA, EHD2, Ect2-A, Ect2-B, Ect2

(pool), Vav2, PLEKHG5, DOCK1, ELMO2 and ARHGEF2. FRET biosensor Raichu-1237X (Yoshizaki et al., 2003) RhoAwas kindly pro-

vided by Prof. M. Matsuda; mCherry-Caveolin-1 construct (Hayer et al., 2010) was kindly provided by Dr M. Bass; the GFP-AHPH

Anillin construct (Priya et al., 2015) kindly provided by Prof. A. Yap; Emerald-Lifeact construct was kindly provided by Dr C. Balles-

trem; farnesylGFP (GFP-membrane) construct was kindly provided by Prof. J Norman; GFP-Paxillin construct was kindly provided by

Prof. M. Humphries; GFP-Ezrin wild type (WT) and GFP-Ezrin constitutively active (CA) were from (Gautreau et al., 2000). The

following antibodies were used: Mouse anti-Fibronectin (Sigma-Aldrich); Rabbit anti-Caveolin-1 (BD Biosciences); Mouse anti-

EHD2 (Santa Cruz Biotechnology, for western blot); Goat anti-EHD2 (Abcam, for IF); Rabbit anti-PTRF (Abcam); Rabbit anti-RhoA

(Santa Cruz Biotechnology); Rabbit anti-ROCK1 and Rabbit anti-ROCK2 (both Cell Signalling); Mouse anti-Ect2 (Santa Cruz Biotech-

nology, for IF); Rabbit anti-Ect2 (kind gift from Dr M. Petronczki, for western blot); Rabbit anti-Vav2 (Abcam); Rabbit anti-ARHGEF2

(GeneTex); Mouse anti-PLEKHG5 (Novus Biologicals); Rabbit anti-DOCK1 (ProteinTech); Goat anti-ELMO2 (Abcam); Mouse anti-

Tubulin (DM1A), Mouse anti Akt-2 and Rabbit anti-Erk (Santa Cruz Biotechnology).

SDS-PAGE and Quantitative Western Blotting

Cells were lysed in non-denaturing lysis buffer (200 mM NaCl, 75 mM Tris-HCl, pH 7.4, 15 mMNaF, 1.5 mMNa3VO4, 7.5 mM EDTA,

7.5 mM EGTA, 1.5% (v/v) Triton X-100, 0.75% (v/v) NP-40, 50 mg/ml leupeptin, 50 mg/ml aprotinin, and 1 mM 4-(2-aminoethyl)-ben-

zenesulfonyl fluoride). Lysates were clarified by centrifugation at 10,000 g for 10 min at 4�C. Cell lysates were resolved under dena-

turing conditions by SDS-PAGE (4–12% Bis-Tris gels; Invitrogen) and transferred to nitrocellulose membrane. Membranes were

blocked with 1x Blocking Buffer (Sigma) and incubated overnight at 4�C with the appropriate primary antibody in 5% BSA and

then at room temperature for 1 h with the appropriate fluorophore-conjugated secondary antibody in 1x Blocking Buffer. Membranes

were scanned using an infrared imaging system (Odyssey; LI-CORBiosciences). siRNA efficiency was quantified in ImageJ following

appropriate normalization to a relevant loading control.

CDM Production

Cell derived matrices were generated according to the method developed by the Yamada lab (Caswell et al., 2007; Cukierman et al.,

2001). Briefly, 6/12-well plastic (Corning) or 35 mm glass bottom (Mattek) plates were coated with 0.2% gelatin (v/v, Sigma Aldrich),

crosslinked with 1% glutaraldehyde (v/v, Sigma Aldrich) and quenched with 1M glycine (Thermo Fisher) before TIFs were confluently

seeded. DMEMmedium supplemented with 0.25% ascorbic acid (v/v, Sigma Aldrich) was changed every 48h for 8 days. Cells were

denuded with extraction buffer (20 mM ammonium hydroxide (NH4OH); 0.5% (v/v) Triton X-100) to leave only matrix; finally DNAse

was used for cleavage of phosphodiester linkages in the DNA backbone.

Gradient CDMswith a stiffness differential were created by softening a region of the CDMusing trypsin-coatedmagnetic beads, as

trypsin has been shown to alter the stiffness of CDM (Petrie et al., 2012). Specifically, 10 ml magnetic trypsin beads (TakaRa) were

pipetted onto a CDM and localized with a magnet, such that a small, crescent shaped region of the CDM grown on the circular glass

bottom area of the dish (Mattek) was subjected to a high concentration of trypsin beads. CDMswere incubated withmagnetic trypsin

beads for 10min at 37 �C in a humidified 5% (v/v) CO2 atmosphere, before being washed 3xwith PBS(+). Cells were plated onto non-

uniform CDMs and imaged �24 h after magnetic trypsin treatment, where the region of the interface of the softened, trypsin treated

CDM (i.e. the area directly above the magnet during treatment) and the untreated CDM was carefully, manually identified and cells

within this region subsequently analyzed.
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Generation of Polyacrylamide Stiffness Gradients

Polyacrylamide gels were made according to the Tse and Engler (Tse and Engler, 2010) protocol with modification for gradient gen-

eration. Briefly, large area glass bottom plates (Nunc/Ibidi) or glass microscope slides (DeltaLab) were functionalized by coating with

0.1M NaOH then with 3-Aminopropyltriethoxysilane (APES, Sigma Aldrich), before being crosslinked with 0.5% glutaraldehyde

(Sigma Aldrich) and dried; meanwhile manually cut 18 x 6 mm coverslips were rendered hydrophobic by coating with Dichlorodime-

thylsilane (DCDMS) for 4 min before also being dried. Statically compliant hydrogels were prepared by mixing appropriate concen-

trations of 40% (w/v) acrylamide, 2% (w/v) bis-acrylamide stock solutions (both Sigma-Aldrich) and distilled water and rapidly

polymerized by the enzymatic activity of 1/100 10% (w/v) ammonium persulfate (APS) and 1/1000 Tetramethylethylenediamine

(TEMED, both Sigma Aldrich). Acrylamide/bis-acrylamide concentrations for our two gels were: soft – 7.5% acrylamide, 1.5%

bis-acrylamide, 91% H2O; and stiff - 25% acrylamide, 11.25% bis-acrylamide, 63.75% H2O. Gradients were formed by pipetting

2.7 or 5.4 ml of two different stiffnesses of gel (depending on working distance requirements for subsequent microscopy) approx.

