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Abstract A significantly under-explored area of evolutionary optimization in the literature

is the study of optimization methodologies that can evolve along with the problems solved.

Particularly, present evolutionary optimization approaches generally start their search from

scratch or the ground-zero state of knowledge, independent of how similar the given new

problem of interest is to those optimized previously. There has thus been the apparent

lack of automated knowledge transfers and reuse across problems. Taking this cue, this

paper presents a Memetic Computational Paradigm based on Evolutionary Optimization +
Transfer Learning for search, one that models how human solves problems, and embarks

on a study towards intelligent evolutionary optimization of problems through the transfers

of structured knowledge in the form of memes as building blocks learned from previous

problem-solving experiences, to enhance future evolutionary searches. The proposed ap-

proach is composed of four culture-inspired operators, namely, Learning, Selection, Varia-

tion and Imitation. The role of the learning operator is to mine for latent knowledge buried in

past experiences of problem-solving. The learning task is modelled as a mapping between

past problem instances solved and the respective optimized solution by maximizing their

statistical dependence. The selection operator serves to identify the high quality knowledge

that shall replicate and transmit to future search, while the variation operator injects new

innovations into the learned knowledge. The imitation operator, on the other hand, models

the assimilation of innovated knowledge into the search. Studies on two separate established

NP-hard problem domains and a realistic package collection/deliver problem are conducted

to assess and validate the benefits of the proposed new memetic computation paradigm.
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1 Introduction

Today, it is well recognized that the processes of learning and the transfer of what has been

learned are central to humans in problem-solving [1]. Learning has been established to be

fundamental to human in functioning and adapting to the fast evolving society. Besides

learning from the successes and mistakes of the past and learning to avoid making the same

mistakes again, the ability of human in selecting, generalizing and drawing upon what have

been experienced and learned in one context, and extending them to new problems is deem

to be most remarkable [2,3].

Within the context of computational intelligence, several core learning technologies in

neural and cognitive systems, fuzzy systems, probabilistic and possibilistic reasoning have

been notable for their ability in emulating some of human’s cultural and generalization ca-

pabilities [4–7], with many now used to enhance our daily life. Recently, in contrast to

traditional machine learning approaches, Transfer Learning which uses data from a related

source task to augment learning in a new or target task, has attracted extensive attentions and

demonstrated great success in a wide range of real-world applications including computer

vision, natural language processing, speech recognition, etc [8–12]. In spite of the accom-

plishments made in computational intelligence, the attempts to emulate the cultural intel-

ligence of human in search, evolutionary optimization in particular, have to date received

far less attention. In particular, existing evolutionary algorithms (EAs) have remained yet to

fully exploit the useful traits that may exist in similar tasks or problems. In particular, the

study of optimization methodology that evolves along with the problems solved has been

under-explored in the context of evolutionary computation. To date, most evolutionary com-

putation approaches continue to start a search on the given new problem of interest from

ground zero state [13–23]. Thus a major gap of existing evolutionary search methodologies

proposed in the literature is the lack of available techniques to enhance evolutionary search

on related new problems by learning from past related solved problems.

In the literature, memetic computation has been defined as a paradigm that uses the

notion of meme(s) as units of information encoded in computational representation for the

purpose of problem-solving. The memes are captured from recurring information patterns

or structures and can be evolved to form more complex higher level structures. However,

currently, a meme has usually been perceived as a form of individual learning procedure,

adaptive improvement procedure or local search operator to enhance the capability of pop-

ulation based search algorithm [24,25]. From the last decades, this integration has been

established as an extension of the canonical evolutionary algorithm, by the names of hy-

brid, adaptive hybrid or Memetic Algorithm (MA) in the literature [25–29]. Falling back

on the basic definition of a meme by Dawkins and Blackmore [30,31], as the fundamental

building blocks of culture evolution, research on memetic computation can perhaps be more

meme-centric focus by treating memes as the building blocks of a given problem domain.

In this paper, we embark on a study towards a new Memetic Computation Paradigm:

Evolutionary Optimization + Transfer Learning for search, one that models how human

solves problems. We believe that by leveraging from the potential common characteristics

among the problem instances that belongs to the same problem domain, i.e., topological

properties, data distributions or otherwise, the effective assessments of future unseen re-

lated problem instances can be achieved more efficiently, without the need to perform an

exhaustive search each time or start the evolutionary search from a ground-zero knowledge

state. Above and beyond the standard mechanisms of a conventional evolutionary search,

for instance the genetic operators in the case of Genetic Algorithm, our proposed approach

has four additional culture-inspired operators, namely, Learning, Selection, Variation and
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Imitation. The role of the learning operator is to mine for knowledge meme1 from past ex-

periences of problem-solving, which shall then manifest as instructions to bias the search

on future problems intelligently (i.e., thus narrowing down the search space). The selection

operator, on the other hand, selects the high quality knowledge meme that shall then repli-

cate and undergo new innovations via the variation operator, before drawing upon them

to enhance future evolutionary search. Last but not least, the imitation operator defines the

assimilation of knowledge meme in subsequent problem solving. To summarize, the core

contributions of the current work is multi-facets, which are outlined as follows:

1. To date, most search methods start the optimization process from scratch, with the as-

sumption of zero usable information, i.e., ignoring how similar the current problem in-

stance of interest is to those encountered in the past [13,33–35]. The current work en-

deavors to fill this gap by embarking a study on evolutionary optimization methodology

with transfer capabilities that evolves along with the problems solved.

2. To the best of our knowledge, the present study serves as a first attempt to propose trans-

fer learning as culture-inspired operators in the spirit of memetic computation (compris-

ing of the mechanisms of cultural learning, selection, variation and imitation [29,32,26,

35,36]), as a form of ‘Intelligent Initialization’ of high quality solutions in the starting

population of the conventional evolutionary optimization so as to speed up future search

on related problems.

3. Beyond the formalism of simple and adaptive hybrids as memetic algorithm, this paper

introduces and showcases the novel representation of acquired knowledge from past op-

timization experiences in the form of memes. In contrast to the manifestation of memes

as refinement procedures in hybrids, here memes manifest as natural building blocks

of meaningful information, and in the present context, serving as the instructions for

generating solutions that would lead towards optimized solutions2 both efficiently and

effectively.

4. We derive the mathematical formulations of the proposed transfer learning culture-

inspired operators for faster evolutionary optimization of related problems. In this paper,

we formulate the knowledge mining problem in the learning operator as a modelling of

the mapping between past problem instances solved and the respective optimized solu-

tion via maximizing their statistical dependence. The selection operator is formulated

as a maximization of the problem distributions similarity between instances, while vari-

ation and imitation are derived as the generalization of knowledge learned from past

problem instances solved.

5. Comprehensive studies on two separate NP-hard problem domains using benchmark

sets of diverse properties and a real world package collection/delivery problem showed

that the proposed culture-inspired operators led to significant speedup in search per-

formances and at no loss in solution quality, when incorporated into recently proposed

evolutionary solvers. Notably, on several problem instances, improved search quality are

observed over recently proposed state-of-the-art evolutionary solvers of the respective

problem domains considered.

The rest of this paper is organized as follows: a brief discussion on the related works

and the introduction of memes are given in Section 2.1. Section 3 introduces the proposed

1 A meme is defined as the basic unit of cultural transmission in [30] stored in brains. In the context

of computational intelligence, memes are defined as recurring real-world patterns or knowledge encoded in

computational representations for the purpose of effective problem-solving [32].
2 Optimized solution here denotes the best solution found by the evolutionary solvers.
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new memetic computation paradigm for search, via learning from past problem-solving ex-

periences, to speedup evolutionary searches of related problems. Section 4 presents a brief

discussion of the routing problem domain, particularly, capacitated vehicle routing problem

(CVRP) and capacitated arc routing problem (CARP), and recently proposed evolutionary

optimization methodologies for solving them. The proposed mathematical formulations and

algorithms of the learning, selection, variation and imitation operators for fast evolution-

ary search on NP-hard routing problems are then described in Section 5. Last but not least,

section 6 presents and analyzes the detailed experimental results obtained on the CVRP

and CARP benchmark sets and subsequently on a real world application. Lastly, the brief

conclusive remarks of this paper are drawn in Section 7.

2 Preliminary

In this section, we first provide a brief review on related works in the literature. Subse-

quently, an overview of meme as building block of problems for problem-solving, which

serves as one of the inspirations of this paper, is presented.

2.1 Related Works

In practice, problems seldom exist in isolation, and previous related problem instances en-

countered often yield useful information that when properly harnessed, can lead to more ef-

ficient future evolutionary search. To date, some attempts have been made to reuse solutions

from search experiences. Louis et al. [37], for instance, presented a study to acquire prob-

lem specific knowledge and subsequently using them to aid in the genetic algorithm (GA)

search via case-based reasoning. Rather than starting anew on each problem, appropriate

intermediate solutions drawn from similar problems that have been previously solved are

periodically injected into the GA population. In a separate study, Cunningham and Smyth

[38] also explored the reuse of established high quality schedules from past problems to bias

the search on new traveling salesman problems (TSPs). Similar ideas on implicit and explicit

memory schemes to store elite solutions have also been considered in dynamic optimization

problems, where the objective function, design variables, and environmental conditions may

change with time (for example, periodic changes) [39]. However, as both [37] and [38] as

well as works on dynamic optimization problems [39] generally considered the exact stor-

age of past solutions or partial-solutions from previous problems solved, and subsequently

inserting them directly into the solution population of a new evolutionary search or the dy-

namic optimization search, they cannot apply well on unseen related problems that bear

differences in structural properties, such as problem vertex size, topological structures, rep-

resentations, etc. This means that what has been previously memorized from related prob-

lems solved cannot be directly injected into future search on unseen problems for successful

reuse.

