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Erna Pap • Ágnes Kittel • György Nagy • András Falus • Edit I. Buzás

Received: 6 January 2011 / Revised: 30 March 2011 / Accepted: 12 April 2011 / Published online: 11 May 2011

� The Author(s) 2011. This article is published with open access at Springerlink.com

Abstract Release of membrane vesicles, a process con-

served in both prokaryotes and eukaryotes, represents an

evolutionary link, and suggests essential functions of a

dynamic extracellular vesicular compartment (including

exosomes, microparticles or microvesicles and apoptotic

bodies). Compelling evidence supports the significance of

this compartment in a broad range of physiological and

pathological processes. However, classification of mem-

brane vesicles, protocols of their isolation and detection,

molecular details of vesicular release, clearance and bio-

logical functions are still under intense investigation. Here,

we give a comprehensive overview of extracellular vesi-

cles. After discussing the technical pitfalls and potential

artifacts of the rapidly emerging field, we compare

results from meta-analyses of published proteomic studies

on membrane vesicles. We also summarize clinical

implications of membrane vesicles. Lessons from this

compartment challenge current paradigms concerning the

mechanisms of intercellular communication and immune

regulation. Furthermore, its clinical implementation may

open new perspectives in translational medicine both in

diagnostics and therapy.
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B. Aradi � V. László � É. Pállinger � E. Pap � G. Nagy �
A. Falus � E. I. Buzás (&)

Department of Genetics, Cell- and Immunobiology,

Semmelweis University, Budapest, Nagyvárad tér 4,
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HIV Human immunodeficiency virus

ITP Idophathic thrombocytopenic

purpura

LAMP1 Lysosome-associated membrane

protein 1

LIMK LIM domain kinase

lMV Leukocyte cell derived

microvesicle

LPS Lipopolysaccharide

MelanA/Mart-1 Melanocyte antigen A/Melanoma

antigen recognized by T cells 1

miRNA Micro RNA

MLCK Myosin light-chain kinase

MV Microvesicle

MP Microparticle

NYHA New York Heart Association

Functional Classification

P2X(7)R P2X purinoceptor 7

pMV Platelet-derived microvesicle

RA Rheumatoid arthritis

RhoB Ras homolog gene family,

member B

ROCK kinase Rho-associated protein kinase

SLE Systemic lupus erythematosus

TAM TYRO3, AXL and MER receptor

protein kinases

TEM Transmission electron

micropscopy

TIM4 T cell immunoglobulin and mucin

domain containing 4

TSAP6 Tumor suppressor activated

pathway-6

TSG101 Tumor susceptibility gene 101

Introduction

The extracellular space of multicellular organisms contains

solutions of metabolites, ions, proteins and polysaccha-

rides. However, it is clear that this extracellular

environment also contains a large number of mobile

membrane-limited vesicles for which we suggest the term

‘‘extracellular vesicles’’ (EVs). EVs include exosomes,

activation- or apoptosis-induced microvesicles (MVs)/mi-

croparticles and apoptotic bodies (Fig. 1). In conventional

histological sections, recognition of the secreted membrane

vesicles is substantially limited by the resolving power of

the light microscope, as their diameter usually falls below

the limit of resolution. Furthermore, not only histological

assessment but also conventional cell biology techniques

including laser confocal microscopy or flow cytometry

(FC) have substantial limitations when used for analysis of

EVs [1]. Thus, it was not until recently that emerging

evidence started to support the notion that vesicle release

may be a universal adaptive cellular response (Fig. 2)

[2–4].

Although initially met with skepticism, the existence of

secreted membrane vesicles is now well established, and

their diverse biological functions have been documented

extensively. Current research interest in the field focuses

primarily on two major types of EVs (exosomes and MVs),

whose release may represent a universal and evolutionarily

conserved process. Of note, EVs also include other vesicular

structures such as large apoptotic bodies as well as exosome-

like vesicles and membrane particles [2]. Exosome-like

vesicles have common origin with exosomes; however, they

lack lipid raft microdomains, and their size and sedimenta-

tion properties distinguish them from exosomes [2, 5].

Membrane particles are 50–80 nm in diameter, and they

originate from the plasma membrane [6]. Extracellular

membraneous structures also include linear or folded

membrane fragments (e.g., from necrotic death) as well as

membranous structures from other cellular sources including

secreted lysosomes [7] and nanotubes [8].

In fact, in the extracellular environment of tissues, dif-

ferent types of vesicles are present simultaneously.

Therefore, instead of focusing on a single type of vesicle,

in this review article we summarize data on membrane

vesicles collectively, from a systems biology perspective.

Without claiming completeness, we discuss recent devel-

opments and some burning questions in the field.

As a step towards standardization of the terminology, we

use the terms suggested recently by Théry et al. [2]. The

only exception is that we use the collective term ‘‘extra-

cellular vesicle’’ (EV) as a synonym of ‘‘membrane

vesicle’’ (the designation that has been suggested for all

populations of cell-derived vesicles). The phrase ‘‘exo-

some’’ refers to vesicles of 50–100 nm in diameter,

Fig. 1 Schematic representation of the extracellular vesicles. Major

populations include exosomes, microvesicles and apoptotic bodies.

To simplify the Figure, cells are not shown to release all types of

vesicles
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generated by exocytosis of multivesicular bodies (MVBs).

Of note, biological literature also uses the term ‘‘exosome’’

for a macromolecular complex involved in RNA degrada-

tion, while the word ‘‘ectosome’’ (used by some authors to

indicate neutrophil or monocyte derived MVs [9]), also

refers to the outer, cortical layer of sponges [10].

‘‘Microparticle’’ is a general designation used for any small

particles within a given size range irrespective of origin.

Even in biomedical literature the term ‘‘microparticle’’ is

commonly used in the case of biopolymer particles (used as

drug delivery systems), or dietary microparticles (food

additives, pharmaceutical or toothpaste microparticles)

[11], to mention just a few examples of the redundant

terminology. Given that the word ‘‘particle’’ suggests a

solid, particulate structure rather than a vesicular one, the

designation ‘‘microvesicle’’ appears more appropriate to

indicate membrane-limited structures. However, over the

past decades, most studies traditionally referred to these

structures as ‘‘microparticles’’ [e.g. endothelial cell- and

platelet derived MVs were designated as endothelial

microparticles (EMPs) and platelet microparticles (PMPs),

respectively]. Of note, the term ‘‘microvesicle’’ has also

been used by several authors collectively for vesicular

structures released by cells instead of ‘‘membrane

vesicles’’.

To make the terminology unambiguous in this review,

we will use the term ‘‘microvesicle’’ for the larger extra-

cellular membrane vesicles (100–1,000 nm in diameter),

and we will not use the term ‘‘microparticle’’ [2]. The

abbreviation ‘‘MV’’ denotes ‘‘microvesicle’’ and not

‘‘membrane vesicle’’.

Release of membrane vesicles: trogocytosis

From a cell biology perspective, vesiculation may be

classified as a type of trogocytosis. The transfer of mem-

brane components between donor and acceptor cells was

first demonstrated in 1973 [12]. The phenomenon has been

coined ‘‘trogocytosis’’ (from Greek ‘‘trogo’’, meaning

‘‘gnaw’’ or ‘‘bite’’). Some authors suggest that trogocytosis

challenges classical theories of cell autonomy [13], as cells

may receive membrane and cytoplasmic fragments from

other cells. Two forms of membrane transfer (trogocytosis)

have been described: via nanotubes or via membrane ves-

icles [8]. This review focuses on membrane vesicles of the

extracellular environment.

