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Damping of low frequency vibration by lightweight and compact devices has been

a serious challenge in various areas of engineering science. Here we report the

experimental realization of a type of miniature low frequency vibration dampers

based on decorated membrane resonators. At frequency around 150 Hz, two dampers,

each with outer dimensions of 28 mm in diameter and 5 mm in height, and a total

mass of 1.78 g which is less than 0.6% of the host structure (a nearly free-standing

aluminum beam), can reduce its vibrational amplitude by a factor of 1400, or limit its

maximum resonance quality factor to 18. Furthermore, the conceptual design of the

dampers lays the foundation and demonstrates the potential of further miniaturization

of low frequency dampers. C 2016 Author(s). All article content, except where

otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

(http://creativecommons.org/licenses/by/4.0/). [http://dx.doi.org/10.1063/1.4961469]

Damping of structural vibrations remains a major challenge in many branches of engineering

science. Present vibration control technologies can in general be put into three categories, namely

passive, active, or semi-active.1–3 Due to the performance reliability and maintenance requirements,

passive vibration control is often preferred. One of the two most common passive approaches is the

surface treatment method4,5 with dissipative layer made by high loss factor material covering the

host structure. However, such methods are limited to high frequencies (usually above 1000 Hz) and

add substantial mass load to the host structure. An alternative solution is the tuned mass damper

(TMD) with resonances6–15 that adds a comparatively lightweight device to the host structure. A

typical weight of such a damper for low frequencies in reported experiments is about 10% of the

host structure,6 and it is usually bulky and requires considerable space.13 Other attempts, such as

employing poroelastic materials,16 and introducing nonlinear effects in the tuned mass damper,17

have been investigated as well. Up to now, it is still particularly challenging to damp low frequency

(usually below 500 Hz) vibration and structure borne noise, such as those in aircraft and motor

vehicles, by lightweight devices in confined space, as it is still technically very challenging to

miniaturize dampers with weight limited to several grams and size limited to centimeters, while still

having the low working frequency.

The decorated membrane resonators (DMRs) have been shown as efficient low frequency

sound wave shields18 and absorbers19,20 which are light-weight and compact. A theoretical homog-

enization scheme has been developed to predict the effective parameters and consequently the func-

tionalities of the structures and devices made of multiple DMR’s.21 More recently, active control

by external electric voltage on the properties of DMR’s,22 and single incident beam total absorption

by combinations of monopole and dipole units have been realized.23 In this letter, we demonstrate

that DMRs can also be effective miniature vibration dampers at low frequency by utilizing the

almost divergent effective mass of the DMRs at its “anti-resonance”.18 By attaching such dampers to

the host structure, vibrations at the frequency near the anti-resonance are significantly suppressed.

Below, we report the effective implementation of a pair of DMR dampers, each comprising an

aCorresponding author: email: phyang@ust.hk

2158-3226/2016/6(8)/085212/7 6, 085212-1 ©Author(s) 2016.

http://dx.doi.org/10.1063/1.4961469
http://dx.doi.org/10.1063/1.4961469
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1063/1.4961469
http://dx.doi.org/10.1063/1.4961469
http://dx.doi.org/10.1063/1.4961469
http://dx.doi.org/10.1063/1.4961469
http://dx.doi.org/10.1063/1.4961469
http://dx.doi.org/10.1063/1.4961469
http://dx.doi.org/10.1063/1.4961469
http://dx.doi.org/10.1063/1.4961469
mailto:phyang@ust.hk
mailto:phyang@ust.hk
mailto:phyang@ust.hk
mailto:phyang@ust.hk
mailto:phyang@ust.hk
mailto:phyang@ust.hk
mailto:phyang@ust.hk
mailto:phyang@ust.hk
mailto:phyang@ust.hk
mailto:phyang@ust.hk
mailto:phyang@ust.hk
mailto:phyang@ust.hk
mailto:phyang@ust.hk
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4961469&domain=pdf&date_stamp=2016-08-17


085212-2 Sun et al. AIP Advances 6, 085212 (2016)

elastic membrane fixed on a rigid frame and decorated by a rigid platelet. Suppression of vibrational

amplitude of a nearly free-standing aluminum beam by a factor of 1400, or limiting the quality

factor (Q-factor) of the beam resonance to 18 or below near 150 Hz were experimentally observed

in two types of dampers with different dissipations. Each DMR damper weighs only 1.78 g, or 0.6

% of the aluminum beam, and its low profile and compact outer dimensions are only 28 mm in

diameter and 5 mm in height.