More recently, Martin et al. [40] proposed a framework to improve the model-directed

optimization techniques by combining a pre-defined problem-specific distance metric with

information mined from previous optimization experience on similar problems. They empir-

ically illustrated the proposed approach can significantly speedup the original optimization

technique. Further, Roberto et al. [41] proposed to transfer the structural information from

subproblems to bias the construction of aggregation matrix of the estimation of distribution

algorithm (EDA) for solving multi-marker tagging single-nucleotide polymorphism (SNP)
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selection problem. They also obtained significant improvements over EDAs that do not in-

corporate information from related problems. However, it is worth noting that, since these

transfer approaches are designed for model-based evolutionary optimization methods (e.g.,

EDA), they cannot apply with the model free evolutionary algorithms, such as genetic al-

gorithm. Last but not least, Roberto et al. [42] introduced to use network theory for mining

structural information for evolutionary optimization, but how the mined information be used

across problems for enhancing evolutionary search was not discussed.

In contrast to existing approaches, the present new memetic computation paradigm ad-

dresses the task of learning generic building blocks or knowledge of useful traits from past

problems solving experiences and subsequently drawing upon them through the cultural evo-

lutionary mechanisms of learning, selection, variation and imitation (as opposed to a simple

direct copying of past solutions or mode based approach in previous works) to speedup the

search on new problems of the same domain. In such a manner, the transfer and incorpora-

tion of knowledge meme as generic building blocks of useful traits, can apply with model

free evolutionary optimization and then lead to enhanced search on problems of differing

vertex size, topological structures, and representations, etc.

2.2 Meme as Building Block of Problems

Like gene in genetics, a meme is synonymous to memetic as being the building block of

cultural know-how that is transmissible and replicable [29]. In the last decades, meme has

inspired the new science of memetics which today represents the mind-universe analog to

genetics in cultural evolution, stretching across the field of biology, cognition, psychology,

and sociology [32].

Looking back on the history of meme, the term can be traced back to Dawkins [30] in his

book “The selfish Gene”, where he defined it as “a unit of information residing in the brain

and is the replicator in human cultural evolution”. Like genes that serve as “instructions

for building proteins”, memes are then “instructions for carrying out behavior, stored in

brains”. As discussed by Blackmore in her famous book “The Meme Machine”, where she

reaffirmed meme as information copied from one person to another and discussed on the

theory of “memetic selection” as the survival of the fittest among competitive ideas down

through generations [31]. Other definitions of meme that took flights from there have since

emerged to include “memory item, or portion of an organism’s neurally-stored information”

[43], “unit of information in a mind whose existence influences events such that more copies

of itself get created in other minds” [44], and “contagious information pattern that replicates

by parasitically infecting human minds” [45].

In the literature, beyond the formalism of simple and adaptive hybrids in MA, Situngkir

presented a structured analysis of culture by means of memetics, where meme was regarded

as the smallest unit of information [46]. Heylighen et al. discussed the replication, spread

and reproduction operators of memes in cultural evolution [47]. Nguyen et al. [48] stud-

ied the notion of “Universal Darwinism” and social memetics in search, and investigated

on the transmission of memetic material via non-genetic means while Meuth et al. [49]

proposed a new paradigm of meta-learning memetic computing for search. In their work,

they demonstrated the concept of meta-learning with a memetic system, consisting of an

optimizer, a memory, a selection mechanism, and a generalization mechanism that concep-

tualizes memes not just within the scope of a problem instance, but over a more generic

contextual scope. More recently, Feng et al. presented a memetic search with inter-domain
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Learning, wherein meme is defined as the knowledge building blocks that can be reused

across different problem domains for enhanced evolutionary search [50].

3 Proposed Memetic Computation Paradigm

In this section, we shall present the proposed memetic computation paradigm: evolutionary

optimization + transfer learning. In particular, four culture-inspired operators, which intro-

duce high quality solutions into the initial population of the evolutionary search on related

problems, thus leading to enhanced optimization performances, are proposed. In our ap-

proach, the instructions for carrying out the behavior to act on a given problem are modeled

as knowledge memes. The knowledge memes serve as the building blocks of past problems

solving experiences that may be efficiently passed on or replicated to support the search

on future unseen problems, by means of cultural evolution. This capacity to draw on the

knowledge from previous instances of problem-solving sessions in the spirit of memetic

computation [32,26,29] thus allows future search to be more efficient on related problems.

3.1 Transfer Learning as Culture-Inspired Operators

The proposed memetic computation paradigm based on evolutionary optimization (i.e., Fig.

1(a)) + transfer learning (i.e., Fig. 1(b)) is depicted in Fig. 1. In the Figure, Pold is the

set of past problems solved with Sold denoting the respective optimized solutions of Pold.

Pnew is the set of unseen problems of interest to be optimized. And S
j
new is the initialized

population of potential solutions for unseen problem pj. M denotes a knowledge meme.

The proposed paradigm is composed of a conventional evolutionary algorithm as depicted

in Fig. 1a (or it can be any state-of-the-art evolutionary algorithm in the domain of interest)

and four culture-inspired operators proposed for facilitating faster evolutionary optimization

of related problems as depicted in Fig. 1b, namely Learning, Selection, Variation and Imita-

tion, whose functions are described in what follows:

- Learning Operator: Given that p corresponds to a problem instance and s∗ denotes the

optimized solution of p, as attained by an evolutionary solver (labeled here as ES). The

learning operator takes the role of modeling the mapping from p to s∗, to derive the

knowledge memes. Thus, the learning process evolves in an incremental manner, and

builds up the wealth of ideas in the form of identified knowledge, along with the number

of problem instances solved. Note the contrast to a simple storage or exact memory of

specific problem instance p with associated solution s∗ as considered in the previous

studies based on case-based reasoning [37].

- Selection Operator: Different prior knowledge introduces unique forms of bias into the

search. Hence a certain bias would make the search more efficient on some classes of

problem instances but not for others. Inappropriately harnessed knowledge, on the other

hand, may lead to the possible impairments of the search. The selection operator thus

serves to select the high quality knowledge, from the knowledge pool, that replicate suc-

cessfully.
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- Variation Operator: Variation forms the intrinsic innovation tendency of the cultural

evolution. Without variations, maladaptive form of bias may be introduced in the evolu-

tionary searches involving new problem instances. For instance, a piece of knowledge,

which has been established as beneficial based on its particular demonstration of suc-

cess on a given problem instance would quickly spiral out of control via replication. This

will suppress the diversity and search of the evolutionary optimization across problems.

Therefore, variation is clearly essential for retaining diversity in the knowledge pool to-

wards efficient and effective evolutionary search.

- Imitation Operator: From Dawkins’s book entitled “The selfish Gene” [30], ideas are

copied from one person to another via imitation. In the present context, knowledge

memes that are learned from past problem solving experiences replicate by means of

imitation and used to enhance future evolutionary search on newly encountered prob-

lems.

Termination

Condition 

Reached?

Problem 

Instances

Problem

Solutions

newP { | 1,..., }
j

j np

(a) Conventional 

evolutionary solver (ES)

Initialization

Reproduction

Selection

Yes

No

new
{ | 1,..., }

j

g
g PopSizeS s

oldP { | 1,..., }
i

i np

old { * | 1,..., }
i

i nS s

(b) Proposed culture-inspired operators

Fig. 1 Proposed memetic computation paradigm: evolutionary optimization (i.e., Fig. 1(a)) + transfer learn-

ing (i.e., Fig. 1(b)).

3.2 Learning from Past Experiences

The schemata representation of knowledge meme in computing as the latent pattern is first

identified. The problem solving experiences on the encountered problems are then captured

via learning and crystallized as a part of the knowledge pool that form the memes or building
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blocks in the society of mind [51]. In this manner, whenever a new problem comes about, the

selection operator kicks in to first identify the appropriate knowledge memes from the wealth

of previously accumulated knowledge. These knowledge memes then undergo variations

to effect the emergence of innovative knowledge. Enhancements to subsequent problem-

solving efficiency on given new problems is then achieved by means of imitation.

Referring to Fig. 1, at time step i = 1, the evolutionary solver ES is faced with the

first problem instance p1 to search on. Since p1 denotes the first problem of its kind to

be optimized, no prior knowledge is available for enhancing the evolutionary solver, ES,

search3. This is equivalent to the case where a child encounters a new problem of its kind

to work on, in the absence of a priori knowledge that he/she could leverage upon. This

condition is considered as “no relevant knowledge available” and the search by solver ES

shall proceed normally, i.e., the selection operator remains dormant. If s1∗ corresponds to

the optimized solution attained by solver ES on problem instance p1 and M denotes the

knowledge meme or building block, then M1 is the learned knowledge derived from p1

and s1∗ via the learning operator. Since the learning process is conducted offline to the op-

timization process of future related problems, there is no additional computational burden

placed on the existing evolutionary solver ES. On subsequent unseen problem instances

j = 2, . . . ,∞, selection kicks in to identify the appropriate knowledge memes Ms from

the knowledge pool, denoted here as SoM. Activated knowledge memes Ms then undergo

the variation operator to arrive at innovated knowledge Mt that can be imitated to bias

subsequent evolutionary optimizations by the ES. In this manner, useful experiences at-

tained from previously solved problem instances are captured incrementally and archived

in knowledge pool SoM to form the society of mind, which are appropriately activated to

enhance future search performances.

Like knowledge housed in the human mind for coping with our everyday life and prob-

lem solving, knowledge memes residing in the artificial mind of the evolutionary solver

play the role of biasing the search positively on newly encountered problems. In this man-

ner, the intellectual capacity of the evolutionary solver evolves along with the number of

problems solved, with transferrable knowledge meme accumulating with time. When a new

problem is encountered, suitable learned knowledge meme is activated and varied to guide

the solver in the search process. This knowledge pool thus formed the evolving problem

domain knowledge that may be activated to solve future evolutionary search efficiently.