The biogenesis of membrane vesicles essentially dis-

tinguishes exosomes from MVs and apoptotic bodies.

In the following section, we provide a concise overview

of hallmarks of paramount membrane vesicle populations:

exosomes, MVs and apoptotic bodies.

Key features of major vesicle populations

Key features of exosomes

• Exosomes were first described by Trams et al. [14] as

exfoliated vesicles with ectoenzyme activity. This work

was followed by the results of Harding and Stahl

describing release of small vesicles and tubules from rat

reticulocytes [15], and an electron microscopic study

describing the exocytosis of the approximately 50-nm

bodies [16]

• They are vesicles surrounded by a phospholipid bilayer

(approximately 50–100 nm in diameter), their size

range roughly overlaps that of the viruses (Fig. 3)

• They are released both constitutively and upon

induction [2] by exocytosis of multivesicular bodies

(MVBs), important intermediates in endolysosomal

transport formed by the invagination and scission of

buds from the endosomal limiting membrane into the

lumen [17]

• Exosomes have been predominantly characterized in

the case of immune cells (dendritic cells, T cell, B cells,

macrophages) and tumors

• Key mechanisms by which exosomes may exert their

biological functions on cells include (1) direct contact

between surface molecules of vesicles and cells, (2)

endocytosis of vesicles, and (3) vesicle-cell membrane

fusion [2]. Exosomes may horizontally transfer mRNA

and miRNA [18]. Horizontal transfer of oncogenic

receptor [19] and transfer of HIV particles [20] have

been demonstrated in the case of exosomes.

Fig. 2 Summary of some adaptive cellular responses including the

newly recognized vesiculation process. Of note, apoptosis itself

involves vesicle release (shedding of apoptotic microvesicles and

apoptotic bodies)
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• Examples for key functions of exosomes include

antigen presentation [2, 21] and immunostimulatory

and inhibitory activities [2].

• They feature phosphatidylserine on the outer membrane

leaflet [22], and markers include CD63, CD81, CD9,

LAMP1 and TSG101 [23, 24]

• Isolation and analytical methods include differential

centrifugation and subsequent sucrose gradient ultra-

centrifugation [25], transmission electron microscopy

(TEM), western blot and mass spectroscopy

• Basic features of exosomes have been recently covered

by numerous review articles [2, 22, 23, 26–35]

(Table 1)

Key features of microvesicles (MVs)

• MVs were first described by Chargaff and West in 1946

as a precipitable factor in platelet free plasma with the

potential to generate thrombin [36]. In 1967, Peter Wolf

Fig. 3 Size ranges of major

types of membrane vesicles.

While exosomes share size

distribution with viruses,

microvesicles overlap in size

with bacteria and protein

aggregates (e.g. immune

complexes). Both apoptotic

bodies and platelets fall into the

size range of 1–5 lm

Table 1 Key features of membrane vesicle populations

Exosomes Microvesicles Apoptotic bodies

Size range Approximately 50–100 nm 100–1,000 nm (*100–400 nm in

blood plasma) [2, 22, 38]

1–5 lm [61]

Mechanism of generation By exocytosis of MVBs By budding/blebbing of the plasma

membrane

By release from blebs of cells

undergoing apoptosis

Isolation Differential centrifugation and sucrose

gradient ultracentrifugation [25],

100,000–200,000g, vesicle

density is 1.13–1.19 g/mL

Differential centrifugation [39]

18,000–20,000g
Established protocols are

essentially lacking; most

studies use co-culture with

apoptotic cells instead

of isolating apoptotic bodies

Detection TEM, western blotting, mass

spectrometry, flow

cytometry (bead coupled)

Flow cytometry, capture based

assays [38, 52]

Flow cytometry

Best characterized cellular

sources

Immune cells and tumors Platelets, red blood cells and

endothelial cells

Cell lines

Markers Annexin V binding, CD63, CD81, CD9,

LAMP1 and TSG101 [23, 24]

Annexin V binding, tissue factor

and cell-specific markers

Annexin V binding, DNA content

Recent review articles [2, 22, 23, 26–35] [2, 24, 35, 53–57]
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described ‘‘platelet dust’’, a fraction containing mainly

lipid-rich particles separated by ultracentrifugation

from fresh plasma [37]

• MVs are structures surrounded by a phospholipid

bilayer. They are 100–1,000 nm in diameter [2] or

*100–400 nm in blood plasma [38], but the lower cut-

off remains to be established [39]. Their size range

overlaps that of bacteria and insoluble immune com-

plexes [38] (Fig. 3)

• They are formed by regulated release by budding/

blebbing of the plasma membrane.

• The rate of steady state release of budding/shedding

vesicles [35] is generally low (except for tumors that

release them constitutively [40]).

• Regulated release of vesicles is efficiently induced upon

activation of cell surface receptors or apoptosis and the

subsequent increase of intracellular Ca2? [41, 42]

• They have been predominantly characterized as prod-

ucts of platelets, red blood cells and endothelial cells.

• Examples of key functions of MVs: they have procoag-

ulant activity [43], represent a form of secretion of IL1b
[44], contribution to the pathogenesis of rheumatoid

arthritis [45–47], contribution to the proinvasive char-

acter of tumors [48], induction of oncogenic cellular

transformation [49], fetomaternal communication [50]

• They feature phosphatidylserine; however, some obser-

vations also suggest the existence of MVs without

phosphatidylserine externalization [51]

• Routine isolation and analytical methods include dif-

ferential centrifugation [39], flow cytometry (FC) and

capture-based assays [38, 52]

• Basic characteristics, molecular and functional aspects

have been summarized by several recent review articles

[2, 24, 35, 53–57]

Key features of apoptotic bodies

• The term ‘‘apoptotic body’’ was coined by Kerr in 1972

[58], and the next milestone work in apoptosis research

was conducted by Robert Horvitz et al. tracing cell

lineage development in the nematode Caenorhabditis

elegans [59, 60]

• Apoptotic bodies are 1–5 lm in diameter (approxi-

mately the size range of platelets) [61]

• Apoptotic bodies are released as blebs of cells under-

going apoptosis

• They are characterized by phosphatidylserine external-

ization, and may contain fragmented DNA [62]

• Examples of key functions of apoptotic bodies are

horizontal transfer of oncogenes [63], horizontal transfer

of DNA [64], yielding presentation of T cell epitopes upon

uptake by phagocytic cells [65] and representation of B

cell autoantigens [66]. Uptake of apoptotic bodies has

been shown to lead to immunosuppression [67].

• Instead of isolating apoptotic bodies, most studies use

co-cultures of cells undergoing apoptosis to investigate

the functions of these structures.

In spite of extensive research, the rapidly emerging field of

membrane vesicle research remains technically difficult. In

the next section, we aim to overview major challenges and

recent methodological improvements.

Problems and pitfalls associated with membrane vesicle

measurement

In this section, we aim to summarize the difficulties associ-

ated with isolation of membrane vesicles and standardization

of pre-analytical and analytical factors of membrane vesicle

assessments.