15 mm apart on the aforementioned functionalized glass before engaging the 6 x 18 mm hydrophobic coverslips on the top surface

of both gels. Natural diffusion and fluid flow of the two different gels into each other formed a confined 1D gradient covering the

6 x 18 mm area at an approx. thickness of 50 or 100 mm. Hydrophobic coverslips were removed in distilled water. Gels were then

uniformly covered with the heterobifunctional protein cross-linker 0.2mg/ml sufosuccinimidyl-6-(4-azido-2-nitrophenylamino)-hexa-

noate (sulfo-SANPAH; Thermo-fisher) which required activation by exposure with a 365-nm UV light source for 10 min. Finally, cells

were coated with 10 mg/ml fibronectin in 50 nM Hepes buffer for 16 h before use.

Atomic Force Microscopy of 3D-CDM

For front/rear stiffnessmeasurements, the cells were kept at 37�Cwithin a PetriDishHeater� (JPK Instruments AG) for the duration of

the experiment. Cantilever calibration was conducted using the contact-free thermal noise method (at 37�C within medium) prior to

each experiment. Measurements of matrix stiffness were conducted with a threshold of 0.5nN and approach speed of 3mm/s. To

obtain front and rear measurements the cantilever was manually positioned close to the pseudopod or cell rear, as determined by

observation of direction of cell migration, and five repeat force/distance curves were obtained. To obtain stiffness gradient measure-

ments a series of positions were probed; with an initial measurement at the border of a trypsinized area, followed by additional

positions at �600mm steps away from the area. At each position, an 8x8 grid of force/distance curves was collected within a

100mm2 area, with 25-100 readings per area.

All force/distance curves were analyzed using the AtomicJ software (Hermanowicz et al., 2014). Contact points were automatically

calculated via the robust golden methodology, and curves fitted using the Sneddon model for spherical indenters assuming a

Poisson ratio of 0.5. Mis-identified contact points were manually corrected if the contact point was visually obvious. Curves that

could not be accurately fitted by the model were excluded from further analysis. For front/rear measurements, the Young’s Modulus

for each curve was calculated and then each set of 5 were averaged to obtain a mean stiffness value. For gradient measurements,

each set of 64 readings were averaged to obtain a mean stiffness value for the area at each position.

Atomic Force Microscopy of 2D Gradients

Reduced Young’s Moduli of entire long-axis profiles of polyacrylamide gels were calculated using atomic force microscopy on a

Bruker Catalyst mounted on aNikon Eclipse Ti inverted light microscope, with a Bruker cantilever (OTESPA; 4-10nm tip radius). While

the absolute long-axis of the gel containing the stiffness gradient was �18 mm (see above), the total measurable distance by AFM

was themiddle 12-13mmof the gel. Therefore, the far left reachable point was taken as distance point 0, the far right point was taken

as normalized distance 1 and other points (center, three quarters, etc.) were measured and sampled relative to these extrema for all

gels. End and center points were first measured, and then further points were iteratively sampled based on neighbors to locate the

position of the steep gradient in all gels. N = 25 to 100 readings were taken around a 2.5-5 mm sided square for each reading. Three

gradients were analyzed in this manner and showed clear consistency in absolute stiffness values and gradient location. AFM was

performed on 100 mm thick gels.

Membrane Tension Measurements by Optical Trap

Membrane tension measurements were attained using the optical trap method. Tether pulling experiments were realized using a

custom made optical trap (4W 1064nm Laser Quantum Ventus) with a 100x oil immersion objective (CFI Plan Fluor DLL, Nikon) on

an inverted microscope (Nikon Eclipse TE2000-U) equipped with a motorized stage (PRIOR Proscan). The optical trap calibration

was performed as described (Lieber et al., 2015). Measurements were performed by attaching concanavalin-A coated (50 mg/ml)

latex beads (1.9mmdiameter) to cells. Bead position was recorded in bright field after tether formation. Trap force was then calculated

using a custom made ImageJ script. Trap force was measured twice for each cell (front and rear). All polyacrylamide gradients used

for membrane tension measurements were 50 mm thick gels to fit within the working distance of the 100x objective.

Live Fluorescence Imaging

All live fluorescent images were acquired using a CSU-X1 spinning disc confocal (Yokagowa) on a Zeiss Axio-Observer Z1 micro-

scope with a 63x/1.40 Plan-Apochromat objective for CDMs or a 63x/1.15 LD C-Apochromat Korr water objective or 100x/1.30

Plan-Neofluar objective for polyacrylamide gradients (as stated) to allow for greater working distance. An Evolve EMCCD camera

(Photometrics) andmotorized XYZ stage (ASI) was used. The 445, 488, 515 and 561nm lasers were controlled using an AOTF through
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the laserstack (Intelligent Imaging Innovations (3I)) allowing both rapid ‘shuttering’ of the laser and attenuation of the laser power.