4 Case Studies on Routing Problems

In this section, we present the two widely studied challenging NP-hard domains on capac-

itated vehicle routing (CVR) and capacitated arc routing (CAR) considered in the present

study.

4.1 Capacitated Vehicle Routing Problem

The capacitated vehicle routing problem (CVRP) introduced by Dantzig and Ramser [52],

is a problem to design a set of vehicle routes in which a fixed fleet of delivery vehicles

of uniform capacity must service known customer demands for single commodity from a

common depot at minimum cost. The CVRP can be formally defined as follows. Given a

3 If a database of knowledge memes that are learned from relevant past problem solving experiences in

the same domain is available, it can be loaded and leveraged upon.
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connected undirected graph G = (V,E), where vertex set V = {vi}, i = 1 . . . n, n is the

number of vertex, edge set E = {eij}, i, j = 1 . . . n denoting the arc between vertices vi
and vj . Vertex vd corresponds to the depot at which k homogeneous vehicles are based, and

the remaining vertices denote the customers. Each arc eij is associated with a non-negative

weight cij , which represents the travel distance from vi to vj . Consider a demand set

D = {d(vi)|vi ∈ V }, where d(vi) > 0 implies customer vi requires servicing (i.e., known

as task), the CVRP consists of designing a set of least cost vehicle routes R = {Ci}, i =
1 . . . k such that

1. Each route Ci, i ∈ [1, k] must start and end at the depot node vd ∈ V .

2. The total load of each route must be no more than the capacity W of each vehicle,
∑

∀vi∈C
d(vi) ≤ W .

3. ∀vi ∈ V and d(vi) > 0, there exists one and only one route Ci ∈ R such that vi ∈ Ci.

The objective of the CVRP is to minimize the overall distance cost(R) traveled by all k

vehicles and is defined as:

cost(R) =
k
∑

i=1

c(Ci) (1)

where c(Ci) is the summation of the travel distance eij contained in route Ci.

4.2 Capacitated Arc Routing Problem

The capacitated arc routing problem (CARP) was first proposed by Golden and Wong [53]

in 1981. Instead of serving a set of customers (i.e., nodes, vertices) in CVRP, CARP is to

serve a set of streets or segments. It can be formally stated as follows: Given a connected

undirected graph G = (V,E), where vertex set V = {vi}, i = 1 . . . n, n is the number

of vertex, edge set E = {ei}, i = 1 . . .m with m denoting the number of edges. Consider

a demand set D = {d(ei)|ei ∈ E}, where d(ei) > 0 implies edge ei requires servicing

(i.e., known as task), a travel cost vector Ct = {ct(ei)|ei ∈ E} with ct(ei) representing

the cost of traveling on edge ei, a service cost vector Cs = {cs(ei)|ei ∈ E} with cs(ei)
representing the cost of servicing on edge ei. A solution of CARP can be represented as a

set of travel circuits R = {Ci}, i = 1 . . . k which satisfies the following constraints:

1. Each travel circuit Ci, i ∈ [1, k] must start and end at the depot node vd ∈ V .

2. The total load of each travel circuit must be no more than the capacity W of each vehicle,
∑

∀ei∈C
d(ei) ≤ W .

3. ∀ei ∈ E and d(ei) > 0, there exists one and only one circuit Ci ∈ R such that ei ∈ Ci.

The cost of a travel circuit is then defined by the total service cost for all edges that

needed service together with the total travel cost of the remaining edges that formed the

circuit:

cost(C) =
∑

ei∈Cs

cs(ei) +
∑

ei∈Ct

ct(ei) (2)

where Cs and Ct are edge sets that required servicing and those that do not, respectively.

And the objective of CARP is then to find a valid solution R that minimizes the total cost:

CR =
∑

∀Ci∈R

cost(Ci) (3)
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4.3 Solving of CVRP and CARP Domains

Here we generalized the solving of routing problems as searching for the suitable task as-

signments (i.e., vertices or arcs that require to be serviced) of each vehicle, and then finding

the optimal service order of each vehicle for the assigned tasks. In the evolutionary search

literature, the task assignment stage has been realized by means of simple task randomiza-

tion [28] to more advance strategies including heuristic search, clustering [54], etc., while

the optimal service order of each vehicle is attained via the mechanisms of evolutionary

search operators. The example of an optimized routing solution can be illustrated in Fig.

2, where four vehicle routes, namely, R1 = {0,v1,v2,v3, 0}, R2 = {0,v6,v5,v4, 0},

R3 = {0,v10,v9,v8,v7, 0} and R4 = {0,v14,v13,v12,v11, 0}, can be observed. A ‘0’

index value is assigned at the beginning and end of route to denote that each route starts and

ends at the depot.

Vehicle 1

Depot

Vehicle 2

Vehicle 3

Vehicle 4

Optimized Solution s*:

:

: depot

: travel route of vehicles

:

arc or vertex requires

service

capacitated service

vehicle

1 2 3 6 5 4 10 9 8 7 14 13 12 11
{0, , , ,0, , , ,0, , , , 0, , , , ,0}v v v v v v v v v v v v v v

1
v

2
v

3
v

4
v

5
v

6
v

7
v

8
v

9
v

10
v

11
v

12
v

13
v14

v

Fig. 2 The example of a CARP or CVRP.

Theoretically, routing problems have been proven to be NP-hard with only explicit enu-

meration approaches known to solve them optimally. However, large scale problems are

generally computationally intractable due to the poor scalability of most enumeration meth-

ods. From a survey of the literature, metaheuristics, heuristics and evolutionary computa-

tion have played important roles in algorithms capable of providing good solutions within

tractable computational time. For CVRP, Cordeau et al. [55] considered a unified tabu search

algorithm (UTSA) for solving VRP. Prins [56] presented an effective evolutionary algorithm

with local search for the CVRP, while Reimann et al. [57] proposed a D-ants algorithm

for CVRP which equipped ant colony algorithm with individual learning procedure. Re-

cently, Lin et al. [58] takes the advantages of both simulated annealing and tabu search,

and proposed a hybrid meta-heuristic algorithm for solving CVRP. Further, Chen et al. [54]

proposed a domain-specific cooperative memetic algorithm for solving CVRP and achieved

better or competitive results compared with a number of state-of-the-art memetic algorithms

and meta-heuristics to date.

On the other hand, for CARP, Lacomme et al. in [59] presented the basic components

that have been embedded into memetic algorithms (MAs) for solving the extended version

of CARP (ECARP). Lacomme’s MA (LMA) was demonstrated to outperform all known

heuristics on three sets of benchmarks. Recently, Mei et al. [60] extended Lacomme’s work

by introducing two new local search methods, which successfully improved the solution
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qualities of LMA. In a separate study, a memetic algorithm with extended neighborhood

search was also proposed for CARP in [28]. Further, Liang et al. proposed a formal proba-

bilistic memetic algorithm for solving CARP, with new best-known solutions to date found

on 9 of the benchmark problems [61].

In what follows, we present the formulations of the proposed four culture-inspired op-

erators in the context of routing problems for learning and transferring useful traits from

past problem solving experiences as knowledge meme, that can be used to enhanced future

routing search process.

5 Proposed Formulations and Algorithms - CVRPs & CARPs

In this section, we present the proposed formulation and algorithmic implementations of

the transfer learning culture-inspired operators, namely, learning, selection, variation and

imitation for faster evolutionary optimization of related problems in two domains described

in section 4, namely CVRPs and CARPs.

The pseudo-code and detailed workflow for the realizations of the proposed ‘fast evolu-

tionary optimization by transfer learning from past experiences’ on CVRP or CARP problem

domains, are outlined in Alg. 1. For a given new routing problem instance pj
new (with data

representation Xj
new) posed to evolutionary solver ES, the mechanisms of the selection

operator kicks in to select the high quality knowledge memes Ms to activate, if the knowl-

edge pool SoM is not empty. Variation, which takes inspirations from the human’s ability

to simplify from past knowledge learned in previous problem solving experiences, then op-

erates on the activated knowledge memes Ms to arrive at the generalized knowledge Mt.

Subsequently, for given new problem instances Xj
new, imitation proceeds to positively bias

the search of evolutionary optimization solver ES, using the generalized knowledge Mt,

followed by clustering and pairwise distance sorting (PDS) to generate the biased tasks as-

signment and service orders solutions that would enhance the search performances on pj
new.

When the search on pj
new completes, the problem instance pj

new together with the attained

optimized solution sj∗new of ES, i.e., Xj
new and Yj

new which denote the matrix representa-

tion of pj
new and sj∗new (see Fig. 4), respectively, then undergo the learning operation so as

to update the knowledge pool SoM4.

5.1 Learning Operator

This subsection describes the learning of knowledge memes, as building blocks of useful

traits from given routing problem instances p and the corresponding optimized solutions s∗

(i.e., Line 25 in Alg. 1). To begin, we refer to Fig. 2, which shall serve as the example rout-

ing problem instance used in our illustrations. Fig. 3 on the other hand illustrate the learning

of knowledge M from an optimized routing problem instance and subsequently using this

knowledge to bias the tasks assignment and ordering of a routing problem. Specifically, Fig.

3(a) depicts the distribution of the tasks in the example routing problem of Fig. 2 that need

to be serviced. Fig. 3(b) then denotes the optimized routing solution of the ES evolution-

ary solver on problem Fig. 2 or Fig. 3(a). The dashed circles in Fig. 3(b) denote the task

assignments of the individual vehicles and the arrows indicate the tasks service orders, as

optimized by ES.