Isolation of membrane vesicles

There is a widely accepted protocol for exosome isolation,

which includes ultracentrifugation and a subsequent sucrose

density gradient ultracentrifugation or, alternatively, sucrose

cushion centrifugation [25]. In contrast, standard isolation

protocols for MVs are lacking. Most groups apply centrifu-

gation conditions from 18,000g (30 min) to 100,000g

(60 min) [68]. Standard isolation protocols for apoptotic

bodies are absent in the literature. In biological fluids and cell

supernatants, the previously described membrane vesicle

populations are present simultaneously with possible size

overlap. While immune affinity isolated exosomes have been

shown to have a diameter\100 nm [69], it has not yet been

convincingly demonstrated that all MVs are larger than the

100-nm limit. Moreover, the statement that MVs may not be

\100 nm should be made with some caution. Booth et al.

have shown vesicles of this size (and even smaller) budding

from the plasma membrane [70].

A further substantial problem is that during differential

centrifugation prior to pelleting of a given membrane vesicle

population, some of the respective vesicles may be selectively

depleted. For example, centrifugation of cells or platelets

results in a substantial loss of MVs [71]. To analyze blood-

derived MVs, platelet-free plasma is required. However,

currently there is no consensus on the centrifugation times,

forces or the number of cycles for the removal of platelets. For

complete removal of platelets, an 800-nm filtration is required

after centrifugation [38]. Of note, forced filtration of mem-

brane vesicles holds the risk of fragmentation into smaller

vesicles [72]. To avoid this problem, we recommend gravity-

driven filtration [38].
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In conclusion, the isolation of membrane vesicles by

differential centrifugation is complicated by the possibly

overlapping size distributions of platelets and different

membrane vesicle populations. Furthermore, centrifugation

alone may prove insufficient to separate vesicles based on

their sizes. However, differential centrifugation, when

combined with sucrose gradient ultracentrifugation, can

separate exosomes from MVs. A further alternative method

to differential centrifugation, immunoisolation of mem-

brane vesicles, may overcome these limitations [25, 69].

Size determination of different membrane vesicle

populations

Despite the existence of several methods available to

determine the size of vesicles, the precise determination of

the size distribution of a given vesicle preparation seems to

be unexpectedly difficult. FC is a convenient technique;

however, it has severe limitations in resolving structures

below 200 nm [22]. The gold standard for vesicle size

determination remains transmission electron microscopy

(TEM) [1]. For TEM studies, vesicles need to be concen-

trated by centrifugation. However, there are some concerns

about the reliability of analysis of pelleted vesicles: cen-

trifugation, dehydration and fixaton for TEM may alter the

size and morphology of vesicles. Newer techniques (such

as cryo-EM) led to the finding that the ‘‘cup-shaped’’

morphology of exosomes was an artifact related to fixation

for TEM [25]. Despite these concerns, TEM is the only

method by which the nature of the particle, its size and

structure may be determined at the same time. Surface-

bound particles are studied by atomic force microscopy

(AFM). AFM has some limitations in analyzing non-rigid

particles: the z value (the height of the particle) seems to be

much smaller than the x, y values (characteristic for the

surface area) [73]. Yuana et al. hypothesized that the ves-

icle volume is constant; therefore, the diameter of surface-

bound vesicles is much smaller than the x, y values, if we

consider the low z value. However, the low z value may

also result from the tapping mode analysis of the AFM (the

up- and downward motion of the AFM tip may cause

deformation of vesicles) or from the drying step. This is

supported by our AFM data showing concordant results

with TEM and dynamic light scattering analysis without a

correction for the z value [38].

Dynamic light scattering analysis (DLS) is a useful

method for membrane vesicle sizing; however, it has lim-

itations, particularly when the analyzed system is

polydisperse. Our work based on TEM, AFM and DLS

analysis, supported by the work of others [72], suggested

that the blood plasma-derived MVs, isolated by

20,500g centrifugation, were 100–400 nm in diameter

(mean = 170 nm) [38]. Nanoparticle tracking analysis is

an alternative method to DLS and, particularly in the

fluorescent mode, it is capable of analyzing highly poly-

disperse structures between 50 and 1,000 nm [1]. Results

obtained with this method are highly concordant with the

TEM measurements [1]. Other methods for vesicle size

determination such as stimulated emission depletion

microscopy or fluorescence correlation spectroscopy have

been recently reviewed by van der Pol et al. [1].

Pre-analytical challenges

There are growing concerns about pre-analytical variables,

particularly in the field of the diagnostic use of MVs.

These pre-analytical factors were addressed insufficiently

by earlier works in the literature. However, there are data

regarding the alterations of the MV count in erythrocyte

concentrates and platelet-rich plasma. It has been shown

that platelets vesiculate in response to shear stress [74] and

storage [75] (Fig. 4). In the study of Connor et al., it has

been shown that freeze–thaw cycles of platelet-rich plasma

resulted in a substantial increase of annexin V? MV count

[51]. In erythrocyte concentrates, the MV count varies with

storage time, temperature, the buffer used to dilute MVs,

and, most interestingly, with agitation [71]. Rubin et al.

have shown that vortexing the erythrocyte concentrates for

20 s doubled the MV count [71]. These data strongly

suggest that cells, particularly platelets and erythrocytes,

are highly sensitive to environmental factors and respond

by release of MVs (Fig. 4), which may lead to confound-

ing results. As a consequence, during the assessment of

Fig. 4 Transmission electron micrograph of a platelet from normal

human blood plasma releasing membrane vesicles (pMVs). Original

magnification 930,000
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MVs in routine diagnostic approaches, all steps from

venipuncture to sample analysis must be standardized

precisely. These steps include (1) the diameter of the

needle used for venipuncture, (2) duration of placement of

the tourniquet, (3) the type of anticoagulants used, (4)

centrifugal speed to yield platelet-free plasma, (5) working

and storage temperature of the sample, (6) freeze–thaw

cycles, (7) needle-to-analysis time, and (8) analysis pro-

tocols [39, 76]. It is critical that cells and platelets from

biological fluids be pelleted shortly after collection (pref-

erably within an hour), and before frozen stage. In order to

minimize the effect of pre-analytical variables, recently, a

workgroup has launched a joint project on standardization

of MV analysis (International Society on Thrombosis and

Haemostasis, Scientific and Standardization Committee:

Standardization of Pre-analytical Variables in Plasma

Microparticle Determination). The preferred protocol

includes collection of blood samples in citrate containing

tubes. In order to deplete blood samples in platelets, cen-

trifugation twice with 2,500g for 15 min is recommended

(F. Dignat-George, personal communication). After snap-

freezing in liquid nitrogen, the samples should be stored at

-80�C.

On the other hand, there are only limited data on pre-

analytical variables in the case of exosomes. Some pre-

analytical challenges have been demonstrated with respect

to urinary exosomes as new biomarkers of kidney disease.

During the pre-centrifugation step, urinary exosomes may

become entrapped in the polymeric Tamm–Horsfall protein

leading to a loss of exosomes [77]. Furthermore, possible

viral contamination with the common presence of several

hosts molecules, e.g., MHC-II molecules in both virions

and exosomes, also need to be considered during exosome

detection. Optiprep velocity gradients have been recently

suggested to efficiently separate exosomes from HIV-1

particles [78].