For any object with linear internal vibrational degrees of freedom (DOF) that is deep-subwave-

length in size, its dynamic effect on a vibrational host body can be fully characterized by the

effective mass me ≡ F(σ)/ü(σ) = −F(σ)/[ω2u(σ)] at a location σ on the object (the anchor point)

which is in contact with the host body. In the case of a DMR its frame is a natural choice as the

anchor point. Here the double-overdot denotes the second derivative respect to time, ω = 2π f is

the angular frequency, F is the total external force experienced by the object that is assumed to act

only at its anchor, and u is the displacement of the anchor point in real space. With proper internal

structures the effective mass of the object could be divergent at selected frequencies, thereby serving

as a damper similar to a TMD with multiple DOF.

To understand the presence of divergent effective mass of the damper, we consider a damper

with N resonant modes, and notice that its response exhibits the following Lorentzian form:20,21

u(σ)

F(σ)
=

N

n=1

[un(σ)]
2

ρn(ω2
n
− ω2)

+ 2i

N

n=1

βn[un(σ)]
2ω

ρn(ω2
n
− ω2)2

. (1)

In Eq. (1), un are the eigenmodes under Neumann boundary condition, the displacement-weighted

density for the eigenmode un of the damper at frequency ωn is defined as ρn ≡

Ω
ρ|un |

2dV with ρ

being the local mass density and Ω being the volume of the damper. Equation (1) assumes that the

dissipation coefficient βn is small, so that ωn/βn ≡ Qn >> 1. The value of βn will be determined

by fitting to the experiments. For a classic TMD containing a spring joining the oscillator and the

anchor base, there are only two resonant modes, the first being the translational motion in free space

without distortion of the spring, and the second mode is the relative motion of the base and the

oscillator.

Each term in the summation of the real part in Eq. (1) diverges from positive to negative at

its resonance frequency. For frequencies between adjacent resonances, contributions from them are

usually opposite in sign. Therefore, the so-called “anti-resonance” frequency ω̃ may exist, at which

the responses from the two eigenmodes cancel each other, i.e., u(σ) = 0 under any force F(σ), if the

system is without dissipation (βn = 0). The associated effective mass thereby diverges. In principle,

there could be many anti-resonances, giving rise to multiple band vibration suppression, while for a

classic TMD with a single DOF there is only one such frequency. Therefore, a device with properly

designed internal structure, even though being compact in size and low in weight, could still act like

a TMD with multiple DOF at low frequencies.

To focus on the divergence of mass at a particular low frequency, we consider only the first

two lowest resonances in Eq. (1), and further simplify it by treating ∆ω = ω̃ − ω as a small vari-

able. We denote the derivative of Re[u(σ)/F(σ)] with respect to frequency, evaluated at ω̃, as

2Ξ. By expending ω around ω̃ to the first order in ∆ω, Eq. (1) can be simplified to the form

u(σ)/F(σ) = 2Ξ(i β − ∆ω), where Ξ ≡
2

n=1[un(σ)]
2ω̃/[ρn(ω

2
n
− ω̃2)2]. The effective mass is there-

fore given by

me = −
F(σ)

ω2u(σ)
=

∆ω + i β

2Ξω̃2(∆ω2 + β2)
. (2)

Figure 1(a) shows schematically the structure of the DMR dampers used in the experiments.

The elastic membrane (cyan) is 24 mm in diameter, and the circular platelet (gray) is 12 mm in

diameter, 1.0 mm in thickness, and weighs 0.54 g. The height of the rigid frame is 5 mm. The mass

of the rigid frame is 1.24 g so the total mass of the damper is 1.78 g.

For motions vertical to the membrane plane the lowest frequency eigenmode u1 of the damper

is simply ω1 = 0 Hz, corresponding to the translational motion without deformation. With mem-

brane tension being 2.633 × 105 Pa, density 1300kg/m3, thickness 0.2 mm, and the other dimension
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FIG. 1. (a) The schematic illustration of the DMR damper. (b) The first deformed eigenmode of the damper, drawn with

axial symmetry assumed. (c) The effective mass of the damper. The real part is shown in orange while the imaginary part is

shown in blue. The solid curves are from Eq. (2) and the open circles are from experiments.

