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In drug discovery applications, high throughput virtual screening exercises are routinely performed to

determine an initial set of candidate molecules referred to as “hits”. In such an experiment, each

molecule from a large small-molecule drug library is evaluated in terms of physical properties such as

the docking score against a target receptor. In real-life drug discovery experiments, drug libraries are

extremely large but still there is only a minor representation of the essentially infinite chemical space,

and evaluation of physical properties for each molecule in the library is not computationally feasible. In

the current study, a novel Machine learning framework for Enhanced MolEcular Screening (MEMES)

based on Bayesian optimization is proposed for efficient sampling of the chemical space. The proposed

framework is demonstrated to identify 90% of the top-1000 molecules from a molecular library of size

about 100 million, while calculating the docking score only for about 6% of the complete library. We

believe that such a framework would tremendously help to reduce the computational effort in not only

drug-discovery but also areas that require such high-throughput experiments.

Introduction

The drug discovery process is an extremely laborious process

and the pipeline involves several steps each of which is both

expensive and time consuming. The rst step in the process

aer target identication and validation is to identify hit

molecules, where potential strong binding drug-like molecules

against a drug target are identied using computational

methods. Once the hit molecules are identied, they are

experimentally evaluated typically using biochemical assays

towards lead identication. Further processes involve lead

optimization, in vitro and in vivo evaluation, pre-clinical studies

and clinical trials before the drug can be approved for use. The

structure based drug design (SBDD) method, docking, is

routinely used for identication of lead molecules.1–4 In the

SBDDmethod, large libraries of ligands5–7 are virtually screened

to determine their docking score against a drug target, which is

a measure of the inter-molecular interaction between the target

and the ligand.

Recently new methods that use modern deep/reinforcement

learning have been proposed to tackle problems in molecular

sciences such as physical property prediction,8,9 drug design

tasks,10 protein structure prediction,11–13 molecular simula-

tions,14–16 and de novo molecule generation.17 Most of the deep

learning models that tackle the problem of molecular genera-

tion are based on variational autoencoders,18–21 Generative

Adversarial Networks22–24 and Reinforcement Learning.25–28

Although these models have been seen to perform really well in

optimization of molecular properties such as the QED score

(Quantitative Estimate of Drug likeliness) and log P score

(octanol–water partition coefficient), they have been shown to

perform inadequately while optimizing objective functions

involving docking calculations.29 Moreover, in a recent study by

Gao and Coley,30 it was demonstrated that although the mole-

cules generated by these methods are novel and diverse, they

may be very difficult/infeasible to synthesize and hence cannot

be of practical importance in a real-life drug discovery scenario.

In contrast to the molecules generated by deep generative

models, molecule libraries enumerated via simple reactions can

be novel, diverse and at the same time practically synthesized

with a probability of �86%.30–32 In a recent study performed by

Lyu et al.,31 96 million docking calculations were performed

against the AmpC receptor. Among these the top ranked 1
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million compounds (1% of the initial set) were systematically

examined to identify hit molecules, which were further vali-

dated experimentally. In the same study, 138 million docking

calculations were performed for the D4 dopamine receptor,

which was used to show that the hit-rates fell almost mono-

tonically with the docking-score. Although, Lyu et al. docked

compounds in the order of 108, it is still a small fraction when

compared to the 1.6 billion molecules enumerated in the ZINC

Library. Moreover, their study also shows that hits for a target

can be identied using only the top fraction of the ligands with

respect to the docking score. Hence, a sampling method that

can efficiently search the chemical space for high docking

scores would speed up the process.

Recently, Gentile et al. proposed a deep learning based

method “Deep Docking” to augment the process of SBDD.33 In

this work, iterative docking is performed on a small portion of

large libraries. The obtained values are used to train ligand-

based QSAR models, which are used to predict the scores of

the remaining ligands in the library. A cut-off is set to identify

the hits among these predicted molecules. Molecules are then

randomly sampled from these hits to further train the QSAR

model for the next iteration. In this manner, the authors claim

that with docking up to 50 times fewer molecules, 60% of the

top scoring molecules can be retrieved.