Flow cytometric detection of membrane vesicles

As described above, standard FC detects vesicles above

approximately *200 nm, and therefore exosomes and

smaller MVs cannot be analyzed directly by this method.

Thus, it has to be emphasized that MVs smaller than the

detection limit of the used flow cytometer cannot be dis-

criminated from the instrument noise, leading to an inadequate

numbering of MVs (because of not detecting the vast majority

of vesicles that are present in the sample). Despite these lim-

itations, FC is a widely used method for MV detection, and

using FC, many studies have reported that MV counts corre-

lated with a variety of diseases and different physiological

conditions. Recently, there have been major improvements in

the standardization of FC measurements of membrane vesi-

cles [79, 80]. This is a prerequisite for the diagnostic and

prognostic use of MV measurements. FC platforms for small

size EV analysis are being developed by BD, Beckmann

Coulter, Apogee; however, these are not yet widely available

(except for the Apogee system).

In many of the earlier FC studies, annexin V was used as

a common marker for MVs. However, recent studies sug-

gest the presence of annexin V-negative MVs. Indeed, it

has been reported that annexin V-negative MVs account

for more than 80% of the platelet-derived vesicles in blood

plasma [51]. This study controlled for the effect of annexin

V binding, demonstrating that it requires at least 1.25 mM

calcium for binding. They also drew attention to the fact

that phosphate-buffered saline was not suitable for annexin

V staining, as calcium forms precipitates with phosphate.

In line with these results, in our work, we have found that

saline with 2.5 mM Ca2? results in an optimal annexin V

staining [38]. Given that not all vesicles are annexin V

positive, alternative labelings of MVs with PKH67 [81] or

bio-maleimide [82] may also prove useful to examine

correlations between MV counts and human disorders. In

blood, the most important sources of MVs are platelets, and

most studies analyzed the alterations of levels of platelet-

derived microparticles (pMVs) under several conditions

and diseases. Recent studies have suggested that the majority

of the CD41? pMVs were derived from megakaryocytes

rather than from platelets [83]. The megakaryocyte-derived

vesicles did not carry CD62P, but displayed full-length fil-

amin A [83]. Further studies are required to clarify the

potential diagnostic and/or prognostic values of megak-

aryocyte-derived vesicles.

An additional problem is that any structure that shares

size and consequently scattering properties with MVs,

would also appear during FC within the gate used for MP

detection. We have demonstrated recently that insoluble

immune complexes may also give signals at FC, and thus

interfere with MV measurements. When all events are

considered as MVs within the MV gate, the presence of

immune complexes in RA synovial fluid may overestimate

true vesicle counts [38]. Furthermore, we showed that,

when using indirect labeling, primary and secondary anti-

bodies formed immune complexes detectable within the

MV gate as fluorescent events. Importantly, not only

immune complexes but alo streptavidine-biotinylated

antibodies and antibody aggregates may form supramo-

lecular protein complexes detectable within the MV gate.

The MV and protein complex-related events may be easily

discriminated by using low concentrations of detergents

enough to lyse MVs but insufficient to disassemble

immune complexes and protein aggregates [38]. The

optimal concentration of the detergent (i.e., Triton X-100),

which discriminates vesicles from protein aggregates,

should be titrated for individual settings. Furthermore, it is

recommended to use only direct immunolabelling when
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staining vesicles in order to avoid immune complex for-

mation. However, it is important to note that some vesicle

subpopulations may be particularly resistant to such lysis;

therefore, detergent lysis may not be considered as a

guarantee to lyse all types of membrane vesicles.

To conclude, FC is a powerful technique to analyze

membrane vesicles; however, as it has serious limitations,

all FC data on membrane vesicles should be interpreted

cautiously.

Potential contamination of membrane vesicle preparations

To study the effect of secreted membrane vesicles, it is of

high importance to examine isolated vesicle populations.

Beyond membrane vesicles, biological fluids may also

contain high amounts of different types of particles (lipo-

proteins, viruses) or molecules with the tendency to form

aggregates or complexes. These complexes or particles not

only disturb the detection of membrane vesicles (as dis-

cussed in the previous section), but may also co-sediment

with various membrane vesicle populations. Roughly,

exosomes overlap in size with viruses and lipoproteins,

while MVs overlap the size range of bacteria (Fig. 3). In

the case of viruses, even sucrose gradients are inefficient at

separating them from exosomes [78]. This problem may be

solved using iodixanol gradients, which have been shown

to separate exosomes from retroviruses [78]. Furthermore,

proteins may also contaminate isolated exosome prepara-

tions, as suggested by Rood et al. [84]. The authors showed

that, after ultracentrifugation or nanomembrane ultrafiltra-

tion, the pellet contained very high amounts of

contaminating proteins from patients with nephrotic syn-

drome. Our group has also shown that preparations of MVs

isolated by differential centrifugation may be contaminated

by protein complexes, especially by insoluble immune

complexes [38]. We have demonstrated shared size and

sedimentation properties of immune complexes and MVs,

which may result in contamination of conventionally

isolated MV preparations.

Membrane vesicle populations may also be contami-

nated by microsomal fractions or organelles released from

necrotic cells (in particular in tumors); thus, corresponding

controls (endoplasmic reticulum-related molecules) should

be run in studies of isolated membrane vesicles.

In conclusion, exosomes represent the best characterized

population within the family of membrane vesicles. How-

ever, the isolation, sizing and measurement of MVs and

apoptotic bodies remains elusive. There have been signif-

icant advances in FC detection and standard isolation of

MVs, but pre-analytical factors still remain a challenge.

Additionally, quality control of EV preparations is essential

prior to functional assays, if describing a specific function

of exosomes or MVs.

Conceptual and theoretical issues related to membrane

vesicles

The most challenging conceptual issue in the field is the lack

of standard terminology and methodology which hampers

efficient information flow. International meetings may offer

unique opportunities to establish such a consensus.

Current studies test isolated populations of membrane

vesicles in vitro. Thus, the effect of a single vesicle type

rather than a complex vesicular pattern is assessed (albeit the

latter probably reflects in vivo situations more realistically).

Combinatorial signaling induced by different vesicles (such

as exosomes and MVs) or vesicles in combination with

soluble molecules (such as cytokines), has not yet been

investigated. Thus, synergistic or additive effects cannot be

estimated. Size distribution of vesicles released by apoptotic

cells has not yet been systematically explored. Therefore,

exclusion of apoptotic bodies ([1,000 nm) from studies on

membrane vesicles may lead to loss of relevant information

with respect to EVs. Furthermore, lack of information on

local concentrations and half lives of membrane vesicles in

tissues prevents drawing conclusions from in vitro functional

assays with secreted membrane vesicles.

Finally, the striking structural and functional similarities

between exosomes and viruses raise interesting questions.