Images were captured using SlideBook 6.0 software (3i). Randomly chosen representative polarized Lifeact-EGFP, Lifeact-Emerald,

GFP-AHPH, GFPmembrane, Lifeact-RFP, mCherry-Caveolin-1, GFP-Cavin-1, GFP-Ezrin-WT, GFP-Ezrin-CA and GFP-paxillin

expressing cells were captured with the appropriate excitation/emission spectrum and exposure time following � 4h spreading

time on CDM and � 20h spreading time on gradient gels in Ham F12 medium or 1x Opti-Klear medium (Marker Gene Technologies

Inc) supplemented with 10% (v/v) FCS (488 nm, 50 ms exposure for GFP-Lifeact or Emerald Lifeact; 488 nm, 10 ms exposure for

GFP-AHPH; 488 nm, 100ms exposure for GFPmembrane, GFP-Ezrin-WT and GFP-Ezrin-CA; 561 nm, 50ms exposure for RFP-Life-

act; 561 nm, 20 ms exposure for mCherry-Caveolin-1) every 15 s–1 min for 5–10 min as indicated. Where appropriate, rear translo-

cation wasmeasured for all imaged cells in ImageJ across this 5min period by comparing the position of a part of the rear of the cell at

the start of the timelapse with the exact same part of the rear at the end of the timelapse. For Colocalisation analysis of Cav-1 and

Cavin-1, the Coloc2 tool in ImageJ was used to generate Pearson’s correlation coefficients in manually derived rear and perinuclear

regions. Images are pseudocolored using the red hot LUT (ImageJ) where appropriate to reveal differences in intensity.

Forster Resonance Energy Transfer (FRET) imaging of RhoA activity was performed and quantified as described in detail previously

(Hetmanski et al., 2016). Concisely, randomly chosen polarized Raichu-RhoA expressing cells were captured every 15s for 5min with

3 different excitation/emission spectra: CFP (445 nm) donor – CFP acceptor at 200ms exposure; YFP (515 nm) donor – YFP acceptor

at 50ms exposure; and CFP donor – YFP acceptor at 200ms exposure. Ratiometric FRET activity was then calculated by dividing the

CFP-YFP channel by the CFP-CFP channel following automated image alignment. The YFP-YFP channel was used to create a binary

mask of the cell as it had the best signal to noise. Using this mask, a ring of the outermost 40 pixels of the cell was created and the

front and rear quarters of the cell were isolated based on long-axis identification. The average of every ratiometric pixel value in a 40

pixel wide, rearmost 25% area of the cell was then obtained and averaged over the 5 min timelapse period to obtain the final single

‘average rear RhoA FRET ratio’ value per cell.

Membrane Tension Measurements by FLIM

For membrane tension measurements for cell in 3D CDM, the fluorescent probe Flipper-TR was used. Cells were spread on CDM for

4 h in normal growth medium which was replaced with imaging medium (1x OptiKlear + 10% FCS) containing 1mM Flipper TR, and

incubated at 37�C for 15 min to achieve appropriate labelling prior to imaging. Cells were imaged on a SP8 gSTED microscope using

PicoQuant hardware/software for fluorescent lifetime imaging (FLIM) with 488 nm excitation and 575-625 emission and a pixel dwell

time of > 19.58 ms. Following imaging, a double exponential was fit to ensure a close fit (chi squared < 1.5) and the counts per pixel

and lifetime per pixel images exported as 256x256 pixel single time-point, single Z-plane images. For quantification, membrane re-

gions at the cell rear and cell front were manually identified using the count per pixel images, and the mean average lifetimes

measured by assigning these front/rear ROIs to the lifetime per pixel images. For the lifetime representative images, the lifetime

per pixel image was smoothed by application of a Gaussian blur with 1.0 pixel radius, multiplied by a mask created using the counts

per pixel image to remove background/matrix lipid staining, and recolored with a 16 colour LUT.

Long Term Cell Migration Assay

Cells were seeded at sparse (<25%, �50,000 cells/well) confluency in typical growth medium on 6/12-well CDMs and allowed to

spread for � 6h. Images were acquired on an Eclipse Ti inverted microscope (Nikon) using a 20x/ 0.45 SPlan Fluar objective, the

Nikon filter sets for Brightfield and a pE-300 LED (CoolLED) fluorescent light source with imaging software NIS Elements

AR.46.00.0. Point visiting was used to allow multiple positions to be imaged within the same time-course and cells were maintained

at 37�C and 5% CO2. The images were collected using a Retiga R6 (Q-Imaging) camera. 6 randomly chosen positions per cell were

captured every 10 min over 16 h. 5 randomly chosen cells per position (meaning 30 cells tracked per condition per experiment) were

individually manually tracked using the ImageJ plugin MTrackJ every 3 frames (i.e. using 30min timepoint intervals). The Chemotaxis

and Migration Tool was used to calculate the average speed and representative images of individual cells are shown where

appropriate.

Fixed Cell High Resolution Imaging

Cells were fixed in 4% paraformaldehyde (PFA) at room temperature following � 4h spreading on CDM or � 20h spreading on poly-

acrylamide gradients after non-confluent (�50,000 cells/plate) seeding. Membranes were permeabilized with 0.2% (v/v) Triton-X and

blocked in 5% (w/v) heat-denatured bovine serum albumin (BSA) before being stained with appropriate antibodies as in reagents

section. Cells were incubated with secondary antibodies Rabbit Alexa Fluor 647-conjugated, Rabbit Alexa Fluor 594-conjugated,

Rabbit Alexa Fluor 405-conjugated, Mouse Alexa Fluor 594 conjugated, Goat Alexa Fluor 594-conjugated (all Invitrogen), and/or

Mouse Cy3-conjugated (Jackson ImmunoResearch) as appropriate. For detailed visualization of actin structures, cells were stained

with Phalloidin Alexa Fluor 488-conjugated (Invitrogen) or SIR-Actin (Spirochrome) as indicated, while Hoechst 33258 (ThermoFisher)

was used for nucleus staining. Plates were finally mounted in Prolong Gold or Diamond antifade reagent (Life technologies). All cell

lines (A2780s, H1299s, MEFs and TIFs) were fixed and stained using the same protocol.