4 Note that as the learning operation is conducted offline, it does not incur additional cost to the evolution-

ary optimization of p
j
new .
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Algorithm 1: Pseudo code of Fast Evolutionary Optimization of CVRPs/CARPs by

Transfer Learning from Past Experiences.

1 Begin:

2 for j = 1 : ∞ new problem instances p
j
new or X

j
new do

3 if SoM! = ∅ then

4 /*knowledge pool not empty*/

5 Perform selection to identify high quality knowledge memes or distance matrices Ms

∈ SoM /*see Eqn. 12 in later Section 5.2*/

6 Perform variation to derive generalized knowledge Mt from Ms.

7 Perform imitation of Mt on X
j
new to derive the transformed problem distribution X

j′

new ,

where

8 X
j′

new = Transform(Xj
new,Mt)

9 Empty the initial solution population Ω.

10 for g = 1 : Population Size do

11 /*Fig. 5(a)→Fig. 5(b)*/

12 1. Task Assignment of sg =

13 KMeans(Xj′

new, V ehicle No., RI)
14 /Fig. 5(b)→Fig. 5(c), RI denotes random

15 initial points*/

16 2. Service Order of sg = PDS(Xj′

new)
17 /*Fig. 5(c)→Fig. 5(d), PDS(·) denotes the

18 pairwise distance sorting*/

19 3. Insert sg into Ω.

20 else

21 Proceed with the original population initialization scheme of the evolutionary solver ES.

22 /*Start of Evolutionary Solver ES Search*/

23 Perform reproduction and selection operations of ES with generated population sg until the

predefined stopping criteria are satisfied.

24 /*End of Evolutionary Solver ES Search*/

25 Perform learning on given p
j
new and corresponding optimized solution s

j∗
new denoted by

(X
j
new,Y

j
new), attained by ES evolutionary solver to derive knowledge M

j
new .

26 Archive the learned knowledge of p
j
new into SoM knowledge pool for subsequent reuse.

27 End

Here a knowledge meme M is defined in the form of a distance matrix that maximally

aligns the given original distribution and service orders of tasks to the optimized routing so-

lution s∗ attained by solver ES. Using the example routing problem instance in Fig. 2, we

formulate the knowledge meme as matrix M that transforms or maps the task distributions

depicted in Fig. 3(a) to the desired tasks distribution of s∗ while preserving the correspond-

ing tasks service orders, as depicted in Fig. 3(b). In this manner, whenever a new routing

problem instance is encountered, suitable learned knowledge memes from previously opti-

mized problem instances is then deployed to realign the tasks distribution and service orders

constructively. For instance, Fig. 3(c) showcases the desirable scaled or transformed tasks

distribution of Fig. 3(a) when the appropriate knowledge meme M is put to work. In par-

ticular, it can be observed in Fig. 3(c) that we seek for the knowledge memes necessary to

re-locate tasks serviced by a common vehicle to become closer to one another (as desired

by the optimized solution s∗ shown in Fig. 3(b)), while tasks serviced by different vehicles
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Fig. 3 Learning of Knowledge M which shall serve as the instruction for biasing the tasks assignment and

ordering of a routing problem.

to be mapped further apart. Further, to match the service orders of each vehicle to that of the

optimized solution s∗, the task distribution is adapted according to the sorted pairwise dis-

tances in ascending order (e.g., the distance between v1 and v3 is the largest among v1, v2
and v3, while the distance between v10 and v9 is smaller than that of v10 and v8).

In what follows, the proposed mathematical definitions of a knowledge meme M for

the transformations of tasks distribution are detailed. In particular, given V = {vi |i =
1, . . . , n}, n is the number of tasks, denoting the tasks of a problem instance to be assigned.

The distance between any two tasks vi = (vi1, . . . , vip)
T and vj = (vj1, . . . , vjp)

T in the

p-dimensional space R
p is then given by:

dM (vi,vj) = ||vi − vj ||M =
√

(vi − vj)TM(vi − vj)

where T denotes the transpose of a matrix or vector. M is positive semidefinite, and can

be represented as M = LLT by means of singular value decomposition (SVD). Substituting

this decomposition into dM (vi,vj), we arrive at:

dM (vi,vj) =
√

(LTvi − LTvj)T (LTvi − LTvj) (4)

From equation 4, it is worth noting that the distances among the tasks are scaled by

meme M. Thus we derive at a knowledge meme M that performs the realignment of tasks

distribution and service orders of a given new problem instance to one that bears greater

similarity to the optimized solution s∗.

Next, the proposed mathematical formulations for learning of knowledge meme M are

given. The schemata representations of a problem instance (p), optimized solution (s∗) and
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distance constraints set N are first defined. In particular, the data representations of the ex-

ample problem instance in Fig. 2 is depicted in Fig. 4, where v11, v12, etc., denote the fea-

tures representation of each task, and D(·) indicates the Euclidean distance metric. Further,

if task vi and task vj are served by the same vehicle, Y(i, j) = 1, otherwise, Y(i, j) = −1.

The distance constraints set N contains the service order information of the tasks and de-

rived from the optimized solution s∗. With respect to the example in Fig. 2, since task v3

is served after v2 from v1, the constraint thus takes the form of D(v1,v3) > D(v1,v2) as

depicted in Fig. 4.

v1      v2    v14

X=

v11 v21   141

v12 v22   142

v1p v2p    14p

1   2  3 13  14

Y=

1 1 1 -1  -1

1
     2

    3
  

1
3

   1
4

1 1 1 -1  -1
1 1 1 -1  -1

-1 -1 -1

-1 -1 -1

D(v1,v3) > D(v1, v2)
D(v1, v3) > D(v2, v3)

D(v6, v4) > D(v5, v4)
D(v10, v7) > D(v10, v8)

D(v10, v7) > D(v9, v7)

D(v9, v7) > D(v8, v7)

D(v10, v8) > D(v10, v9)

D(v14, v11) > D(v14, v12)
D(v14, v12)  > D(v14, v13)
D(v14, v11) > D(v13, v11)
D(v14, v11) > D(v12, v11)

D(v6, v4) > D(v6, v5)
=

Fig. 4 Data representations of a problem instance p = X, the corresponding optimized solution s∗ = Y

and distance constraints set N .

To derive the knowledge meme M of a given CVRP or CARP problem instance, denoted

by (p, s∗), we formulate the learning task as a maximization of the statistical dependency5

between X and Y with distance constraints as follows:

max
K

tr(HKHY) (5)

s.t. K = X
T ∗M ∗X

Dij > Diq, ∀(i, j, q) ∈ N ,K ≽ 0

where tr(·) denotes the trace operation of a matrix. X, Y are the matrix representations of

a CARP or CVRP instance p and the corresponding problem solution s∗, respectively.

Further, H = I − 1

n
11′ centers the data and the labels in the feature space, I denotes

the identity matrix, n equals to the number of tasks. Dij > Diq is then the constraint to

impose a vehicle to serve task q before task j, upon serving task i.

Let Tij denotes a n×n matrix that takes non-zeros at Tii = Tjj = 1, Tij = Tji = −1.

The distance constraints Dij > Diq in Equation 5 is then reformulated as tr(KTij) >

tr(KTiq). Further, slack variables ξijq are introduced to measure the violations of distance

5 Dependency is a measure of the correlation of two random variables [62]. Here our interest on knowledge

meme M is in the form of a maximization of the statistical dependency, so as to ensure a maximal alignment

between the transformed tasks distribution and the tasks distribution of the optimized solution. The trace

of HKHY is the empirical estimation of HSIC criterion [62], which is a nonlinear statistical dependence

measures defined on two sets of random variables X and Y, in their feature spaces, φ(X) and ψ(Y). Math-

ematically, it tries to measure ||CXY||2, where CXY := EX,Y[(φ(X)− µX)⊗ (ψ(Y)− µY)], µX and

µY are the mean measures of φ(X) and ψ(Y). A higher HSIC thus implies a higher nonlinear dependence

between X and Y in the sense of the φ(X) and ψ(Y) feature spaces.
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constraints and penalize the corresponding square loss. Consequently, by substituting the

constraints into Equation 5, we arrive at:

min
M,ξ

−tr(XHYHX
T
M) +

C

2

∑

ξ
2

ijq (6)

s.t. M ≽ 0

tr(XT
MXTij) > tr(XT

MXTiq)− ξijq,

∀(i, j, q) ∈ N

where C balances between the two parts of the criterion. The first constraint enforces the

learnt knowledge denoted by matrix M to be positive semi-definite, while the second con-

straint imposes the scaled distances among the tasks to align well with the desired service

orders of the optimized solution s∗ (i.e., Y).

To solve the learning problem in Equation 6, we first derive the minimax optimization

problem by introducing dual variables α for the inequality constraints based on Lagrangian

theory.

Lr = tr(−HX
T
MXHY) +

C

2

∑

ξ
2

ijq

−
∑

αijq(tr(X
T
MXTij)− tr(XT

MXTiq)

+ξijq) (7)

Set ∂Lr
∂ξijq

= 0, we have:

C
∑

ξijq −
∑

αijq = 0 =⇒ ξijq =
1

C

∑

αijq (8)

By substituting Equation 8 into Equation 7, we reformulate the learning problem in Equation

6 as a minimax optimization problem, which is given by:

max
α

min
M

tr[(−XHYHX
T −

∑

αijqXTijX
T

+
∑

αijqXTiqX
T )M]−

1

2C

∑

α
2

ijq (9)

s.t. M ≽ 0

By setting

A = XHYHX
T +

∑

αijqXTijX
T −

∑

αijqXTiqX
T

(10)

and

∆J
t
ijq = tr[(XTiqX

T −XTijX
T )M]−

1

C
αijq (11)

Upon solving the above formulations and derivations, we arrive at Equations 10 and 11.