As mentioned earlier, size distributions of exosomes and

viruses show a substantial overlap (Fig. 3). Furthermore,

both exosomes and many viruses are essentially lipid and

protein shells enclosing nucleic acids, and their nucleic acid

content is released into the cytosol of the cell. As with

viruses, transcription of exosomal RNA has been convinc-

ingly shown in cells after uptake of the vesicles [19]. Thus,

the description of exosomes may well fit viruses, and the

borderline of these two structures might be somewhat blur-

red. A clear difference is the ability of viruses to replicate

inside the infected cells. The intriguing possibility is raised

that membrane vesicles (such as exosomes) and viruses may

have phylogenic links. HIV-1 and exosomes were reported to

share a common glycome arguing for a common origin [85].

It may be hypothesized that certain cell-derived vesicles

(carrying enzymes and nucleic acids) might have proven

evolutionarily successful to replicate inside cells following

their uptake. From this aspect, enveloped viruses such as

HIV or influenza virus might be of particular interest, since

during their release from cells these viruses acquire an

envelope, which is a modified piece of the host’s plasma- or

internal membrane. It remains an exciting question as to

whether viruses like HIV hijack the exosomal dissemination

system as suggested [20], a concept that has been refuted in

the recent past [86], or they might have taken advantage of

cellular vesiculation early during their evolution. Further-

more, it was shown that exosomes from cytomegalovirus-

infected (CMV) HUVEC cells contain CMV proteins and
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viral DNA [87], and exosomes from nasopharyngeal carci-

noma cells with latent EBV infection, also contain viral

proteins as well as virus-specific miRNAs [88].

In the next section, we make an attempt to briefly

overview the experimental settings that may serve to

investigate the functions of EVs.

Experimental systems to study membrane vesicles

In vitro modulation of vesicle formation may be achieved

by various compounds. The family of potentially targeted

pathways and proteins that participate in the release of

exosomes and MVs are numerous, and their number is

continuously expanding.

Stimulation of certain cell-membrane receptors leads to

increased secretion of membrane vesicles. These include

P2X(7)R [44, 89, 90] and thrombin receptor [91] or GPVI

collagen receptor on platelets [45]. P2X(7)R can be stim-

ulated by ATP or the antimicrobial peptide LL-37 [92], or

inhibited by rotterlin [93] and various protein tyrosine

kinase antagonists [94]. Resting B cells, T cells, mast cells

and reticulocytes can also secrete vesicles after activation

of their cell surface receptors [2]. Exosome secretion may

be induced by activation of the T cell receptor or reduced

by LPS in dendritic cells [95, 96].

Downstream pathways of cell surface receptors may

also be modulated to modify vesicle secretion. Calcium

ionophores stimulate vesicle release by elevating intracel-

lular calcium levels in various cells [97, 98]. Calpeptin, an

inhibitor of calmodulin, decreases MV shedding in plate-

lets [99]. Exosome release may also be blocked in

melanoma cells by the pretreatment of proton-pump

inhibitors, which reduce the acidic milieu [100]. In tumor

cells, the GTP binding protein ARF6-GTP activates phos-

pholipase D which recruits extracellular signal-regulated

kinase (ERK) to the plasma membrane, where ERK acti-

vates myosin light-chain kinase (MLCK). The latter

molecule is needed for membrane vesicle secretion; thus,

inhibition of ARF6 activation blocks MV shedding [101].

The ceramid pathway can be modulated by inhibition of the

synthesizing enzyme, neutral sphingomyelinase [102].

Finally, effector molecules that take part in membrane

vesicle formation may also be inhibited. The compound

R5421 inhibits scramblase, and reduces MV shedding in

reticulocytes [103], while inhibition of the known sheddase,

ADAM17, also reduces MV production in platelets [104].

Of note, most proteins involved in vesicle trafficking

also have other vital functions, thus blocking them may

have detrimental consequences for cells. Strikingly,

blocking of Rab27a or Rab27b impairs exosome secretion,

without affecting conventional protein secretion [105].

In vivo models suitable for studying vesicle production

are almost completely lacking. Scott syndrome, a rare

bleeding disorder, is the only known human disease caused

by inheritable deficiency of MV production of human

platelets as a result of impaired phosphatidyl-serine trans-

membrane migration and Ca2?-induced phospholipid

scrambling [106]. This disease has also been described in a

pedigree of German sheepdogs [107], and the gene

responsible was linked to canine chromosome 27 [108].

This dog disease could serve as an in vivo animal model to

study impaired platelet vesicle secretion.

Human gene polymorphisms may affect membrane

vesicle secretion. IL-1b has been shown to be secreted via

membrane vesicles after activation of the P2X(7) receptor

and Toll-like receptors in monocytes and macrophages [44,

109]. The gain of function A348T polymorphism of

P2X(7)R was shown to induce increased IL-1b secretion

after LPS priming in monocytes [110], although in this case

the route of secretion was not analyzed. However, the

G496A loss of function mutation of the same gene was

reported to decrease both secretion of IL-1b and shedding

of L-selectin [111]. Polymorphisms of other genes,

encoding for proteins that take part in MV formation and

secretion, offer possibilities for studying membrane vesi-

cles. Thus, polymorphisms and mutations of genes that

influence EV formation may serve as valuable tools to

study vesicle formation processes.

On the other hand, membrane vesicle research may also

benefit from lessons of in vivo experimental models of

impaired vesicle secretion. Various knock-out mice may

serve as attractive mammalian candidates to study defi-

ciency of proteins that participate in membrane vesicle

formation. For instance, leukocytes of P2X(7)R-deficient

mice are characterized by reduced shedding of L-selectin,

and decreased secretion of IL-1b in response to LPS and

ATP [112]. Tumor suppressor-activated pathway 6

(TSAP6)-deficient mice show microcytic anemia, with

abnormal reticulocyte maturation and deficient transferrin

receptor downregulation, features which are all dependent

on exosome secretion. Exosome production is also

impaired in TSAP6 null cells [113].

Mice, genetically deficient in the clearance of membrane

vesicles (e.g., phosphatidyl-serine knockout mice [114] or

T cell immunoglobulin and mucin domain-containing

protein 4 (TIM4)-deficient mice [115]) represent another

type of in vivo experimental system to study membrane

vesicles. The significance of such an in vivo system is

supported by the observation that TIM4-deficient mice

exhibit autoimmunity and T and B cell hyperactivity [115].

Recently, Tyro3/Axl/Mer (TAM) signaling has been

implicated in the ‘homeostatic phagocytosis’ of apoptotic

cells and membranes [116]. Similarly to TIM4-deficient

mice, TAM-deficient mice develop autoimmunity [117].

The human autoimmune disease systemic lupus erythe-

matosus (SLE) may offer another in vivo system to
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investigate membrane vesicles, as SLE is characterized by

an impaired clearance of apoptotic bodies [118–123].

Comprehensive meta-analysis of proteomic studies

on different types of membrane vesicles

In contrast to sporadic publications on membrane vesicle

lipidomics [124–127], metabolomics [128] or glycomics

[85], information regarding the protein composition of EVs

may be readily extracted from numerous published pro-

teomic studies as well as from a database [129]. In order to

obtain a reliable and representative set of proteins identi-

fied in exosomes, we filtered the ExoCarta database [129]

for proteomic studies, and selected only data from sources

in which human exosomes were purified by density gra-

dient ultracentrifugation [126, 129–133]. Unlike in the case

of exosomes, there is no comprehensive database for pro-

teomic data regarding MVs. While the diversity of tissue

types analyzed by exosome studies makes the obtained

dataset representative for these structures, at present there

is a clear overrepresentation of data concerning platelet-

derived MVs in the literature. In the MV dataset, we

included data from proteomic studies on human platelet or

plasma-derived MVs, in which protein data were supplied

in a clearly accessible format [128, 134–136]. Subcellular

localization of proteins can be readily analyzed using the

annotations of the SwissProt/UniProt database [137, 138].