Cells were imaged using a Leica TCS SP8 STED 3Xmicroscope with an HCPL APO 100 x/1.40 oil objective using a HyD1 detector.

A pinhole with 0.7 - 1 Airy units was used to further improve resolution while a notch filter was used for background reduction where

possible. Images were captured using a white light laser (WLL) with excitation wavelengths 488, 550, 594 and 653 nm and appro-

priate emission spectra for green, cy3/red and far red respectively, while a Diode 405 laser was used with appropriate emission
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spectra for blue. For whole cells, Z-stacks were captured covering the entire Z-profile of the cell with captured at intervals of 0.3 mmat

a zoom of 1x to 1.23x. Zoomed rear images were all captured separately at higher resolution (i.e. smaller pixel size) as Z-stacks

covering the entire Z-profile with 0.2 mmz-step and a zoomof 4x. Imageswere deconvolved post capture usingHuygens professional

software with default settings. All subsequent analysis and quantification was performed on maximum intensity projections (MIPs) in

ImageJ; all representative images shown throughout are MIPs (pseudocolored using the red hot LUT where appropriate to reveal

differences in intensity).

3D Spheroid Invasion Assay

Spheroids of N15A/A2780 cells were grown using the hanging drop method. Cells were detached by chelation using PBS containing

3 mM EDTA and 0.6 mMDTT (N15As) or trypsin (A2780s), pelleted by centrifugation and resuspended at�800,000 cells/ml in 1ml of

20% (v/v) Methocel (Sigma) and 80% (v/v) complete appropriate medium (see Cell culture section). 20 ml drops of cell suspension

(containing �16,000 cells each) were pipetted onto the underside of a standard 10cm tissue culture plate (Corning), inverted to

form hanging drops and incubated for 24h at 37 �C in a humidified 5% (v/v) CO2 atmosphere to allow formation of spheroids. 3-5

spheroids were extracted from the hanging drops by re-inversion and washing with complete medium using a Pasteur pipette,

and resuspended in 100 ml collagen gel containing the following (all % denote v/v): 29.3% high molecular weight rat tail collagen

(Corning); 0.7% 1M NaOH; 17.8% 10x PBS (Sigma); 3.6% 1mg/ml rat fibronectin (Sigma); 7.1% 1mg/ml laminin (Sigma); and

41.5% neat medium (Sigma). This collagen gel/spheroid mixture was reverse pipetted into a well of an 8-well m-slide (Ibidi) and

allowed to polymerize for 10 min at room temperature and a further 30 min at 37 �C in a humidified 5% (v/v) CO2 atmosphere.

Following polymerization, complete medium supplemented with 30 ng/ml EGF and 25 ng/ml HGFwas added to the well of the m-slide

and incubated for 24h at 37 �C in a humidified 5% (v/v) CO2 atmosphere to allow time for cells to invade, before fixation for 15 min at

room temperature in 4% PFA. Spheroids/cells were stained similarly as in the ‘Fixed cell high resolution imaging’ section above

(doubling incubation times to allow for diffusion through the collagen gels).

Fixed samples were imaged by Spinning disc microscopy with a 20x/0.8 Plan-Apochromat air objective for zoomed out, edge of

spheroid images with a Z-stack covering 200 mm with slices every 10 mm, while higher resolution Z-stacks of individually invading

cells were imaged on the samemicroscopewith a 63x/1.15 LDC-Apochromat Korr water objective with slices every 1 mm. All analysis

was performed on the higher resolution images, MIPs shown.

Correlative Light and Electron Microscopy

For performing CLEM of polarized caveolae, we used 35 mm glass bottom dish (MatTek P35G-1.0-20-C) for confocal imaging,

allowing the selection of cells with polarized caveolin-1 (mCherry-Cav1). Low-magnification images were acquired for mapping

the position of the cell in relation to the micropatterns visible using transmitted light. Once imaged, cells were first fixed in Glutaral-

dehyde 2.5% + paraformaldehyde 2% in PHEM buffer (0.1M) for 1h on ice. A secondary fixation of 0.05% Malachite Green + 2.5%

Glutaraldehyde in cacodylate buffer (0.1M)was performed (for 25min on ice) before a post-fixationwith 1%OsO4+ 0.8%KFe(CN)6 in

cacodylate buffer (0.1M) (for 30 min on ice). After 3x10 min water rinses, cells were stained with 1% uranyl acetate. The cells were

dehydrated in sequential gradient alcohol baths and infiltrated with Epon (resin). Pipette tips were mounted over the cell of interest

following overnight polymerization at 60�C. The following day, the tips were filled with Epon and polymerized again overnight at 60�C.

For relocating the region of interest, the surface of the resin block was imaged using a stereomicroscope allowing accurate posi-

tioning of the cell of interest according to the micro-pattern. Precise trimming was performed around the cell of interest. Finally,

the resin block was serially sectioned (thickness: 100 nm) and all the sections were collected on electron microscope slot formvar

grids (65 sections, distributed over 13 grids). Sample sections were imaged on a transmitted electron microscope (Hitachi).

Transmitted electron microscopy images were stitched, aligned, and stacked with TrakEM2 (Cardona et al., 2012). 3D rendering

of the electron microscopy acquisitions was performed with Amira aviso software.