Then, as a common practice in Machine Learning, parameter C of Equation 11 is configured

by means of cross validation and the learning problem of Equation 9 is solved using readily

available methods [63]. As the update of M is the SVD on A, its complexity is O(p3),
where p is the dimension. The complexity of calculating A is O(n2p+np2+mp2), where

n is the number of vertices, and m is the number of constraints in N . Further, the complexity

of updating each αijq is O(p2r), where r is the rank of M. Thus the complexity of updating

all α is O(mp2r).
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5.2 Selection Operator

Since different knowledge memes introduces unique biases into the evolutionary search, in-

appropriately chosen knowledge and hence biases can lead to potential negative impairments

of the evolutionary search. To facilitate a positive transfer of knowledge that would lead to

enhanced evolutionary search, the selection operator (i.e., Line 5 in Alg. 1) is designed to

select and replicate from high quality knowledge memes that share common characteristics

with the given new problem instance of interest. In particular, for a given set of z unique Ms

in SoM, i.e., SoM = {M1,M2, . . . ,Mz} that form the knowledge pool, the selection

operator is designed to give higher the weights µi to knowledge memes that would induce

positive biases. Further, as we consider the learning and selection of knowledge memes from

problems of a common domain, positive correlation among the problems is a plausible as-

sumption6. If the unseen problem instance is very different from the past problems solved

(e.g., the customer distribution of the new unseen problem differs greatly from previously

solved problems in the CVRP and CARP), the selection operator shall not deploy any inap-

propriate knowledge memes, since no positive knowledge existed in the past experiences. In

this case, the original state-of the-art optimization solver shall operate as routine.

Here, the knowledge meme coefficient vector µ is derived based on the maximum mean

discrepancy criterion7.

max
µ,Y

tr(HX
T
MtXHY) +

z
∑

i=1

(µi)
2
Simi (12)

s.t. Mt =
z
∑

i=1

µiMi,Mi ≽ 0

µi ≥ 0,
n
∑

i=1

µi = 1

In Equation 12, the first term serves to maximize the statistical dependence between in-

put matrix X and output label Y of the clusters of tasks. The second term measures the simi-

larity between previous problem instances solved to the given new problem of interest. Simi

defines the similarity measure between two given problem instances. In vehicle routing,

tasks distribution and vehicle capacity are two key features that define the problem. Hence

the similarity measure is formulated here as Simi = −(β ∗MMDi + (1− β) ∗DV Ci),
where MMD(Ds, Dt) = || 1

ns

∑s
i=1

φ(xs
i ) −

1

nt

∑t
i=1

φ(xt
i)|| with φ(x) = x denoting

the maximum mean discrepancy between the distribution of two given instances by consid-

ering the distance between their corresponding means. Ds and Dt are the two given routing

problem instances, with xs
i and xt

i denoting the location information of a customer in Ds

and Dt, respectively. DV Ci denotes the discrepancy in vehicle capacity between any two

problem instances. The vehicle capacity is available as part of the problem definition. From

domain knowledge, the task distribution (location of nodes to be serviced) has a higher

weightage than vehicle capacity information. This implies that β > 0.5. In this work, β is

configured empirically as 0.8 to favour task distribution information over vehicle capacity

information.

6 From our experimental study, the problems in the benchmark set are mostly verified to be positively

correlated.
7 Maximum mean discrepancy measures the distribution differences between two data sets, which can

come in the form of vectors, sequences, graphs, and other common structured data types.
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In Equation 12, two unknown variables exist (i.e., µ and Y). Y is obtained from the

results of task assignment (i.e., if task vi and task vj are served by the same vehicle,

Y(i, j) = 1, otherwise, Y(i, j) = −1. The respective task assignment is obtained by

clustering on the M transformed tasks X.). With Y fixed, Equation 12 becomes a quadric

programming problem of µ. To solve the optimization problem of Equation 12, we first

perform clustering (e.g., K-Means) [64] on input X directly to obtain the label matrix Y.

By keeping Y fixed, we obtained µ by maximizing Equation 12 via quadric programming

solver. Next, by maintaining the chosen M fixed, clustering is made on the new X
′

(i.e.,

transformed by selected M. X′ = LTX, where L is obtained by SVD on M) to obtain

label matrix Y.

5.3 Variation Operator

Further, to introduce innovations into the selected knowledge memes during subsequent

reuse, the variation operator (i.e., Line 6 in Alg. 1) kicks in. In the present context, we

take inspirations from human’s ability to generalize from past problem solving experiences.

Hence variation is realized here in the form of generalization. However, it is worth noting

that other alternative forms of probabilistic scheme in variations may also be considered

since uncertainties can generate growth and variations of knowledge that we have of the

world [65], hence leading to higher adaptivity capabilities for solving complex and non-

trivial problems.

Here, the variation is derived as a generalization of the selected knowledge memes:

Mt =
z
∑

i=1

µiMi, (
z
∑

i=1

µi = 1, µi ∈ [0, 1]) (13)

where Mi denotes the meme knowledge stored in the meme pool, z is the total number of

memes stored, and µi is obtained by selection operator discussed in section 5.2.

5.4 Imitation Operator

In CVRP and CARP, the search for optimal solution is typically solved as two separate

phases. The first phase involves the assignment of the tasks that require services to the

appropriate vehicles. The second phase then serves to find the optimal service order of each

vehicle for the assigned tasks obtained in phase 1.

In what follows, the imitation of learned knowledge memes to bias the initial population

of solutions in subsequent ES searches are described. For each solution sg in the EA pop-

ulation, the knowledge Mt generalized from past experiences is imitated for the purpose

of generating positively biased solutions (see Line 10 in Alg. 1) in the evolutionary search

by transforming or remapping the original tasks distribution solution (i.e., both tasks as-

signments and tasks service orders), as denoted by Xj
new, to become new tasks distribution

Xj′

new given by:

X
j′

new = L
T
X

j
new (14)

where L is derived by singular value decomposition of Mt. An illustrative example is de-

picted in Fig. 5, where Fig. 5(a) denote the original task distribution Xj
new, while Fig. 5(b)

is the resultant knowledge biased or transformed tasks distribution Xj′

new using Mt.
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Fig. 5 An illustration of knowledge imitation in the generating positively biased CVRP or CARP solutions.

In phase 1, K-Means clustering with random initializations is conducted on the knowl-

edge biased tasks distribution Xj′

new to derive the tasks assignments of the vehicles as de-

picted in Fig. 5(c), where the dashed circles denote the task assignments of the individual

vehicles, i.e., denoting the tasks that shall be serviced by a common vehicle.

In phase 2, the service orders of each vehicle are subsequently achieved by sorting the

pairwise distances among tasks in an ascending order. The two tasks with largest distance

shall then denote the first and last tasks to be serviced. Taking the first task as reference, the

service order of the remaining tasks are defined according to the sorted orders. Referring

to Fig. 5(d) as an example, where the arrows indicate the service orders of the tasks, the

distance between v10 and v7 are the largest among v10, v9, v8 and v7. In assigning v10

as the reference task to be served, v9 is then the next task to be serviced, since the distance

between v10 and v9 is smaller than that of v10 versus v8 or versus v7.

6 Experimental Study

To evaluate the performance of the proposed transfer learning as culture-inspired operators

for fast evolutionary optimization of related problems via transfer learning from past prob-

lem solving experiences, comprehensive empirical studies with regard to search speed and

search solution quality, are conducted on the two challenging NP-hard routing problems and

a real world application in this section. In particular, we first present studies on the capaci-

tated vehicle routing problem (CVRP) domain and then the capacitated arc routing problem

(CARP) domain. These consist of problem instances of diverse properties in terms of vertex

size, topological structures (task distribution), and vehicle capacity, which cannot be readily

handled using existing case based reasoning approaches [37,38] as previously discussed in

Section 2.1. In the present study, two recently proposed evolutionary algorithms for solving



Title Suppressed Due to Excessive Length 19

Table 1 Criteria for measuring performance.

Criterion Definition

Number of F itness Evaluation Average number of fitness evaluation calls made across all 30 independent runs conducted

Ave.Cost Average travel cost or fitness of the solutions obtained across all 30 independent runs conducted

B.Cost Best travel cost or fitness of the solutions obtained across all 30 independent runs conducted

Std.Dev Standard deviation of the solutions’ travel cost or fitness across all 30 independent runs conducted

Table 2 Properties of the “Augerat” CVRP benchmark set.

CVRP Instance A-n32-k5 A-n54-k7 A-n60-k9 A-n69-k9 A-n80-k10 B-n41-k6 B-n57-k7 B-n63-k10 B-n68-k9 B-n78-k10 P-n50-k7 P-n76-k5

number of vertices 31 53 59 68 79 40 56 62 67 77 49 75

capacity of vehicle 100 100 100 100 100 100 100 100 100 100 150 280

lower bound 784 1167 1354 1159 1763 829 1140 1496 1272 1221 554 627

Table 3 Properties of the “CE” and “Christofides” CVRP benchmark sets.

CVRP Instance E-n33-k4 E-n76-k7 E-n76-k8 E-n76-k10 E-n76-k14 E-n101-k8 c50 c75 c100 c100b c120 c150 c199

number of vertices 32 75 75 75 75 100 50 75 100 100 120 150 199

capacity of vehicle 8000 220 180 140 100 200 160 140 200 200 200 200 200

lower bound 835 682 735 830 1021 815 524.61 835.26 826.14 819.56 1042.11 1028.42 1291.45

CVRPs and CARPs, labeled in their respective published works as CAMA [66] and ILMA

[60] respectively, are considered here as the baseline conventional evolutionary solvers for

the independent domains. Further, several criteria defined to measure the search perfor-

mances are then listed in Table 1. Among these criteria, Number of F itness Evaluation

is used to measure the efficiency of the algorithms, while Ave.Cost and B.Cost serve as

the criteria for measuring the solution qualities of the algorithms.