parameters given above, theoretical calculations identify the second eigenmode u2 at 204.5 Hz, at

which the central platelet vibrates in the opposite phase to the frame [as shown in Fig. 1(b)]. Anti-

resonance with motionless frame occurs at 147.1 Hz due to the interference of the out of phase mo-

tion of u1 and the in-phase motion of u2. Based on these two modes, with Ξ = 2.2 × 10−9m2s3kg−1

and the fitted β being 3.8 Hz, Eq. (2) predicts the effective mass as a function of frequency shown

by the curves in Fig. 1(c). This has been confirmed from experiments by mounting the damper on

a vibration shaker and recording the relevant acceleration ü(σ) of the frame and force F(σ) acting

on the frame by the shaker, and the results are shown by circles in Fig. 1(c). The observed effective

mass of the damper reaching 64 g, or ∼36 times its rest mass around the anti-resonance, indicates

a good vibration suppression effect to be expected. Also, near the anti-resonance the damper can be

mimicked by a classic TMD with an oscillator mass of 0.54 g, a resonant frequency around 147 Hz,

a dashpot that provides a Q-factor around 120, and a base mass of 1.24 g. If such a classic TMD is

used to damp the vibration of a host structure, the result is expected to be much the same as that of

the DMR damper.

We demonstrate the vibration suppression effects of the DMRs by symmetrically mounting

two identical DMR dampers on the ends of a 290 × 51 × 4.8 mm aluminum beam, and excit-

ing the beam at its center with the vibration shaker. The schematic of the setup with the shaker

omitted is shown in Fig. 2(a). To tune the first “flapping” resonance mode of the bare beam near

the dampers’ anti-resonance at 149 Hz, two extra aluminum blocks with total mass of 97.2 g

are added near the beam’s ends, so that the total mass of the bare structure is 288.2 g. At this

resonance, the largest motion takes place at the ends of the beam, which is measured by a laser

vibrometer and shown as blue circles in Fig. 2(b). At resonance the displacement of the bare beam

|u(σ)| reaches about 1214 times the amplitude of that of the shaker ξ. The strong vibration is

effectively suppressed when the two dampers are mounted. The displacement (orange circles) is

drastically reduced to |u(σ)| = 0.813ξ at the resonant frequency, which is over 1400 times smaller

than that of the bare beam. The total mass of the two dampers is less than 1.2% of that of the host

structure.

Similar to a conventional TMD, while the resonant vibration of the host structure near the

working frequency ω̃ of the dampers is suppressed, two new resonances (side bands) located at

140 and 155 Hz are seen to arise below and above ω̃ as shown in Fig. 2(b). To understand the
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FIG. 2. (a) The schematic illustration of the experimental setups with the shaker omitted due to space limitation. (b) The

displacement at the end of the beam |u(σ)| normalized by the vibration amplitude of the shaker ξ as a function of frequency.

The blue line stands for the case of a bare aluminum beam, and the orange line represents the beam with dampers attached.

The solid lines are from Eq. (4) and the open circles are from experiments. (c) The real part of the effective mass for the

damper (orange), and the function 1/(ω2
G) (blue) for the bare beam. Their cross points indicate the emerging of new

resonant modes when dampers are attached onto the beam. (d) The displacement at the end of the beam |u(σ)| normalized

by the amplitude of the shaker ξ as a function of frequency, when two DMR dampers are attached on its two ends by a thin

layer of dissipative mud glue.

phenomenon we introduce an analysis in what follows. Denote an operator P(y, y′) for the bare

beam representing the response displacement at y caused by a displacement excitation at y ′, and

another operator G(y, y′) for the response displacement at y when a force is applied at y ′. For the

case with dampers on the ends of the beam, y = σ, the resultant end displacement due to the shaker

at y = 0 with given displacement ξ is given by

u(σ) = G(σ,σ)F(σ) + P(σ,0)ξ. (3)
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Here, F is the force from the damper to the beam, which is F = ω2meu. Substituting it into Eq. (3),

we have

u(σ) =
P(σ,0)ξ

1 − ω2meG(σ,σ)
. (4)

Equation (4) confirms the vanishing of u(σ) when me diverges at anti-resonance. Meanwhile,

if 1/(ω2G) = me, new resonance emerges with large u(σ). We plot 1/(ω2G) for the bare beam by

the blue line in Fig. 2(c) together with the real part of me in orange. Two cross points satisfying

the condition 1/(ω2G) = me can be found that indicate the emergence of new resonances at the

frequencies ω = 2π × 141.1 and 2π × 155.5 Hz, which agree well with the observed resonances.