AFM experiments were conducted on a Nanowizard� 3 atomic force microscope (JPK Instruments AG), which was built onto an

LSM 880 confocal microscope (Carl Zeiss AG). Colloidal probes for all experiments were prepared as follows. 10mm diameter poly-

styrene beads (Polysciences) were resuspended in ethanol before a drop was applied to a clean microscope slide. Epoxy resin was

mixed, and a 20ml pipette tip used to apply a small amount of resin to the slide. A tip-less cantilever (Arrow� TL2, NanoWorld) was

then mounted onto the AFM, and the slide mounted onto the stage. Using the AFM, the cantilever was first lowered onto the epoxy

resin, with any excess resin being removed by tapping the cantilever onto the glass surface. The cantilever was then lowered into

contact with a single bead and raised, with a visual inspection via brightfield to confirm bead attachment and desired placement.

Once attached, the resin was left to dry in air for a minimum of 20 min. Colloidal probes were used within 1 day of preparation.

Correlative Light and SBFSEM

Cells imaged on CDMs in gridded glass bottom plates were processed for SBFSEM using a high-density staining method involving

reduced osmium, thiocarbohydrazide, osmium, uranyl acetate and lead aspartate(Williams et al., 2011). The samples were dehy-

drated in staged ethanol (30, 50, 75, 90, 100, 100%) and then infiltrated with a mixture of Epon 812 (TAAB Laboratory Supplies

Limited, UK) and ethanol (25% resin overnight, 50% resin for 8 h, 75% resin overnight). The next day the 75% resin was removed

carefully with blue roll and rinsed twice with warm fresh 100% resin in order to remove the ethanol. The cells were left to infiltrate

in 100% resin for 5 h. Cells were embedded in fresh resin by part curing a thin layer of resin for 4 h, then applying a BEEM

capsule with the tip removed (Agar Scientific, UK). The BEEM capsule was filled with fresh resin to form an extension to allow easier
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manipulation. The resin was cured at 60�C overnight. The glass coverslip was separated from the resin by freezing for a few hours

then snapping off the embedded cells leaving the imprint of the etched glass on the surface of the resin. Using the imprint of the finder

grid it was possible to localize the stained cells of interest. These were crudely excised using a hacksaw and attached to 3view pins

(EM Resolutions, UK). Once attached to the pin they were trimmedmore carefully for examination with a Gatan 3view (Starborg et al.,

2013). Note that the cell layer was never perpendicular to the cutting face, but this meant that it was possible to setup themicroscope

focus and imaging conditions after trimming the peak of the block. The rest of the sample was left under the surface until the correct

depth had been cut. The block was coated in gold palladium in order to reduce charging in the microscope, thus in order to localize

the cells of interest the pre-coated trimmed blockswere imaged using a dissectingmicroscope. The dimensions of the block face and

relative position of the cells could then be mapped and this information transferred onto the EM block face image. Serial block face

runs were collected using a Gatan 3view (Gatan Inc) within an FEI Quanta 250 FEG (Thermo Fischer Scientific) scanning electron

microscope at 3.8kV using 12nm pixels and 50nm cut thickness chamber pressure 0.4 Torr.

Generation of Rose Plots for Directional Analysis

Angles of Cav-1 peak, leading edge protrusion and rear location in live experiments weremanually calculated using the ImageJ angle

tool by creating a segment from drawing a line parallel with the idealized direction of stiffness gradient (i.e. exactly right to left in all

shown soft – left to stiff – right images) to the point of interest – Cav-1/Actin protrusion peak – and then a line from this point of interest

to the center of the nucleus: i.e. a point of interest exactly left of, right of, above or below the center point would give angles 0, 180, 90

and -90o respectively. Rose plots were created in MatLab, angles were binned into twenty 18o segments; relative sizes of triangular

segments are directly proportional to the number of cells with angles contained within each bin.

Cell Region Based Quantification

For quantification of localized Cavin-1 intensity, whole cell imageswere analyzedwith the interactive 3-D surface plot v2.31 in ImageJ

using a 128 grid size and smoothing factor of 3.0. Under these conditions, the peak intensities of the rear and non-rear or rear and

nuclear cell regions were manually identified and the ratio rear peak / non-rear peak or rear peak / nuclear peak calculated, therefore

providing inherent normalization avoiding staining/expression discrepancies. For quantification of actin structures, a similar 3-D sur-

face plot approach was used to manually identify the rear peak and leading edge peak of phalloidin 488 staining intensity to produce

the normalized rear / leading edge ratio. For the quantification of localized GFP-membrane, GFP-Ezrin-WT and GFP-Ezrin-CA in live

fluorescent cells, the interactive 3-D surface plot approach was similarly used on the first time-frame to measure the rear and front

peaks of cells. These values were then normalized by dividing by the average of the rear and front peak intensities, such that when

linked, pairwise front and rear values are plotted, all lines pass through the normalized peak intensity value 1.0. For Ect2, the normal-

ized value for nuclear staining was additionally measured and normalized linked data of rear, nucleus, and front shown. For line

profiles of Cavin-1 intensity, the line profile tool was used in ImageJ: representative lines of length 14.8021 mm were used from

the rearmost point of the cell through towards the cell middle in zoomed images. Absolute Cavin-1 intensity was then quantified every

0.0507 mm (pixel width), smoothed by averaging with the neighboring 5 pixel values and the average of all cells plotted with SEM.

Cavin-1 peak intensity position was determined by identifying the distance from the rearmost cell point of the single, non-smoothed

pixel with the highest Cavin-1 value.

Quantification of Localized Adhesion Numbers

A2780 cells transiently transfected with EGFP-Paxillin and mCherry-Caveolin-1 were imaged for 5 min (1 min per frame) with 9

Z-slices with a step size of 1 mm. Adhesions were manually identified by observing high intensity paxillin regions which persist

> 2 frames within individual Z-slices, and all such adhesions were counted across all Z-slices (where it was assumed that

the step-size was large enough to avoid duplicate countings). Adhesions behind the rearmost boundary of the nucleus were

assigned as ‘behind’, while all other adhesions in advance of this boundary were counted as ‘in front’ relative to nucleus

position.