6.1 Capacitated Vehicle Routing Problem Domain

6.1.1 Experimental Configuration

All three commonly used CVRP benchmark sets with diversity properties (e.g., number

of vertex, vehicle number, etc.) are investigated in the present empirical study, namely

“AUGERAT”, “CE” and “CHRISTOFIDES”. The detailed properties (e.g., number of ver-

tices, lower bound, etc.) of the CVRP instances considered are summarized in Table 2 and

Table 3, where V denotes the number of vertices that need to be serviced, Cv gives the ca-

pacity of the vehicles in each instance, and LB describes the lower bound of each problem

instance. In CVRP, each task or vertex has a corresponding coordinates (i.e., 2-d space)

and demand. Using the coordinates of the vertex, the tasks assignment of each vehicle

are generated based on K-Means clustering. A CVRP instance is thus represented by input

matrix X, see Fig. 4, which is composed of the coordinate features of all tasks in the prob-

lem instance. The desired vehicle assigned for each task (i.e., task assignment) is then given

by the ES optimized solution, Y, of the respective CVRP instances.

Besides the proposed knowledge meme biased approach, two other commonly used ini-

tialization procedures for generating the population of solution individuals in the state-of-

the-art baseline CAMA are investigated here to verify the efficiency and effectiveness of the

proposed evolutionary search across problems. The first is the simple random approach for

generating the initial population, which is labeled here as CAMA-R. The second is the in-

formed heuristic population initialization procedure proposed in the state-of-the-art baseline

CAMA [66] method. In particular, the initial population is a fusion of solution generated by

Backward Sweep, Saving, and Forward Sweep and random initialization approaches.
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Table 4 Speedup by CAMA-M over CAMA in the different stages of the search on representative CVRP

instances has been observed. The values embraced in brackets (.) denotes the actual fitness values for fitness

bins 1-8.

Benchmark Set Instances

Speedup

(Fitness)

Bin1 Bin2 Bin3 Bin4 Bin5 Bin6 Bin7 Bin8

A-n60-k9
754.55 16.89 10.87 10.16 15.75 16.52 9.72 1.75
(1746.00) (1697.38) (1648.75) (1600.13) (1551.50) (1502.88) (1454.25) (1405.63)

AUGERAT B-n57-k7
1615.15 591.14 459.65 32.86 16.28 10.79 6.98 3.90
(1361.00) (1333.38) (1305.75) (1278.13) (1250.50) (1222.88) (1195.25) (1167.63)

P-n50-k7
1354.55 124.08 61.44 17.96 17.68 17.47 3.36 1.22
(684.00) (668.13) (652.25) (636.38) (620.50) (604.63) (588.75) (572.88)

CE E-n76-k10
618.18 13.62 8.32 2.27 2.26 6.51 11.43 6.11
(1243.00) (1192.38) (1141.75) (1091.13) (1040.50) (989.88) (939.25) (888.63)

CHRISTOFIDES c100b
2924.24 31.81 17.46 18.42 19.81 21.77 26.95 9.44
(1087.60) (1054.15) (1020.70) (987.25) (953.80) (920.35) (886.90) (853.45)

The CAMA that employs our proposed transfer learning culture-inspired operators is

then notated as CAMA-M, where the initial population of individuals in CAMA are now

generated based on the high quality knowledge memes that have been accumulated from

past CVRP solving experiences via the cultural evolutionary mechanisms of the learning,

selection, variation and imitation. Note that if no prior knowledge has been learned so far,

CAMA-M shall behave exactly like the baseline CAMA.

Last but not the least, the operator and parameter settings of CAMA-R, CAMA, CAMA-M

are kept the same as that of [66] for the purpose of fair comparison. For CAMA-M, the MMD

of Equation 12 is augmented with the demand of each task as one of the problem feature.

6.1.2 Results and Discussions

To gain a better understanding on the performances of the proposed new memetic com-

putation paradigm, we present, analyze, discuss and compare the results obtained against

recently proposed methods based on the criteria of search efficiency and solution quality.

Search Efficiency - Convergence Trends and Speedup: To assess the efficiency of

the proposed approach, the representative search convergence traces of CAMA, CAMA-R

and CAMA-M on the 3 different CVRP benchmark sets are presented in Fig. 68. The Y -

axis of the figures denote the Actual travel cost obtained, while the X-axis gives the re-

spective computational effort incurred in terms of the Number of Fitness Evaluation Calls

made so far. From these figures, it can be observed that CAMA-M converges rapidly to near

the lower bound solution at very early stage of the search as compared to both CAMA-R

and CAMA across all the CVRP instances. This is because of the high quality solutions in-

troduced into the initial population of CAMA-M by the positive memes learned from past

search experiences. For example, on instances “B-n41-k6” (Fig. 6(b)), CAMA-M takes only

approximately 250 number of fitness evaluations to converge near to the lower bound solu-

tion while CAMA-R and CAMA incurred more than 1000 number of fitness evaluations to

do so. On the larger problem instances, such as “c199” (Fig. 6(f)), the fitness evaluations

savings is more significant, where CAMA-M is observed to bring about at least 1000 fitness

evaluations cost savings to arrive at the solution qualities attained by CAMA and CAMA-R.

To provide more in-depth insights on the enhanced efficiency of the CAMA-M, in Table

4, we also tabulated the amount of speedup by CAMA-M over the baseline CAMA in arriving

at different stages of the search defined by the fitness levels, for the representative problem

8 Due to page limit constraints, only representatives of each series have been shown.
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Fig. 6 Averaged search convergence traces (across 30 independent runs) of CAMA, CAMA-R, and CAMA-

M on representative CVRP “AUGERAT”, “CE”, and “CHRISTOFIDES” benchmark sets. Y -axis: Travel

cost, X-axis: Number of Fitness Evaluation. Note that CAMA-M is observed to search significantly faster in

converging to near the lower bound solution on the respective CVRPs than the other counterparts

instances9. Here speedup is defined by
CAMAi

Fitness EvaluationCalls

CAMA−Mi
Fitness EvaluationCalls

, where i = 1...i...N

and N denoting the number of fitness bins considered. Ai
F itness EvaluationCalls denotes

the number of fitness evaluation used by algorithm A to arrive at the fitness attained in bin i.

In the results reported in Table 4, an equal-width fitness bin size of 8 is used. For example,

the fitness bin 1 and bin 8 of problem instance c100b in Table 4 (i.e., see the last row) shows

the speedup of CAMA-M over CAMA at the start of the search and upon search convergence

are 2924.24 and 9.44 times, respectively. Note that speedups are observed throughout the

entire search in the representative CVRP instances, as observed in the table.

For the purpose of conciseness, we further summarize the log10(Speedup) of CAMA-M

over CAMA at the start of the search on the CVRP instances in the order that they are solved,

in Fig. 7. It is worth noting that Fig. 7 resembles a learning curve where the increasing

knowledge learned corresponds to an increasing log10(Speedup) observed as more prob-

lems are solved in each benchmark set. For example, on the benchmark “AUGERAT” set,

the log10(Speedup) is observed to increase from under 2.6 to exceed 3.4 when instances

“A2”, “A3” and “A4” are solved. Overall, a log10(Speedup) of at least 2.5 times has been

attained by CAMA-M on all the CVRP instances considered.

Solution Quality: To evaluate the solution quality of the proposed approach, Table 5

tabulates all the results obtained by respective algorithms over 30 independent runs. The

values in “B.Cost” and “Ave.Cost” denoting superior performance are highlighted using

bold font. Further, in order to obtain the statistically comparison, Wilcoxon rank sum test

with 95% confidence level has been conducted on the experimental results. As discussed

in Section 3, the “knowledge pool” of CAMA-M is empty when the first CVRP instance is

encountered (e.g., “A-n32-k5” of “AUGERAT” benchmark set), and thus CAMA-M behaves

like the baseline CAMA. As more CVRP instances are encountered, the learning, selec-

9 Similar trends on enhancements in search efficiency of CAMA-M over CAMA has been obtained on all

the other problem instances. However, due to the page limit constraint, only representatives of instances in

each benchmark problem class can be presented in this paper.
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Fig. 7 Speedup of CAMA-M over CAMA across all the problem instances for the three CVRP benchmark

sets. Y -axis: Speedup,X-axis: Problem Instance index of each CVRP in the benchmark set. A learning curve

with increasing knowledge learned in each benchmark set, as observed from the increasing log10(Speedup)
observed, as more problems are solved.

Table 5 Solution quality of CAMA, CAMA-R, and CAMA-M on “AUGERAT”, “CE” and “CHRISTOFIDES”

CVRP benchmark sets. The superior solution quality of each respective problem instance is highlighted in

bold font. “No. Win” denotes the number of instances that an algorithm achieved best performance. Note that

CAMA-M is superior on 68% (17/25) of the instances. (“≈”, “+” and “−” denote CAMA-M statistically

significant similar, better, and worse than CAMA, respectively).