In this work, a novel Machine learning framework for

Enhanced MolEcular Screening (MEMES) based on Bayesian

optimization is proposed for efficient sampling of molecules

during the SBDD process. In the framework, the initial set of

molecules are rst featurized and represented as molecular

vectors. These are then clustered using the K-means clustering

algorithm. A small set of molecules are sampled from each

cluster to build an initial diverse set of ligands, and their

docking scores are calculated. A Gaussian process is trained as

a surrogate function for the protein–ligand docking score. Two

variants of the MEMES framework, ExactMEMES and Deep-

MEMES, are introduced depending upon the choice of the

surrogate function used (see the Methods section). The initial

training set is iteratively updated by sampling a small portion of

molecules not previously sampled based on an acquisition

function, and the process is repeated, until the maximum

number of allowed docking calculations is reached. The

proposed framework successfully samples a very high fraction

of the top hits for a given protein and molecular library, while

only calculating docking scores for 6% of the complete molec-

ular library. Further, extensive analysis has been carried out to

show the robustness of the framework on different proteins and

molecular libraries with varying size.

Method

In this section, the various components in the proposed

framework (Fig. 1) are explained. The docking methods, ligand

libraries, and target receptors used in the MEMES framework

are described in the section Docking methodology. In the

section Molecular representation, the choice of different

molecular embedding techniques used in this work is explained

Fig. 1 Overview of the proposed method, MEMES.

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2021, 12, 11710–11721 | 11711
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in detail. Further, Bayesian optimization, the techniques used

to approximate the protein–ligand scoring function and point

selection methods are explained.

Docking methodology

Molecular docking is useful in drug discovery projects to identify

potential inhibitors against a protein receptor from small mole-

cule libraries. The rst step is ligand preparation, and protein

preparation that was carried out using AutoDock 4.2 (AD 4)34 in

this study. Three different small-molecule libraries of varying

sizes were used in this study. First is the Zinc-250K dataset used

earlier in molecular generation studies28,35,36 which contains

250 000 drug-like molecules obtained from the ZINC15 data-

base.7 Second is the Enamine dataset37 containing screening

compounds that are grouped into different collections. Enamine

HTS Collection containing 2 106 952 molecules is used in this

study. The last one is the Ultra Large Docking Library introduced

by Lyu et al.,31 which contains 96 million molecules docked

against the AmpC b-lactamase (AmpC) receptor. Target proteins,

Tau-Tubulin Kinase 1 (PDB ID: 4BTK) and SARS-CoV-2 Mpro

complexed with an N3 inhibitor (PDB ID: 6LU7) used for evalu-

ating the MEMES framework were obtained from the Research

Collaboratory for Structural Bioinformatics-Protein Data Bank

(RCSB-PDB).38 The next step in molecular docking is grid map

generation carried using AutoGrid 4 utility in AutoDock. Finally,

docking calculations were performed, keeping the protein active

site rigid to get the docking score. Detailed information about the

docking methodology is given in ESI Methods.‡

Molecular representation

The rst step in the pipeline is to represent molecules as xed-

dimensional vectors. It is essential to choose vector represen-

tation techniques that effectively represent molecular structures

and are sensitive to different atom types and bond connectivi-

ties. In this work, we performed trials with three molecular

embedding techniques – ECFP,39 Mol2Vec40 and CDDD.41

Extended-connectivity ngerprints (ECFP). Extended-

connectivity ngerprints39 encode molecules into a bit vector,

each bit indicative of the presence or absence of a specic

substructure. A basic overview of the algorithm for nger-

printing is described here. First, each atom is assigned a unique

integer value based on the Morgan algorithm. The atom iden-

tier is augmented with information gathered from neigh-

boring atom and bond information and a unique identier is

obtained. This step is repeated for a desired number of itera-

tions (dened by the radius) indicating the depth of the infor-

mation captured at each atom center. Duplicates are removed in

case there are multiple occurrences of the same identier. The

substructures are nally constructed into a bit vector.

Mol2Vec. Mol2Vec40 is a molecular embedding technique

inspired by the Natural Language Processing technique,

Word2Vec.42 In the Word2Vec technique, words are encoded as

vectors that are representative of semantics through unsuper-

vised machine learning over a large text corpus. The Mol2Vec

algorithm extends this method for application to small mole-

cules. In the Mol2Vec algorithm, substructures are rst

extracted using the Morgan algorithm at radii 0 and 1 and

a unique identier is assigned to each of them. Using these

identiers, SMILES sequences of molecules are ordered as

sentences, analogous to representing text sentences with words.