Reversible Live Hypo-osmotic Shock

For live imaging experiments using the reversible hypo-osmotic shock, cells expressing Emerald lifeact + mCherry-Caveolin-1 were

imaged in isotonic control medium (1x Opti-Klear with 10% (v/v) FCS) as outlined in the section above for 10 min using point visiting,

capturing at 1 min intervals. The medium was then rapidly (�4 min) replaced using an aspirator and 1ml pipette with 50% 1x

Opti-Klear + 50%distilled water and all cells were subsequently imaged for 10min in osmotic shock conditions. The osmoticmedium

was then rapidly (�4 min) replaced with isotonic 100% 1x Opti-Klear using an aspirator and pipette and imaged for a further 20 min.

As a result, the same cells were imaged and analyzed in isotonic conditions pre-shock, osmotic shock conditions, and isotonic

conditions post-shock.

For quantification of Cav-1 intensity during the reversible hypo-osmotic shock assay, the intensity of mCherry-Caveolin-1 expres-

sion was measured in manually drawn regions at the rear and in the center of imaged cells using ImageJ software. The same drawn

ROIs weremoved according to cell translocation so that the intensities were determined for the 11 timepoints pre-shock, the 11 time-

points under shock conditions and the 11 timepoints post-shock. All measured intensities were background subtracted and normal-

ized to the intensity at the first timepoint t = 0, such that normalized timecourse profiles for the rear and central regions of all cells for
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the full > 30min of the assaywere generated. Each timepoint was then averaged across all cells analyzed and the average timecourse

profiles for all rear and all central regions was plotted with SEM bars shown.

For live analysis of Cav-1 accumulation at the rear of cells, osmotic shock was used to induce cells into a state with initially low rear

Cav-1 (by incubation in osmoticmedium for�10min) before themediumwas replacedwith isotonicmedium via rapid aspirator pump

and immediate pipetting. Throughout this process, laser-based (point visiting) Definite Focus was used via Slidebook software such

that cells were captured 30-60s postmedia changewithout need formanual refocusing. Cells were imaged for a further >10min using

Definite Focus. For quantification, the segmentation tool used for FRET analysis (above) was adapted to create a binary mask using

the mCherry-Cav-1 staining. The mean average intensity of the mCherry-Cav-1 intensity within the rear 10% and remaining 90%

within the binary mask corresponding to the whole cell was then automatically measured for the pre and all post media change time-

points, and normalized upon division by the maximum value (such that all other values < 1). The average time-course lines for the

normalized average Cav-1 intensity were plotted for the rear and rest of cell regions, with quadratic curves fitted in GraphPad Prism

to indicate a smooth, quadratic accumulation of Cav-1 at the cell rear.

Hypo-osmotic Shock of Fixed Cells and FRET

Cells expressing Raichu-RhoA were imaged in control medium as outlined in the section above for 5 min. The medium was then

rapidly replaced with 50% Ham F12 + 50% distilled water and cells were subsequently imaged between 10–30 min post osmotic

shock. Quantification of cell rear movement and FRET ratiometric activity were performed as before. For fixed cell imaging experi-

ments using hypo-osmotic shock, cells were seeded on CDMs and left to spread for�4h. The medium was then replaced with either

normal growth medium for the control case or 50% medium + 50% distilled water for the hypo-osmotic shock and incubated for

10 min before being fixed, stained, and imaged as above.

Live Y27632 and H1152 Treatment

For experiments using live Y27632 treatment, cells expressing mCherry-Caveolin-1 were captured in the control state across a

period of 5 min, treated with Y27632 via direct addition to the medium, rapidly refocused within � 5 min and the same cells imaged

for a further 1h, capturing every 30s. Cells were also left for 1hwithout treatment to affirm that rear Cav-1 loss was not as an artefact of

longer term imaging. For quantification, the rear / non-rear ratio of Cav-1 intensity was calculated using the 3-D surface plot in ImageJ

(see cell region based quantification section above) for the first time point before Y27632 treatment and for a randomly chosen time

point between 30 and 60 min post treatment, averaged across all captured cells and compared.

For live H1152 treatment, cells expressing Emerald-Lifeact and either control or Cav-1 siRNA-Awere imaged for 5min, treatedwith

H1152 via direct addition to the medium, then imaged for a further 5 min. Throughout, Definite Focus was used to avoid any manual

refocusing time, such that frameswere taken every 30s before, (during) and after drug treatment. The forward translocation of the rear

was manually measured for both transfection conditions without (before) and with (after) H1152 treatment, where negative values

correspond to backwards movement.

Global and Caged Cytochalasin-D Treatment

For global Cytochalasin-D treatment, cells expressing GFP-lifeact + mCherry-Caveolin-1 were treated with cytochalasin-D at 2 mM

and imaged 10 min following treatment with typical capture conditions. Photo-activatable ‘caged’ Cytochalasin-D was produced in

the del Campo lab (manuscript in submission) and used as follows: Cells expressing GFP-lifeact + mCherry-Caveolin-1 were first

treated with 50 mM immediately prior to capture. A 5 x 5 mm ROI was drawn using Slidebook 6.0, positioned such that the ROI

was completely outside the cell area (as determined by lifeact expression) but within � 10 mm the rear of the cell (and such

that the rear was the closest part of the cell to the ROI). After 2 fluorescent frame captures using the 488 nm and 561 nm lasers

(to ascertain the GFP-lifeact and mCherry-Caveolin-1 expression pre photo-manipulation) the 405 nm emission photo-manipulation

laser was used to illuminate each pixel in the previously drawn ROI for 10ms each (meaning the whole region was photo-activated for

a total of�6.5s since there are 5.12 pixels per micron). Cells were then imaged for a further 10min with normal fluorescent conditions

(as it was deemed that with captures longer than 10 min the activated Cytochalasin-D may diffuse to other areas of the cell). For the

control comparison, cells were subjected to exactly the same photo-manipulation protocol in the absence of any drug treatment.