CVRP CAMA CAMA-R CAMA-M (Proposed Method)

Instance B.Cost Ave.Cost Std.Dev B.Cost Ave.Cost Std.Dev B.Cost Ave.Cost Std.Dev

A1.A-n32-k5 784 748 0 784 784 0 784 784 0
A2.A-n54-k7 1167 1169.50 3.36 1167 1167 0 1167 1167+ 0
A3.A-n60-k9 1354 1356.73 3.59 1354 1355.20 1.86 1354 1354.4+ 1.22
A4.A-n69-k9 1159 1164.17 3.07 1159 1162.20 2.41 1159 1161.43+ 2.37
A5.A-n80-k10 1763 1778.73 9.30 1763 1777.07 7.94 1763 1775.7 ≈ 8.80
B6.B-n41-k6 829 829.30 0.47 829 829.93 0.94 829 829.53 ≈ 0.73
B7.B-n57-k7 1140 1140 0 1140 1140 0 1140 1140 ≈ 0
B8.B-n63-k10 1537 1537.27 1.46 1496 1528.77 15.77 1496 1525.86+ 17.45
B9.B-n68-k9 1274 1281.47 5.56 1274 1284.80 4.51 1273 1281.43 ≈ 5.74
B10.B-n78-k10 1221 1226.07 5.48 1221 1226.80 6.39 1221 1224.37 ≈ 3.23
P11.P-n50-k7 554 556.33 2.34 554 554.93 1.72 554 554.26+ 1.01
P12.P-n76-k5 627 630.70 5.34 627 628.87 1.61 627 628.63 ≈ 1.51
E1.E-n33-k4 835 835 0 835 835 0 835 835 ≈ 0
E2.E-n76-k7 682 685.67 2.17 682 684.73 1.31 682 684.66 ≈ 1.12
E3.E-n76-k8 735 737.57 2.36 735 737.17 1.60 735 737.06 ≈ 1.91
E4.E-n76-k10 830 837.03 3.56 831 835.80 3.19 830 834.73+ 2.92
E5.E-n76-k14 1021 1025.67 3.48 1021 1026.27 3.33 1021 1025.80 ≈ 3.64
E6.E-n101-k8 816 820.63 3.20 815 818.97 1.94 815 818.53+ 1.55
C1.c50 524.61 525.45 2.56 524.61 524.61 0 524.61 525.73 ≈ 2.90
C2.c75 835.26 842.32 4.04 835.26 840.28 3.52 835.26 839.53+ 3.45
C3.c100 826.14 829.43 2.39 826.14 829.73 2.08 826.14 829.13 ≈ 1.94
C4.c100b 819.56 819.56 0 819.56 819.56 0 819.56 819.56 ≈ 0
C5.c120 1042.11 1044.18 2.21 1042.11 1043.08 1.13 1042.11 1042.83+ 0.94
C6.c150 1032.50 1043.27 5.67 1034.19 1044.73 5.87 1030.67 1041.97 ≈ 6.27
C7.c199 1304.87 1321.17 5.98 1313.46 1325.48 5.99 1308.92 1322.18 ≈ 7.51

No. Win 1 3 1 2 2 17

tion, variation and imitation mechanisms shall kick in to learn and generalize knowledge

that would induce positive biases into the evolutionary search of new CVRP instances. It

can be observed from Table 5 that the CAMA-M converges to competitive solution qualities

attained by both CAMA-R and CAMA on the first problem instance of each CVRP bench-

marks (since no knowledge meme is learned yet), while exhibiting superior performances

over CAMA-R and CAMA on subsequent CVRP instances. Thus, beyond showing speedups

in search performance at no loss in solution quality, CAMA-M has been observed to attain

improved solution quality on the CVRPs. In particular, on “AUGERAT” and “CE” bench-

mark sets, CAMA-M exhibits superior performances in terms of Ave.Cost on 13 out of

19 CVRP instances. In addition, on “CHRISTOFIDES” benchmark set, CAMA-M also at-

tained improved solution quality in terms of Ave.Cost on 4 out of 7 CVRP instances. Since

CAMA, CAMA-R and CAMA-M shares a common baseline evolutionary solver, i.e., CAMA,
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and differing only in terms of the population initialization phase, the superior performance

of CAMA-M can clearly be attributed to the effectiveness of the proposed transfer learning

as culture-inspired operators where imitation of learned knowledge meme from past prob-

lem solving experiences are used to generate biased solutions that lead to enhanced future

evolutionary searches.

Insights on a Knowledge Biased CVRP Solution: In this subsection, to provide a

deep insight into the mechanisms of the proposed approach in attaining the high perfor-

mance efficacy observed, we analyze samples of the solutions obtained by CAMA, CAMA-R

and CAMA-M, as well as the converged optimized solution of CAMA on solving problem

instance “B-n41-k6”. In Fig. 8, each node denotes a customer that needs to be serviced,

and the nodes with the same color and shape shall be serviced by a common route or vehi-

cle. Fig. 8(a) and Fig. 8(b) denote the solution in the initial population of baseline CAMA

and CAMA-R, respectively. Fig. 8(c) is the solution in CAMA-M, which has been positively

biased using the imitated knowledge learned from past experiences of problem solving on

CVRP instances “A-n32-k5”, “A-n54-k7”, “A-n60-k9” and “A-n69-k9”. Further, Fig. 8(d)

gives the converged optimized solution achieved by CAMA. As observed, the task distribu-

tions of the solution in CAMA-M search is noted to bear greatest similarities to that of the

converged optimized solution by CAMA, as compared to that of CAMA and CAMA-R. Be-

sides task distributions, portions of the figures are magnified in Fig. 8(c) and Fig. 8(d), for

the purpose of illustrating the service orders of a solution obtained by CAMA-M relative to

the converged optimized solution of baseline CAMA, respectively. The magnified subfigures

illustrate high similarities between their respective service orders.

(d) An optimized CVRP 

solution in CAMA.

(c) A knowledge biased CVRP 

solution in CAMA-M.

(a) A CVRP solution in 

Baseline CAMA.

(b) A CVRP solution in 

CAMA-R.
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Fig. 8 An illustration of CVRP solutions in the respective EA populations for solving “B-n41-k6” CVRP

instance. Each point plotted in the sub-figures denotes a CVRP customer node that needs service. Points or

nodes with same symbol are serviced by a common vehicle.

This suggests that the service orders information of the converged optimized solution for

instances “A-n32-k5”, “An54-k7”, “A-n60-k9” and “A-n69-k9” has been successful learned

and preserved by the learning operator of the CAMA-M, and subsequently through the cul-

tural evolutionary mechanisms of selection, variation and imitation, the learned knowledge

meme is imitated to generate positively biased solutions that is close to the optimal solution,

thus bringing about significant speedups in the search on related problem instances.

6.2 Capacitated Arc Routing Problem

To assess the generality of the proposed transfer learning culture-inspired operators for faster

evolutionary optimization of problems by learning from past experiences, further experi-
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Table 6 Properties of the egl “E” Series CARP benchmarks.

“E” Series

Data Set E1A E1B E1C E2A E2B E2C E3A E3B E3C E4A E4B E4C

V 77 77 77 77 77 77 77 77 77 77 77 77

Er 51 51 51 72 72 72 87 87 87 98 98 98

E 98 98 98 98 98 98 98 98 98 98 98 98

LB 3548 4498 5566 5018 6305 8243 5898 7704 10163 6048 8884 11427

Table 7 Properties of the egl “S” Series CARP benchmarks.

“S” Series

Data Set S1A S1B S1C S2A S2B S2C S3A S3B S3C S4A S4B S4C

V 140 140 140 140 140 140 140 140 140 140 140 140

Er 75 75 75 147 147 147 159 159 159 190 190 190

E 190 190 190 190 190 190 190 190 190 190 190 190

LB 5018 6384 8493 9824 12968 16353 10143 13616 17100 12143 16093 20375
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Fig. 9 Averaged search convergence traces (across 30 independent runs) of ILMA, ILMA-R, and ILMA-M on

representative CARP “E” and “S” Series instances. Y -axis: Travel cost, X-axis: Number of Fitness Evalua-

tion. Note that ILMA-M is observed to search significantly faster in converging to the near-optimal solution

on the respective CARPs than the other counterparts.

mental study on the domain of capacitated arc routing problems is conducted in what fol-

lows.

The well-established egl benchmark set is used in the present experimental study on

CARP. It comprises of two series of CARP instances, namely “E” and “S” series with a

total of 24 instances. The detailed properties of each egl instance are presented in Table 6

and Table 7. “|V |”, “|ER|”, “E” and “LB” denote the number of vertices, number of tasks,

total number of edges and lower bound, of each problem instance, respectively.

In CARP, each task (arc) is represented by a corresponding head vertex, tail vertex,

travel cost and demand (service cost). Note the contrast to CVRP where a task is repre-

sented by a vertex. Thus the arc information is pre-processed to obtain the position vertices.

The shortest distance matrix of the vertices is first derived by means of the Dijkstra’s algo-

rithm [67], i.e., using the distances available between the vertices of a CARP. The coordinate

features (i.e., locations) of each task are then approximated by means of multidimensional

scaling [68]. In this manner, each task is represented as a node in the form of coordinates

and the dimension of the nodes is governed based on multidimensional scaling. A CARP

instance in the current setting is then represented by input vector X composing of the co-

ordinate features of all tasks in the problem. With such a representation, standard clustering

approaches such as the K-Means algorithm is then used on the CARP for task assignments,

followed by pairwise distances sorting of tasks to preserve the service orders. The label

information of each task in Y belonging to the CARP instance, is then defined by the opti-

mized solution of CARP.
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Table 8 Solution quality of ILMA, ILMA-R, and ILMA-M on egl “E” and “S” Series CARP instances. The

superior solution quality of each respective problem instance is highlighted in bold font. “No. Win” denotes

the number of instances that an algorithm achieved best performance. Note that ILMA-M is superior on 75%
(18/24) of the instances. (“≈”, “+” and “−” denote ILMA-M statistically significant similar, better, and

worse than ILMA, respectively).