Although the proteomic studies from which the protein

datasets were extracted also investigated the subcellular

localization of molecules, the different methods of vesicle

isolation and analysis interfered with the comparison of the

results from individual studies.

One may anticipate that the subcellular localization of a

protein in an intact cell is in concordance with the possible

localization in a membrane vesicle. Since both exosomes

and MVs are considered to consist of cytoplasm enclosed

by a lipid bilayer, it was interesting to find a notable por-

tion of nuclear proteins in both vesicle populations (Fig. 5).

Given that platelets have no nuclei, the presence of nuclear

proteins in MVs isolated from blood plasma supports the

recent observation that circulating MVs are of megak-

aryocyte rather than platelet origin [83]. Nuclear proteins

may originate from the preparation methods, as centrifu-

gation may also pellet apoptotic or necrotic materials

(apoptotic bodies, nuclear fragments or nucleosomal

complexes) together with MVs. Dean et al. demonstrated

that nuclear proteins are not evenly distributed in all size

fractions of platelet-derived MVs [136]. Of note, cytosolic

proteins, known to undergo nuclear translocation, may

have also increased the frequency of nuclear proteins, as

we included proteins in all their possible subcellular

localizations (according to SwissProt-UniProt annotations)

when generating Fig. 5. In contrast to the unexpectedly

high ratio of nuclear proteins found in MVs, exosomes

contained only limited amounts of nuclear proteins.

Membrane-associated proteins, on the other hand, consti-

tuted the major fraction of exosomal proteins.

One of the possible functions of membrane vesicles is

contributing to non-classical leaderless secretion of pro-

teins such as IL-1b [139]. Taking advantage of the recently

available prediction tools to determine which proteins are

likely to undergo leaderless secretion [140], we used the

SecretomeP 2.0 software from CBS [141] on a dataset

previously filtered for cytoplasmic proteins. All membrane

proteins are likely to contain a signal sequence and thus

avoid leaderless secretion. Using this prediction tool, we

analyzed data obtained in six studies on exosomes and four

studies on MVs. From all cytoplasmic proteins in each

dataset, around 30% were predicted to be secreted non-

classically. The remaining molecules (such as cytoskeletal

proteins) could contribute to a protective shell stabilizing

vesicular structure, and may carry targeting information.

Fig. 5 Subcellular localization of proteins identified in exosomes

(a) and MVs (b) The published proteomic studies are indicated by the

name of the first author
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Since IL-1b, for example, plays a crucial role in regu-

lating immune responses, it is critical to achieve the right

concentration at the right site. Although it is degraded

rapidly in human plasma (its half-life is 6 min [142]), it

might be preserved for a longer time inside vesicles, thus

enabling it to act systematically or locally, but distant

from the site of its production. For IL-1b, the majority of

leaderless secretion has been reported to occur by exo-

somes [143].

The fact that molecules, predicted to undergo leaderless

secretion, were not detected in substantial amounts in

vesicles might either suggest an alternative route for non-

classical secretion (other than by secretion of membrane

vesicles), or may result from limitations of current pre-

diction tools. Indeed, transporters have also been suggested

to be involved in leaderless protein secretion [144], rep-

resenting a minor alternative to release by exosomes.

When exosome- and MV-associated proteins were ana-

lyzed for major biological functions by Ingenuity Pathway

Analysis (IPA; Ingenuity Systems, Mountain View, CA,

USA), in the case of both vesicle populations, cellular

movement, cell-to-cell signaling, tissue development and

cancer were among the top associated biological functions.

The function ‘‘cell death’’ was associated more with MVs

than with exosomes (in agreement with the observation that

release of MVs is induced during apoptosis). In contrast to

exosomes, MV proteins were found to be associated with

inflammation, and this function was ranked 10th in the case

of MVs, whereas it was ranked only 30th for exosomes

(data not shown).

According to the IPA software, many of the key mole-

cules implicated in viral entry into cells are also detectable

in exosomes (Fig. 6a). These molecules expressed by both

exosomes and cells bind a variety of viruses, like SV40,

Filo-, Coxsackie’s-, Echo-, and Arena viruses and even

HIV1. The presence of numerous virus binding proteins in

exosomes is in line with the fact that virus entry via

endocytic pathways is a well-known attribute to exosomes,

reviewed recently by Izquierdo-Useros et al. [145]. Out of

all biological pathways in the IPA knowledge base, the

most adequate fit of MV proteins appeared to be integrin-

mediated signal transduction (Fig. 6b). The integrin path-

way is involved in regulating cell shape and motility in

response to changes in the extracellular environment. MV

proteins implicated in this pathway include actin, talin and

vinculin, molecules involved in regulating cell shape and

cellular movement. The significance of the abundant

virus binding proteins in exosomes and MV molecules

involved in integrin signaling remains to be elucidated

experimentally.

Top canonical functions, identified by IPA software in

association with exosomes and MVs, are included in

Table 2. While many of the identified pathways revealed

known features of membrane vesicles, germ cell–Sertoli

cell signaling in exosomes, however, seems to represent an

unexpected pathway. During spermatogenesis, actin-based

adherens junctions at the interface of Sertoli and germ cells

undergo extensive restructuring. This facilitates germ cell

movement across the epithelium. The dynamics of these

junctions are regulated by the integrin/RhoB/ROCK/LIMK

pathway [146]. The clear nature of this pathway in the case

of exosomes remains to be established, and at this point we

cannot exclude the possibility that it may be an issue

related to the in silico analysis rather than a real biological

process existing in exosomes.

Medical implications of the extracellular vesicles

In the present review, we have described the diverse con-

stituents of the extracellular vesicular compartment. The

ubiquitous formation of membrane vesicles allows the

clinician to exploit their diagnostic value in various dis-

eases (Table 3) and conditions. Exosomes are smaller, but

can serve as tumor markers. MVs are investigated thor-

oughly as diagnostic tools due to their larger size and

accessibility in several biological fluids. Most groups have

focused on blood-derived MVs. Here, we discuss the most

widely studied endothelial- and platelet-derived MVs as

well as some recent advances of tumor vesicle-based

diagnostic studies.

Endothelial MVs (eMVs)

Endothelial cells can release exosomes, endothelial MVs

(in the literature often also referred to as EMPs) and

apoptotic bodies [24]. eMVs are formed in vitro after

stimulation with LPS, reactive oxygen species and various

cytokines [24]. They are detectable in human blood plasma

by FC using endothelial cell-specific markers (CD54,

CD62E, CD62P, CD31, CD106, CD105, CD144, CD146)

[24]. Despite the limitations of FC, eMVs are considered to

be markers of inflammation, endothelial injury and endo-

thelial dysfunction [147–149]. As endothelial dysfunction

is a well-known predictor of future cardiovascular diseases,

eMVs could be used as biomarkers of vascular health.

eMVs are elevated in the blood plasma of patients with

acute and chronic vascular disorders, including acute

coronary syndrome [150], severe hypertension [151], end-

stage renal failure [149] and pulmonary arterial hyper-

tension [152] (for a review, see [153]) (Table 3). eMVs

have a controversial role in the pathogenesis of vascular

diseases [18]: eMVs may contribute to vascular injury and

they are capable of inducing endothelial cell activation,

impairing vasorelaxation [154], and promoting arterial

stiffness. Furthermore, phosphatidyl-serine and/or tissue

factor positive eMVs promote coagulation and
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thrombosis. On the other hand, it has been shown that

eMVs may induce angiogenesis or promote endothelial

cell survival [24].