TheWord2Vec algorithm is then used for unsupervised training

to construct an identier-vector look up table. For a new

molecule, the embedding is obtained by summing the vectors of

all the identiers in the sentence constructed. Training with the

Word2Vec algorithm helps tackle the sparse nature that

encoding methods such as ECFP have, which makes it easier for

their use with ML models. The Word2Vec training helps in

contextualizing vectors that are representative of the structures,

instead of a single bit value. The Mol2Vec model is trained on

ZINC 15. The Mol2Vec descriptor has shown to have superior

performance on regression tasks such as solubility prediction43

and toxicity prediction.44

Continuous and data-driven descriptors (CDDD). Recently

Winter et al. proposed a model based on machine translation

for mapping arbitrary SMILES representation of a molecule to

its canonical SMILES.41 The proposed model uses encoder–

decoder architecture to capture the molecular representation in

the latent space. For a new molecule, a xed 512-dimensional

latent vector (CDDD descriptor) is obtained by passing through

the trained model. The CDDD descriptor41 has shown to have

good performance on regression tasks such as solubility

prediction and themelting points. The continuous nature of the

CDDD descriptor opens up a new chemical space for explora-

tion and therefore was chosen as the featurization technique for

the proposed framework.

Bayesian optimization

Bayesian optimization is a technique used to optimize black-

box functions that are expensive to evaluate.45,46 In recent

years, Bayesian optimization has seen widespread applications

in the eld of chemistry, ranging from latent space optimization

in molecular generation to reaction optimization for chemical

synthesis.20,35,47,48 There are two main components in Bayesian

optimization, a surrogate function which is a statistical model

that can be used to approximate the black box, and an acqui-

sition function to determine the next points to the sample. In

this work, Gaussian Process Regression (ExactGP) and Deep

Gaussian Process (DeepGP) are used as surrogate functions in

ExactMEMES and DeepMEMES variants, respectively, and ex-

pected improvement49 is used as an acquisition function.

Gaussian process regression (GPR). Gaussian process

regression is a nonparametric Bayesian regression technique.

Consider a data set of k points, x1,., xk, whose function values

are already known, are represented in a vector [f(x1),., f(xk)]. In

Bayesian statistics, the set of points is assumed to be drawn at

random from a prior probability distribution. In a Gaussian

process, the prior probability distribution is modelled as

a multivariate Gaussian distribution with a mean and a covari-

ance vector. The prior distribution on the set of points [f(x1),.,

f(xk)] is given by

f(x1:k) � Normal(m0(x1:k),S0(x1:k,x1:k)) (1)

11712 | Chem. Sci., 2021, 12, 11710–11721 © 2021 The Author(s). Published by the Royal Society of Chemistry
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In eqn (1) the mean vector is obtained by evaluation of the

mean function m0 at each point xi and the covariance matrix is

obtained by evaluation of the covariance function or kernel S at

each pair of points xi and xj. The kernel function should have

a property that the points closer should have strong correlation

and the resulting covariance matrix is positive semi-denite.

Suppose the prior distribution is constructed for n points. For

a point x at k ¼ n + 1, the distribution is obtained from Baye's

rule -

f ðxÞjf ðx1:nÞ � normal
�

mnðxÞ; sn
2ðxÞ

�

mnðxÞ ¼ S0ðx; x1:nÞS0ðx1:n; x1:nÞ
�1ðf ðx1:nÞ � m0ðx1:nÞÞ þ m0ðxÞ

sn
2ðxÞ ¼ S0ðx; xÞ � S0ðx; x1:nÞS0ðx1:n; x1:nÞ

�1
S0ðx1:n; xÞ

(2)

The conditional probability distribution is called the poste-

rior probability distribution. For faster computations, the

matrix inversions are obtained through Cholesky decomposi-

tions and solving a system of linear equations. In this work, the

kernel function is chosen to be Radial Basis Function (RBF).50

The implementation of exact Gaussian processes in GPyTorch51

is used in this work.

Deep Gaussian processes (DGPs). Although exact Gaussian

processes help approximate black-box functions and provide

a good estimate of uncertainty, the algorithm has time

complexity of the order, O(n3). As a result, Gaussian processes

cannot be applied when the dataset is larger than a few hundred

thousand points. Instead, deep Gaussian processes52 provide

a scalable alternative.