For quantification, the average mCherry-Caveolin-1 intensity within a manually drawn region at the rear of the cell pre-photo-

manipulation (called rear pre), a region at the rear of the cell 10 min post-photo-manipulation (rear post), a region at the center of

the cell pre-photo-manipulation (center pre), and a region at the center of the cell 10 min post-photo-manipulation (center post)

were all measured using ImageJ and background subtracted. The ratio ((rear pre)/(rear post))/(center pre)/(center post)) was then

calculated and used as a single metric to describe rear Cav-1 loss upon caged Cytochalasin-D treatment, where the treated cells

were compared to untreated (but photo-manipulated) cells.

Model Construction

Our model of rear retraction incorporates 19 variables of which 12 are individual proteins (shown in green, yellow or cyan), 6 are

empirical entities pertaining to stiffness, tension, polarization, actin alignment and retraction itself (in orange, pink or red) and the

caveolae complex simplified to a single node. While all variables colored orange, yellow, pink or red - and reactions there-between

- are included based on findings/hypotheses confirmed or originated in this paper, variables colored green or cyan are included to

augment our study based on literature evidence. Green nodes link caveolae to RhoA activity while cyan nodes are intermediaries
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between ROCK1/PKN-2 activation and actin alignment/MLC phosphorylation. We included Src, the GTPase activating protein (GAP)

p190RhoGAP and Ect2 as the RhoA guanidine nucleotide exchange factor (GEF) as ‘green nodes’ with activation/inhibition reactions

as shown since: (i) Cav1 can interact with RhoA (Gingras et al., 1998) but shows no structural evidence of being a GEF (Lamaze and

Torrino, 2015) so naturally must act via a GEF for GTP hydrolysis of the small GTPase; (ii) Cav1 can interact with the RhoA activator/

GEF Ect2 and control the localization and activity of a RhoA inactivator/GAP p190RhoGAP to regulate RhoA activity (Echarri and Del

Pozo, 2015); and (iii) Src can phosphorylate Cav1 on Y14 to influence Cav1 expression and promote caveolae formation (Echarri and

Del Pozo, 2015), or oligomerization and release (Zimnicka et al., 2016). Src also controls p190RhoGAP activity which directly inhibits

RhoA (Grande-Garcı́a and del Pozo, 2008), and pY14-Cav1 binds to and activates Csk, a ubiquitously expressed inhibitor of Src

(Grande-Garcı́a and del Pozo, 2008). DRF (Diaphanous-related formin), Limk, Cofilin, CPI-17 and MLCP (Myosin-light-chain

phosphatase) and activation/inhibition reactions there-between were included as ‘cyan nodes’ based on the strong evidence

that: (i) Formins are always required to some extent for efficient F-actin polymerization and can be activated directly by RhoA or

ROCK1 (Breitsprecher and Goode, 2013); (ii) ROCK activates LIM-kinase 1 by phosphorylation at threonine 508 within the activation

loop (Ohashi et al., 2000); (iii) Limk phosphorylates cofilin at Ser 3 both in vitro and in vivo which abolishes the ability of cofilin to bind

and depolymerize actin (Yang et al., 1998); (iv) Cofilin universally disassembles actin filaments so acts as an inhibitor to rear actin

alignment (Carlier et al., 1997); (v) Phosphorylation of CPI-17 at Thr(38) by PKN2 or ROCK1 enhances the inhibitory potency of

CPI-17 towardsMLCP (Hamaguchi et al., 2000); and (vi) the primary function of MLCP is to oppose myosin phosphorylation whereby

kinase and phosphatase activities are mutually antagonistic and in competition (Morgan et al., 1976).

ODEs Formulation

The ordinary differential equations (ODE) model was built with the following specifications:

(i) All reactions use mass-action kinetics; this is the simplest kinetic scheme to use and in the absence of either more detailed

numerical data or suggestions of other more relevant dynamics at play in vitro, is the most sensible starting point for a kinetic

model.

(ii) All variables, both proteins and biophysical entities, can be in an active, inactive or bound state with a conserved moiety;

proteins can certainly be active, inactive or bound in cells. The biophysical entities are assigned an ‘active’ or ‘high’ state,

and an ‘inactive’ or ‘low’ state to be consistent with the protein variables within the same model as convention, although

the ‘inactive’ or ‘low’ states can be regarded as dummy variables, while the ‘high’ states are the actual outputs of interest.

For example, the ‘high rear retraction’ corresponds to the instantaneous velocity of the rear, while the ‘high polarized substrate

stiffness’ input corresponds to the steepness of theoretical gradient of the substrate. This also ensures all variables remain

finite, see below.

(iii) The value of all variables is normalized and confined between 0 and 100 units for all time; This ensures that the value of all

variables in the model remain finite (i.e. that a cell cannot express an infinite amount of protein or that rear retraction cannot

be infinitely fast which would be biologically implausible). This normalization is such that protein and biophysical entity levels

can be comparable and conceptualized on the same scale, while also conveniently overcomes the lack or real experimental

expression level data.

(iv) Reactions involving two proteins are two step processes whereby the proteins first bind together then the activation state of

one/both proteins change/s as desired; evidence suggests for many protein-protein interactions that activation or inhibition

requires binding of the proteins before a state change, for example TheGEF Ect2 binds to GDP bound RhoA before promoting

the switch to the GTP active form of RhoA.

(v) Reactions involving at least one biophysical entity are one step processes whereby the activation state of at least one variable

involved in the reaction changes directly as desired; it makes no sense to conceptualize that polarized contractility binds to

high membrane tension for example, therefore one step state changes are sufficient for the required kinetics.