Platelet MVs (pMVs)(Fig. 4)

The majority of circulating MVs in the blood plasma are

derived from platelets during platelet activation or, as

suggested recently, from megakaryocytes [83]. In vitro,

pMVs are formed during stimulation of platelets with

collagen, thrombin or ADP. Shear stress and agitation also

induces pMV formation. pMVs are easily detected by FC

using CD41, CD42, CD61, and CD62 markers. Similarly to

eMVs in endothelial activation, pMVs are considered as

platelet activation markers. Therefore, numerous diseases

are characterized by elevated levels of pMVs (Table 3),

including cardiovascular diseases, autoimmune diseases

[62] and type II diabetes. pMVs may also expose phos-

phatidyl-serine and tissue factor, and they may also

contribute to the pathogenesis of vascular diseases due to

Fig. 6 Ingenuity Pathway Analysis (IPA) of data from meta-analyses

of published proteomic studies on exosomes and microvesicles.

a Molecules implicated in viral entry by caveola- and clathrin-

mediated endocytosis as well as by macropinocytosis. Shaded
symbols represent molecules identified in exosomes. As shown,

several exosomal proteins are present in the IPA knowledgebase as

molecules that facilitate the entry of different viruses. b Molecules

involved in integrin signaling. Shaded symbols represent published

microvesicle-associated proteins as key participants of integrin

signaling
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Table 2 Top vesicle-associated canonical pathways identified by Ingenuity Pathway Analysis

MPs/MVs Exosome

Canonical pathway P value Ratio Canonical pathway P value Ratio

Actin cytoskeleton signaling 6.05E-14 38/238 Germ cell-Sertoli cell junction signaling 1.20E-23 45/168

Integrin signaling 5.18E-11 32/205 Integrin signaling 1.65E-21 47/205

RhoA signaling 4.53E-09 21/110 Caveolar mediated endocytosis signaling 2.92E-21 30/85

Caveolar mediated endocytosis signaling 1.12E-08 17/85 Virus entry via endocytic pathways 1.58E-20 32/100

Acute phase response signaling 2.21E-08 26/183 Ephrin receptor signaling 2.42E-20 43/199

The P value is calculated using the right-tailed Fisher Exact Test. It is a measure of the likelihood that the association between a set of analyzed

molecules and a given pathway is due to random chance. The ‘‘ratio’’ expresses the fraction of molecules fitting a given pathway within an

analyzed dataset and the total number of molecules known to be associated with that pathway in Ingenuity’s knowledge base

Table 3 Diagnostic or prognostic alterations of the extracellular vesicles

Disorders Type of vesicles Alterations of the extracellular

vesicular compartment

References

Autoimmune diseases

Systemic lupus erythematosus pMVs and eMVs Elevated levels of pMVs and eMVs in blood plasma [52, 168]

Anti-phospholipid syndrome pMVs and eMVs Elevated levels of eMVs and pMVs in blood plasma [169, 170]

Rheumatoid arthritis pMVs Elevated levels of pMVs in blood plasma, elevated levels of annexin

V? MVs and pMVs in synovial fluid

[38, 45, 52,

171,

172]

Systemic sclerosis pMVs, eMVs and lMVs Elevated levels of pMVs, eMVs and lMVs in blood plasma [173, 174]

Vasculitis pMVs, eMVs and lMVs Increased number of pMVs and lMVs in acute vasculitis and increased

numer of pMVs and eMVs in systemic vasculitis

[175–177]

Type 1 diabetes mellitus pMVs, eMVs Increased number of eMVs and pMVs, increased total MV

procoagulant activity

[178]

Multiple sclerosis pMVs, eMVs Elevated levels of pMVs and elevated levels of eMVs during

exacerbation

[179, 180]

Cardiovascular diseases

Acute coronary syndrome pMVs, eMVs High levels of procoagulant eMVs and pMVs are present in the

circulating blood of patients. High eMV level was associated with

high-risk angiographic lesions in patients with acute coronary

syndromes. Levels of eMVs may predict future cardiovascular

events in patients at high risk for congestive heart failure

[150, 181–

185]

Hypertension eMVs, pMVs Levels of eMVs and pMVs correlate with blood pressure.

Hypertensive patients with microalbuminuria have higher levels of

eMVs compared to hypertensive patients without microalbuminuria

[151, 186]

Pulmonary hypertension pMVs, eMVs, lMVs eMVs predict severity of pulmonary hypertension. Elevated levels of

pMVs, eMVs and lMVs predict vascular inflammation and

hypercoagulability

[152, 187,

188]

Congestive heart failure eMVs Apoptotic eMVs are elevated in patients with congestive heart failure.

Furthermore, the levels of eMVs correlate with NYHA functional

classes. Patients undergoing heart transplantation due to heart

failure show altered phenotypes of eMVs

[189–191]

Deep vein thrombosis (DVT)

and venous thromboembolism

eMVs, pMVs pMVs and eMVs are elevated in patients with DVT. Total MV count

may serve as novel markers for DVT. Circulating MVs and pMVs

are elevated in patients with acute pulmonary embolism

[192–194]

Buerger’s disease pMVs pMVs are markers of exacerbation [195]

Atherosclerosis lMVs, pMVs CD11a positive lMVs predict subclinical atherosclerosis. pMVs are

elevated in individuals with carotis atherosclerosis

[196, 197]
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Table 3 continued

Disorders Type of vesicles Alterations of the extracellular

vesicular compartment

References

Cerebrovascular disorders pMVs, eMVs, lMVs

and erythrocyte MVs

pMVs are elevated in transient ischaemic attacks, lacunar infarcts and

multiinfarct dementias. pMVs, eMVs, lMVs and erythrocyte MVs

are elevated in patients with subarachnoid hemorrhage and are

markers of vasospasm. Circulating eMV phenotypic profiles reflect

distinct phenotypes of cerebrovascular disease

[198–202]

Hematologic diseases

Paroxysmal nocturnal

haemoglobinuria

eMVs Elevated levels of eMVs [203]

Sickle cell disease eMVs, pMVs,

erythrocyte-MVs,

Elevated levels of total MVs, eMVs, pMVs and erythrocyte MVs,

particularly in sickle cell crisis

[204]

Immune thrombocytopenic

purpura (ITP)

pMVs pMVs are elevated in patients with acute ITP and decreased in chronic

ITP

[205]

Thrombotic

thrombocytopenic purpura

eMVs Elevated levels of eMVs [206]

Cancer

Lung adenocarcinoma Exosomes Elevated level of exosomes and miRNA in blood plasma of patients. [163]

Glioblastoma Tumor-derived

exosomes

Tumor-specific EGFRvIII was detected in serum exosomes from

patients

[159]

Ovarian cancer Tumor-derived

exosomes

Exosomal miRNA from ovarian cancer patients exhibited distinct

profiles compared to patients with benign disease

[161]

Prostate cancer Tumor-derived

exosomes in blood

and urine

Detection of tumor-specific exosomes in blood could be used as a

screening test. Urinary exosomes contain biomarkers for prostate

cancer

[164, 207,

208]

Colorectal cancer Tumor-derived

exosomes

Detection of tumor-specific exosomes in blood could be used as a

screening test

[165]

Gastric cancer pMVs pMVs are markedly increased in patients with stage IV disease and

might be useful for identifying metastatic gastric patients.