The deep Gaussian process is a type of deep belief network

where every hidden unit is a Gaussian process. The output of

the l � 1th layer is used as the input to the lth layer. It can be

dened as the composition of functions. Formally we can dene

DGP for a training data set of k points x1,., xk whose function

values are known represented in a vector y, as

f ð1:LÞðx1:kÞ ¼ f ðLÞ
�

f ðL�1Þ
�

.f ð2Þ
�

f ð1Þðx1:kÞ
�

.

��

where f
ðlÞ
d � GP

�

0; k
ðlÞ
d ðx; x

0
Þ
�

for f
ðlÞ
d ˛f

ðlÞ
(3)

In eqn (3) L denotes the number of layers. Each layer has its own

kernel and the noise between layers is assumed to be indepen-

dent and identically distributed Gaussian, which is absorbed into

the kernel knoisy(xi,xj) ¼ k(xi,xj) + sl
2
dij where dij is the Kronecker

delta and sl
2 is the noise between layers.52 The joint probability

distribution for the deep Gaussian process is given by

p
�

y;

�

f ðlÞ
�ðLÞ

l¼1

�

¼
Y

N

i¼1

p
�

yijf
ðLÞ
i

�

Y

L

i¼1

pðfðlÞjfðl�1ÞÞ (4)

In eqn (4) the rst term corresponds to likelihood, and the

second corresponds to the GP prior. Non linear transformation is

applied on the output of every hidden layer due to which the exact

inference is not tractable.52 To overcome this problem various

numbers of approximations have been developed such as ex-

pected propagation,53 variational auto-encoded deep Gaussian

processes,54 and doubly stochastic variational inference for deep

Gaussian processes.55 In this work, doubly stochastic variational

inference is used here. The implementation of deep Gaussian

processes in Gpytorch51 is used in this work.

Expected improvement (EI). As discussed, in Bayesian opti-

mization, an acquisition function is necessary to determine the

next points to be chosen. The acquisition function should be

able to choose points that are estimated to have a highly

negative docking score (exploitation), while also exploring

unseen/uncertain regions. One such metric, Expected

Improvement (EI), that can help balance exploration–exploita-

tion is used in this work and is described in this section.

Improvement at a point x is dened as

I ¼ max(0,f(x) � f*) (5)

In eqn (5) f* is the best function value found so far and f(x) is the

value of the function at x. When a Gaussian process is used, f(x)

is not a value, but a random variable � N(m,s2), where m and s

correspond to the mean and variance evaluated at point x. The

expected improvement is dened as

EI(x) ¼ exp[max(0,f(x) � f*)] (6)

Using the reparameterization trick, x ¼ m + s3 and inte-

grating over the distribution, it can be shown that expected

improvement can be obtained as

EI(x) ¼ (m(x) � f* � z)F(Z) + s(x)f(Z) (7)

where

Z ¼
ðmðxÞ � f *� zÞ

sðxÞ
(8)

Here F and f are the cumulative distribution function (CDF)

and the probability distribution function (PDF) of the standard

normal distribution. In eqn (7), the rst term determines the

exploration and second term determines the exploitation. The

parameter z denotes the amount of exploration during optimi-

zation. In this work, z is chosen to be 0.01.

Results and discussion

In this section, the capability of the MEMES framework to

sample a set of molecules having a highly negative docking

score and high overlap with the actual top hit molecules while

only performing docking calculations on only 6% of the mole-

cules in the complete library is demonstrated. Further, the

capability of the proposed method to sample a diverse set of

molecules is shown. In this work, the performance of the

MEMES framework is evaluated on two different surrogate

functions ExactGP and DeepGP. Since ExactGP cannot be

extended to be used on ultra large docking libraries due to

computational constraints, in the subsequent subsection, the

performances of ExactGP and DeepGP as the choice of surrogate

function in the MEMES framework are compared to validate the

performance of DeepMEMES against ExactMEMES. In the

following subsection, the performance of the MEMES frame-

work with DeepGP is demonstrated on large docking libraries.

Finally, the robustness of the MEMES framework is

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2021, 12, 11710–11721 | 11713
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demonstrated by applying it on molecular libraries with sizes

ranging from 2 million to 96 million compounds.