For a given damper, the difference in frequency between the two resonances is determined by the

slope of 1/(ω2G). Large slope leads to small interval, and vice versa [Fig. 2(c)]. As the response to

a force, G is inversely proportional to the mass of the beam. Therefore, if the beam is too heavy,

although the suppression effect at anti-resonance still exists, the two new resonances will be too

close that make the dip and peaks in Fig. 2(b) undistinguishable from each other. The vibration

suppression effect thereby diminishes.

The energy loss in these DMR dampers is small, and its suppression effect is mainly due to

the diverged effective mass. In practical applications, dissipation of vibration energy may also be

important. The concentration of stress at the interfaces between the dampers and the host structure

due to the large effective mass indicates the possibilities of efficient energy absorption by placing a

dissipative layer there. In experiment, we use the same dampers as in Fig. 2(a), but add a very thin

layer of mud glue (less than 0.2 mm) between the frame of the dampers and the aluminum beam.

As shown in Fig. 2(d), although the original dip in the displacement becomes much shallower, the

strengths of the two side bands have been greatly reduced. The observed Q-factor for the two peaks

is only about 18, which is a significant reduction from that of the bare beam, which is around 1500

as seen in Fig. 2(b).

We now study similar DMR dampers designed to work at an even lower frequency. Circular

dampers with larger membrane diameter of 20 mm were fabricated. The diameter of the central

platelet is the same as the previous ones, but its mass is almost doubled (∼ 0.95 g). The mass

of the damper frame is about 1.4 g. The measured effective mass of a typical damper is shown

in the insert of Fig. 3. Maximum damping by the damper occurs at 104 Hz. The host structure

is a 400 mm × 400 mm × 5 mm stainless steel plate with mass of 6.24 kg. It was hanging at

the middle point of the top edge by a string and was excited by the shaker at a position about

3 cm above the bottom right corner. The vibration amplitude at the diagonal corner was measured

by laser vibrometer. The first resonance of the plate is around 104 Hz. The red curve in Fig. 3

FIG. 3. The displacement at the corner of the plate |u(σ)| normalized by the vibration amplitude of the shaker ξ at the

diagonal corner as a function of frequency. The red curve is for the plate without dampers. The green and purple curves are

for the plate with two and four dampers, respectively. The insert depicts the measured effective mass of a typical damper

working at 104 Hz. The red curve represents the real part of the mass, while the green curve represents the imaginary part.
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shows the displacement ratio without the dampers. Due to light intrinsic damping, the displacement

ratio at resonance exceeded 800, with a Q-factor exceeding 3300. When a damper is placed at

each corner next to the excitation corner, the Q-factor of the two split peaks is about 85, and the

peak displacement radio is reduced to 2.3. The minimum displacement ratio is 0.18, a reduction

of over 4400 times of the bare plate. When two more dampers are attached to the diagonal corner,

the maximum displacement ratio is reduced to 1.0 and the Q-factor is reduced to 42. The total

mass of the dampers is about 0.15 % (9.6/6240) of the host structure. From the reduction of

Q-factor by two and by four dampers, one could anticipate that the Q-factor would be reduced to

10 if 16 dampers are used. The total weight of the 16 dampers is only about 0.6 % of the host

structure.

The design concept of the DMR dampers reported here could serve as the foundation for further

development of low frequency miniature dampers. The membrane and the mounting geometry of

the platelet form an oscillator with an extremely soft spring, so that even a small oscillator mass

around 0.5 g is sufficient to set the working frequency to around 150 Hz. The frequency could be

further reduced to around 100 Hz if the mass of the platelet is doubled. The curvature energy19

provide the dissipation channel so there is no need for a separate dashpot as in the case of classic

TMDs. Asymmetric platelets are known for better curvature energy dissipation,19 so the circular

platelet in the present damper is not yet the optimum shape. Energy dissipation can therefore

be tuned by changing the shapes of the platelets, without using mud glue for contact which is

not easy to control and duplicate. With softer and thinner membranes, even smaller frames and

lighter platelets can be used while maintain the working frequency around 100 Hz. Alternatively,

with comparable size and mass, an even lower working frequency can be reached. With multi-

ple platelets in each resonator, dampers with multiple working frequency bands can be realized

without significant increase in size and weight. The DMR-type devices are therefore promising

light-weight miniature low frequency vibration dampers which are well suited for a wide range

of applications to eliminate structure borne vibration in light structures with limited available

space.

We thank Guancong Ma, Shuyu Chen, Meng Chong, and Binglin Chen for their assistance

in some of the experiments. This work is supported by grant ITS/054/12 from the Innovation and

Technology Fund of Hong Kong Government.
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