(vi) All reactions which only involve proteins or only involve biophysical variables are reversible where the backwards direction is

at most 10% the rate of the forward direction, decreased tension activating caveolae and aligned Actin and p-MLC activating

Acto-myosin contractility are non-reversible; Reversibility of protein-protein interactions are well reported, keeping most

reactions as reversible to a small extent prevents an implausible high resting state, while a biophysical entity relapsing to a

protein or vice versa is conceptually impossible.

(vii) All proteins and biophysical entities are subject to a turnover term, whereby there is a constant flux from the active state to

the inactive state for all variables when not explicitly activated upstream. Without turnover and/or reversibility, variables

such as rear retraction stay in an active, high level steady state despite lack of active upstream activators which is phys-

iologically unrealistic: rear retraction requires Acto-myosin contractility and aligned Actin constantly and this formulation

ensures this.

Note since the potent inhibitor of p-MLC, MLCP is already included explicitly in the model, and these are almost like two forms of

the same protein, the turnover of p-MLC is not included. To balance this and since p-MLC is not a protein but a specific state thereof,

the activation of p-MLC is one-step rather than two step binding then activation. Implementing p-MLCwith binding and turnover does

not alter general findings of the model provided rates are balanced accordingly.
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Initial Conditions

For unperturbed simulations, the initial conditions (ICs) used are the input ‘polarized substrate stiffness’ set to the maximum 100,

active Src set to 50, active Cofilin and MLCP set to 100, while the active form of all other is set to 0. The polarized substrate stiffness

IC was taken as it is the nominated external input of the model, required to initiate the proceeding dynamics downstream. Cofilin and

MLCP were set to 100 since these are inhibitory variables with no explicit activators, such that the only way these can be active is

when they start active, while Src is set at 50%active initially since it has no upstream activator but has both an activator and inhibitory

role on downstream effectors.

Parameter Values

All parameter values were based on order of magnitude predictions, i.e. were subject to the constraint that all values were

1 3 10�nfor an integer n greater or equal to 1. The order of magnitude approach was adopted since the appropriate kinetic data

were unavailable, and more specific rates would not be justifiable and may promote an over-determined model. All rates were

checked with half and double values, and the general topology and behavior was unchanged. Parameters were initially set based

on literature findings and certain assumptions and then iteratively, improved based on biological plausibility of simulated outputs.

In particular, it was assumed that protein-protein interactions occur with higher rates than those involving biophysical entities

because: (i) protein-protein interactions are two step (binding then state change) so are already going to be slower overall, and (ii)

it is known that protein-protein interactions such as binding can be incredibly quick in vitro, while the precise kinetics of polarized

contractility leading to decreased tension for example are likely to be slower as these events aremore complex at themolecular level.

All parameter rates used can be seen in the full list of ODEs used in the BioModels database (see below).

Model Simulation and Perturbation

Themodel was built and simulated using Copasi software version 4.15 (Hoops et al., 2006). Deterministic simulationswere performed

using the LSODAmethod for the first 10000 secondswith an interval size of 25s. The time-course outputs for all variables in themodel

were checked for plausibility; however, the outputs for a chosen subset of variables are shown for simplicity. For a priori knockdown

simulations, all variables were kept the same as the unperturbed simulation apart from the initial amount of the relevant variable

(RhoA, and Cav-1), which were both reduced to 12% of total concentration. For substrate transition simulations, ‘polarized substrate

stiffness’ was assigned to change from 100 to 0 or 0 to 100 at t = 4000s. For simulation of the osmotic shock assay, the rate of tran-

sition from decreased membrane tension to increase membrane tension was increased 1000-fold (from 0.01 to 10) at time t = 4000s,

and then returned to the original value (0.01) at t = 7000s to mimic return to isotonic conditions. For mimicry of Y-27632 treatment, an

event at t = 5000s was added to the simulation where the turnover rate for ROCK1 and PKN2 was increased 1000-fold (from 0.01 to

10); for ‘global’ cytochalasin-D treatment, the turnover rate of F-actin (i.e. the rate at which F-actin transitions to G-actin) was

increased 100-fold (from 0.01 to 1) while for ‘caged’ cytocholasin-D treatment the turnover rate of F-actin was increase 20-fold

(from 0.01 to 0.2), both events occurring at t = 5000s.

Parameter Sensitivity Analysis

Parameter sensitivity analysis was performed using the built-in Copasi tool with Retraction/Recoil as the target and all rates in the

model as the analyzed objects. Scaled parameter analysis was run, such that the concurrent rates used in the model were factored

in to the apparent importance of each parameter, while the total of the scaled parameter sensitivity sums to zero.

QUANTIFICATION AND STATISTICAL ANALYSIS

Box and whisker plots show mean as ‘+’, whiskers generated using Tukey method. All statistics shown on box and whisker graphs

with two conditions describe unpaired student t tests while for all box and whisker graphs with > two conditions a one-way ANOVA

test for multiple comparisons has been used. For all linked line graphs concerning trap force data, pairwise Mann-Whitney tests were

used to compare the front and rear membrane of the same cells directly, while data from all other linked line graphs have been

subjected to paired T tests. All statistical analysis has been performed with GraphPad Prism software, where **** denotes

p < 0.0001, *** denotes p < 0.001, ** denotes p < 0.01 and * denotes p < 0.05. All N numbers and p values are described in relevant

figure legends.

DATA AND CODE AVAILABILITY

The SBML of the model described in this paper has been deposited in the BioModels database (Le Novére et al., 2006) (https://www.

ebi.ac.uk/biomodels/MODEL1908290001) named ‘Hetmanski 2019 cell rear’ and can be loaded into Copasi 4.15 for reader editing/

simulation purposes.
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