The framework proposed in this work “MEMES” is based on

Bayesian optimization (Fig. 1). Firstly, in the MEMES method,

all the ligands in the library are represented as xed dimension

feature vectors. Secondly, a small fraction of molecules are

chosen to be the initial set. To ensure that this “initial set” is

diverse and representative of the complete molecular library,

a K-means clustering56 is performed on the pre computed

feature vectors and molecules are uniformly sampled from each

of the resulting clusters. Docking scores for each molecule in

the initial set are computed against the given target receptor. A

Gaussian process49,52,57 is then trained on this initial set. A new

set of molecules is then picked from the rest of the dataset

based on the“expected improvement” values calculated using

the trained Gaussian process (see Methods). The docking score

of these molecules are computed and these are added to the

initial training set and the Gaussian process is retrained. The

procedure is repeated iteratively, until the computational

budget is reached or no improvement is observed.

MEMES identies 95+% of top candidates by sampling only

6% of the dataset

The Zinc-250K dataset contains 250 000 drug like molecules

obtained from the ZINC 15 database.7 The ExactMEMES

(MEMES framework with ExactGP) was applied on the Zinc-

Fig. 2 Performance on Zinc-250K using ExactMEMES against both target receptors. (a) and (b) compare the mean docking score of top hits

sampled by MEMES and random sampling against the mean docking score of actual top hits in the library. (c) and (d) show the fraction of the top

500 sampled molecules that are actual top hits against the percentage of the dataset sampled. The reported results are an average of 3 runs and

the shaded region represents standard deviation across these runs.

11714 | Chem. Sci., 2021, 12, 11710–11721 © 2021 The Author(s). Published by the Royal Society of Chemistry
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250K dataset against two protein receptors: Tau-Tubulin Kinase

1 (TTBK1) an attractive target protein to combat many neuro-

degenerative diseases such as Alzheimer's and the main

protease (Mpro) of SARS-CoV-2, responsible for the outbreak of

COVID-19. As the ExactGP used in this framework cannot be

applied to a very large molecular library, the ZINC-250K dataset

was selected to assess the performance of ExactMEMES.

Virtual screening docking calculations were performed to

identify molecules that have high docking scores against

a target receptor, i.e. to nd top hits. It is also desired that the

top hits identied in this process are diverse and span the

complete molecular library. Here, we show that the Exact-

MEMES framework (with only 6% docking calculations) is able

to sample molecules that have highly negative docking scores,

and have high overlap with actual top hits of the given molec-

ular library. This demonstrates that the MEMES framework not

only identies molecules exhibiting high negative docking

scores but most of the top molecules in the complete library.

Fig. 2a and b show the mean docking score of actual top

molecules in the molecular library, top molecules sampled by

the ExactMEMES framework with Mol2Vec, CDDD and ECFP as

molecular featurizer techniques and those by a random

sampling method, against TTBK1 and SARS-CoV-2 Mpro

respectively. The top 20 docking hits in the complete docking

library for both the target receptors are given in ESI Fig. S1 and

S2.‡ For ExactMEMES and random sampling, 15 000 (�6% of

the complete molecular library) docking calculations were per-

formed. From Fig. 2 it is quite evident that the ExactMEMES

method signicantly outperforms the random sampling base-

line and matches the mean docking score of actual top

compounds present in the molecular library. Fig. 2 also shows

that ExactMEMES with CDDD featurization outperforms

ExactMEMES with Mol2Vec and ECFP featurization techniques.

The distribution of the docking scores of top sampled mole-

cules is given in ESI Fig. S3‡ and the number of top docking hits

identied by MEMES across different clusters is given in ESI

Fig. S4.‡ Also the distribution of the top hits missed by the

proposed method is given in ESI Fig. S5,‡ which shows that the

current method is not biased in identifying top hits with respect

to the values of the binding affinity.

Fig. 2c and d show the fraction of top 500 sampled molecules

that are actual top hits for receptors TTBK1 and SARS-CoV-2

Mpro against the percentage of molecules sampled from the

docking library using ExactMEMES and random sampling (see

ESI Fig. S6‡ for similar analysis of top 100 sampled molecules).

Fig. 2c and d show that ExactMEMES signicantly outperforms

random sampling and almost shows a complete overlap with

the actual top hits when the percentage sampled is around 6%.