[209]

Melanoma Exosomes Elevated CD63 and caveolin 1 on exosomes [210]

Oral cancer Exosomes Sera of patients with active oral squamous cell carcinoma contain

FasL? exososmes

[211]

Cancer associated

thrombosis

TF? MVs TF? MVs are elevated in patients with colorectal carcinoma, multiple

myeloma, breast and pancreatic adenocarcinoma

[212–214]

Other diseases

Alzheimer’s disease pMVs pMVs carry amyloid b on their surface [215]

Type 2 diabetes mellitus pMVs, lMVs Elevated levels of pMVs, especially in patients with clinically

apparent atherosclerosis, elevated percentage of TF? MVs. Patients

with nephropathy have higher number of monocyte-MVs

[216–219]

Metabolic syndrome MVs exposing TF,

eMVs

The level of TF exposing MVs correlate with the components of

metabolic syndrome. Pioglitazon has been shown to reduce eMV

levels in patients with metabolic syndrome

[218, 220,

221]

End-stage renal disease eMVs, PMVs Total annexin V? MVs, pMVs, eMVs are elevated in patients with

end-stage renal disease and patients with hemodialysis. eMVs

predict vascular dysfunction and represent a marker of endothelial

dysfunction

[149, 222]

Obstructive sleep apnoe pMVs, lMVs, eMVs Total annexin V? MVs, pMVs, lMVs and eMVs are elevated in

patients

[223, 224]

Preeclampsia eMVs, lMVs, pMVs,

synctiotrophoblast

MVs.

Elevated levels of eMVs, syncytiotrophoblast MVs pMVs and lMVs [225–230]

Sepsis pMVs, eMVs,

granulocyte MVs

pMVs and eMVs are elevated in septic shock, but their elevation

predicts favorable outcomes. Patients with meningococcal sepsis

have elevated numbers of pMVs and granulocyte-derived MVs

[231–233]
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their highly thrombogenic potential. Most interestingly, not

only blood plasma but also synovial fluid from RA patients

contain high amounts of pMVs [45] and activate synovial

fibroblasts via their IL-1 content. In accordance with these

results, numerous publications have demonstrated the ele-

vated levels of pMVs in the blood plasma of patients with

various rheumatic diseases (Table 3) [62]. pMVs are

characterized by a highly adhesive surface and may bind to

endothelial cells, leukocytes and matrix molecules [155].

Furthermore, adherent MVs may also transfer GPIIb/IIIa to

cells, including neutrophils [156], leading to cell activa-

tion. In summary, pMVs possibly represent novel players

in the network of inflammation and autoimmunity.

Tumor-derived membrane vesicles

Tumors are characterized by secretion of various forms of

membrane vesicles constitutively. These comprise exo-

somes [157], MVs [158] and apoptotic bodies (as a result

of increased apoptosis in tumors). Released membrane

vesicles contain tumor-specific antigens on their surface,

e.g., Her2/Neu mesothelin, MelanA/Mart-1, CEA, HER-2,

and EGFRvIII [19, 157, 159]. Furthermore, membrane

vesicles from cancer cells contain RNA. Several reports

indicate that miRNA-based identification of cancer leads to

a reliable characterization of the origin and development of

tumors [160, 161]. miRNAs, circulating in serum, plasma,

saliva and breast milk, are resistant to degradation [160],

and therefore it was suggested that miRNAs are protected

by lipid or lipoprotein complexes [162]. As certain miR-

NAs are characteristic for tumors, their presence within

tumor-derived exosomes and MVs may serve as novel

biomarkers of cancer. The exosomal miRNA levels or

patterns showed correlation with lung adenocarcinoma

[163], glioblastoma [159] and ovarian cancer [161].

Recently, a EV-based diagnostic platform has been

developed for the diagnosis of prostate cancer [164]. In this

study, prostate tumor-specific vesicles in blood plasma

have been identified using simultaneous detection of

prostate-, tumor- and exosome-specific markers. Using this

‘‘biosignature’’ of prostate cancer EVs, diagnostic speci-

ficity and sensitivity of 83 and 90%, respectively, have

been reached. This group also analyzed EVs from colo-

rectal cancer patients in blood plasma, and diagnostic

sensitivity and specificity of 85 and 85%, respectively,

have been reported [165]. These data suggest that tumor-

derived membrane vesicles could open a new era in cancer

screening and diagnostics in the near future. The technol-

ogy used in these studies, however, does not specifically

purify exosomes or MVs [166], yet appears to be diag-

nostically useful. Thus, careful isolation of given EV

subpopulations in a clinical monitoring assay may be less

important than previously thought.

Importantly, EVs (in particular exosomes) have been

recently suggested to serve as novel therapeutic agents

against cancer. Ongoing Phase I and Phase II trials and

therapeutic strategies have been reviewed recently by

Chaput and Thery [22]. Moreover, EVs may serve as novel

promising vectors for future gene therapy [167].

Conclusions

Based on recent convergent data, we propose that there

exists a previously poorly recognized, complex and

dynamic extracellular vesicular compartment. Depending

on the functional state of cells in the tissues, the compo-

sition of this compartment may change spatially and

temporarily. The plasticity of the compartment may enable

adaptation to altered conditions, and its evolutionarily

conserved nature suggests efficient and vital biological

functions of this compartment. At present, we are still far

from fully appreciating the biological significance of EVs.

Collectively, constituents of this compartment represent

large membrane surface areas, and their amount in the

extracellular space might be best appraised on the basis of

their membrane lipid content or lipid/protein ratio. Bio-

logical systems in which vesicles are released into large

volumes of extracellular fluid, such as blood plasma or

tissue culture medium (where they are not taken up

immediately by surrounding cells), provide some clues

about the magnitude of vesicle formation and the efficacy

of clearance in tissues. Their molecular composition shows

striking similarities including the shared presence of

cytoskeletal proteins, membrane lipid composition and

externalized phosphatidylserine, just to mention a few

examples. Size distribution is another area of overlap. Even

though not characterized in detail, it may be hypothesized

that uptake and removal by cells occurs by similar or

identical molecular mechanisms.

Similarly to cytokines that constitute a network of com-

munication, EVs may also exert their functions in a network,

which is acting in a specific context with many other

players. The long list of medical implications, affecting

different organs, justifies systems biology approaches to

study EVs.

Understanding of this compartment challenges the cur-

rent paradigms concerning the mechanisms of intercellular

communication and immune regulation. It may also open

new perspectives in translational medicine both in diag-

nostics and therapy.
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