CARP ILMA ILMA-R ILMA-M (Proposed Method)

Instance B.Cost Ave.Cost Std.Dev B.Cost Ave.Cost Std.Dev B.Cost Ave.Cost Std.Dev

1.E1A 3548 3548 0 3548 3548 0 3548 3548 ≈ 0
2.E1B 4498 4517.63 12.45 4498 4517.80 13.19 4498 4513.27 ≈ 14.93
3.E1C 5595 5599.33 7.56 5595 5601.73 8.84 5595 5598.07 ≈ 8.58
4.E2A 5018 5018 0 5018 5018 0 5018 5018 ≈ 0
5.E2B 6317 6341.53 20.15 6317 6344.03 22.38 6317 6337.90 ≈ 11.90
6.E2C 8335 8359.87 36.61 8335 8355.07 39.26 8335 8349.97 ≈ 26.16
7.E3A 5898 5921.23 30.07 5898 5916.93 30.50 5898 5910.97+ 30.57
8.E3B 7777 7794.77 23.08 7777 7792.17 29.95 7775 7788.70 ≈ 15.74
9.E3C 10292 10318.73 40.89 10292 10327.07 33.46 10292 10319.16 ≈ 36.15
10.E4A 6461 6471.37 15.16 6458 6481.77 22.77 6461 6469.80 ≈ 10.27
11.E4B 8995 9060.67 45.29 8993 9067.93 50.54 8988 9053.97 ≈ 41.49
12.E4C 11555 11678.47 73.57 11594 11728.30 82.39 11576 11697.27 ≈ 76.98
13.S1A 5018 5023.93 18.14 5018 5025.97 26.97 5018 5023.67 ≈ 25.39
14.S1B 6388 6404.07 22.96 6388 6403.30 20.89 6388 6392.80+ 14.65
15.S1C 8518 8577.63 44.18 8518 8581.67 33.98 8518 8576.53 ≈ 33.12
16.S2A 9920 10037.43 61.51 9925 10050.30 54.24 9896 10010.20 ≈ 67.13
17.S2B 13191 13260.03 45.37 13173 13257.90 48.94 13147 13245.56 ≈ 53.02
18.S2C 16507 16605.10 65.26 16480 16626.43 62.90 16468 16615.40 ≈ 76.79
19.S3A 10248 10342.77 47.56 10278 10369.40 52.42 10239 10339.40 ≈ 53.29
20.S3B 13764 13912.97 79.85 13779 13899.70 76.96 13749 13881.33 ≈ 85.78
21.S3C 17274 17371.10 79.12 17277 17402.43 74.37 17261 17355.03+ 48.23
22.S4A 12335 12498.47 67.72 12407 12534.47 63.23 12320 12489.43 ≈ 83.91
23.S4B 16378 16542.93 89.65 16443 16540.43 87.52 16415 16512.43 ≈ 57.54
24.S4C 20613 20794.80 77.51 20589 20841.13 85.53 20564 20774.20 ≈ 86.78

No. Win 2 3 1 0 10 18

In the empirical study, two commonly used population initialization procedures based

on ILMA are considered here for comparison. The first is a simple random approach, which

is labeled here as ILMA-R. The second is the informed heuristic based population gener-

ation procedure used in the baseline ILMA [60] for CARP. There, the initial population is

formed by a fusion of chromosomes generated from Augment Merge, Path Scanning, Ulu-

soy’s Heuristic and the simple random initialization procedures.

Our proposed transfer learning culture-inspired operators, which leverage past problem

solving experiences to bias the initial or starting population of EA solutions in the conven-

tional ILMA is labeled then here as ILMA-M. To facilitate a fair comparison and verify the

benefits of the proposed transfer learning culture-inspired approach, the configurations of

the evolutionary operators in baseline ILMA and the variants are keep in consistent to those

reported in [60].

6.2.1 Results and Discussions

On both the “E” and “S” series egl instances, ILMA-M has been consistently been able to

converge more efficiently than ILMA and ILMA-R on the CARP instances considered10.

Similar trends on speedup in search as observed in the CVRP has been observed in the

CARP. Overall, ILMA-M is noted to bring up to 70% savings in the number of fitness func-

tion evaluations to arrive at the solutions attained by both ILMA and ILMA-R on most of

the CARP instances. For instance, it is worth noting that on instance “S1-B” (Fig. 9(b)),

ILMA-M incurred a total of 1.5 × 106 number of fitness function evaluations to converge

at the same solution found by ILMA and ILMA-R, which otherwise expended a large fitness

10 Due to page limit constraints, only representatives of each series have been shown.
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evaluation costs of approximately 6 × 106. This equates to a significant cost savings of 4
times by ILMA-M over ILMA and ILMA-R.

Further, Table 8 summarizes the results that measure the solution quality on the “E”-

Series and “S”-Series egl instances as obtained by the respective algorithms, across 30 in-

dependent runs. To obtain statistical significance comparisons, the Wilcoxon rank sum test

with 95% confidence level has been conducted on the experimental results. As observed,

ILMA-M performed competitively to ILMA on instances “E1-A” and “S1-A”, which is ex-

pected, since these are the first encountered problem instances of ILMA-M on the “E” and

“S” egl CARP instances, respectively, where no useful prior knowledge is available yet. As

more problem instances are solved, the ILMA-M is observed to not only search much more

efficiently but also at no loss in solution quality. As a matter of fact, it arrives at superior

solution quality over ILMA in terms of Ave.Cost on 18 out of 24 problem instances in the

egl benchmark set. In terms of B.Cost, ILMA-M also achieved 2 and 8 improved solution

qualities over ILMA and ILMA-R on the “E” and “S” series egl instances, respectively.

6.3 Real World Application: The Package Collection/delivery Problem

In the courier business, the package collection/delivery task is among one of the challenging

tasks that courier companies confront with everyday. The package collection/delivery prob-

lem (PCP) can be defined as the task of servicing a set of customers with a fleet of capacity

constrained vehicles located at a single or multiple depot(s). In particular, the PCP can be

seen as a variant of the vehicle routing problem with stochastic demand (VRPSD), in which

the true demand, i.e., the actual weight and dimensions of the package for each customer re-

main uncertain before it is serviced on site. In such situations, it may happen that the service

vehicle capacity may be insufficient to accommodate the true demand faced (i.e., capacity

of the package for example) upon arriving at the customer location, thereby necessitating a

return trip to the central depot for capacity replenishment before proceeding to service the

affected customers. This not only leads to a substantial increase in the operational costs,

but more importantly, probable customer dissatisfactions and unhappiness due to failures in

meeting the advertised delivery time guaranteed.

(c) Customer distribution of the 

new unseen PCP to solve 

(d) Optimized routes by MCES

on the new unseen PCP 
(a) Customer distribution 

of  solved PCP 1

(b) Customer distribution 

of solved PCP 10

Fig. 10 Faster evolutionary optimization of real world PCP by transfer learning from past solving experi-

ences. The head portrait in the subfigures represent the customers to be serviced.

In the present context, the experiences of past optimized PCP routes and the unseen

PCP requiring routes design are provided by the courier company. In the PCP of interest

here, the archival of past experiences include ten previously solved PCPs of diverse cus-

tomer distributions and customer size (including uniform, well-clustered, etc., distributed

customers, ranging from about 100 to over 500.). For the purpose of illustration, two solved

PCPs with customer distributions are depicted in Fig. 10(a) and Fig. 10(b). The customer
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distribution of the new unseen PCP to solve is then depicted in Fig. 10(c). On this prob-

lem, the recently reported state-of-the-art evolutionary search with Monte Carlo simulation

for designing reliable VRPSD solution [69] and labeled here as CES, is considered as the

baseline evolutionary solver. To speed up the search for reliable PCP routes, the proposed

transfer learning culture-inspired operators are incorporated into the CES, which is notated

here as MCES. Thus MCES differs from CES in that the former is equipped with an initial

population of biased routing solutions that are generated using knowledge memes that are

learned from search experiences on the ten previously solved PCPs. To ensure a fair com-

parison, the parameter and operator settings of CES and MCES are kept consistent to that of

[69].

The optimized routes obtained by MCES on the new unseen PCP is illustrated in Fig.

10(d). With the availability of the knowledge meme mined from past PCP solving experi-

ences, MCES attained a population of higher quality solutions than CES, right at the start of

the search (i.e., initialization). In addition, MCES is shown to search more efficiently than

the CES throughout the entire search. Upon convergence, MCES showcased a computational

cost savings of more than 58% to arrive at the same best solution found by counterpart CES.

It is worth highlighting that as MCES and CES share a common evolutionary solver, the sig-

nificant improvements of the former with respect to efficiency can thus be clearly attributed

to the proposed transfer learning as culture-inspired operators, which generate high-quality

solutions in the initial population to speed up evolutionary search by transfer learning from

past experiences.

7 Conclusion

In this paper, we have proposed a new Memetic Computation Paradigm: Evolutionary Op-

timization + Transfer Learning for search, which models how human solves problems and

presented a novel study towards intelligent evolutionary optimization of problems through

the transfers of structured knowledge in the form of memes as building blocks learned from

previous problem-solving experiences, to enhance future evolutionary searches. In particu-

lar, the four culture-inspired operators, namely, Learning, Selection, Variation and Imitation

have been proposed and presented. The mathematical formulations of the cultural evolu-

tionary operators for solving well established NP-hard routing problems have been derived,

where learning is realized by maximizing the statistical dependence between past prob-

lem instances solved and the respective optimized solution. In contrast to earlier works,

the proposed approach facilitates a novel representation, learning and imitation of general-

ized knowledge that provide greater scope for faster evolutionary search on unseen related

problems. Further, comprehensive studies on the widely studied NP-hard CVRP and CARP

domain, has been made to demonstrate and validate the benefits of the proposed faster evolu-

tionary search approach. Subsequently studies on a real world Package Collection/Delivery

Problem further verified the effectiveness of the proposed fast evolutionary approach.

Future works will explore the generality of the proposed paradigm in the context of

dynamic optimization problems, where the problems of two subsequent time instances may

share high similarity. Last but not the least, although this paper focuses on evolutionary

optimization approaches, the proposed cultural-inspired transfer learning operators can also

apply to other population based methods, such as particle swarm optimization, differential

evolution, etc.
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