Further intersection of the top 500 molecules sampled by the

ExactMEMES framework, random sampling, and actual top hits

for receptors TTBK1 and SARS-CoV-2 Mpro from the molecular

library is shown in Fig. 3. ESI Table S1‡ demonstrates the

overlap results for top 100, and top 500 molecules for all

molecular embeddings (Mol2Vec, CDDD, and ECFP).

ExactMEMES vs. DeepMEMES

The above results show the ability of the ExactMEMES frame-

work to identify top hits only by performing docking of less than

6% of the complete docking library but it cannot be applied on

large docking libraries due to computation constraints. There-

fore to overcome this issue, the DeepMEMES variant of the

proposed framework is introduced. In this section, the perfor-

mance of DeepMEMES is compared against that of Exact-

MEMES on the Zinc-250K docking library.

Fig. 4 shows the comparison of the fraction of the molecules

matched with actual top hits of the docking library between

DeepMEMES and ExactMEMES using Mol2Vec as molecular

embedding (see ESI Fig. S7‡ for comparison results with CDDD as

the featurization technique). From Fig. 4, we can infer that

DeepMEMES has comparable performance with ExactMEMES.

See ESI Discussion 1‡ for the performance of DeepMEMES on

Zinc-250K. Performance comparison between DeepMEMES and

Deep Docking (study by Gentile et al.) in terms of ability to identify

top hits and time is provided in ESI Discussion 2.‡ Further

sections show the application of DeepMEMES on different

molecular libraries to assess its performance on large datasets.

Fig. 3 Venn diagram showing the intersection of the top 500 molecules identified by the MEMES framework and actual top 500 hits from the

Zinc-250K docking library (the statistics shown are for one of the three runs).

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2021, 12, 11710–11721 | 11715
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MEMES framework on large libraries

In real life drug discovery experiments, to nd a hit against

a target receptor, usually ultra large docking libraries are

screened. Hence, it is essential to validate the performance of

the MEMES method on docking libraries that mimic real-life

use cases. As ExactMEMES cannot be applied on large dock-

ing libraries due to computational constraints and since both

are comparable in performance, DeepMEMES framework

performance was demonstrated on two large docking libraries

Enamine37 HTS Collection (2 million molecules) and an Ultra

Large Docking Library31 (96 million molecules).

Enamine dataset

The Enamine dataset37 consists of collections of compounds

that are used in virtual screening. Enamine HTS Collection

containing 2 106 952 screening compounds was chosen to

illustrate the performance of DeepMEMES. The DeepMEMES

framework is applied on Enamine HTS Collection to demon-

strate that the top docking hits can be identied only by dock-

ing a small fraction of the complete library against the target

receptor TTBK1.

Fig. 5a shows the fraction of top 500 sampled molecules

that are actual top hits sampled from the docking library using

Fig. 4 To compare the performance of ExactMEMES and DeepMEMES, a fraction of the top 500molecules sampled that are actual top hits from

the Zinc-250K dataset is plotted against the percentage of the dataset sampled (see ESI Fig. S7‡ for similar analysis for top 100 molecules).

Mol2Vec as a featurization technique was used for this comparison. The reported trial results are an average of 3 runs and the shaded region

represents standard deviation across these runs.

Fig. 5 (a) and (b) show the performance of DeepMEMES on the Enamine dataset against target protein TTBK1. (a) shows the fraction of the top

500 sampled molecules that are actual top hits in the library. The reported results are an average of 3 runs and the shaded region represents

standard deviation across these runs. The Venn diagram (b) demonstrates the overlap of top 500 hits DeepMEMES(Mol2Vec), random sampling

and the whole dataset (the statistics shown are for one of the three runs).
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the DeepMEMES framework (using Mol2Vec, CDDD and ECFP

embedding). ESI Fig. S9‡ provides similar analysis of the top

100 sampled molecules and ESI Fig. S10‡ shows the distribu-

tion of the docking scores of top hits sampled. Fig. 5b shows

the overlap of the top 500 molecules sampled using the

DeepMEMES framework (Mol2Vec), random sampling and

actual top hits for target protein TTBK1 (ESI Table S2‡

demonstrates detailed overlap results for Mol2Vec, CDDD and

ECFP featurization techniques). From Fig. 5a and b, we can

infer that a high percentage of molecules sampled by Deep-

MEMES matches with the actual top hits by performing only

125 000 docking calculations, which is �6% of the chosen

docking library. Fig. 5a shows that the DeepMEMES framework

with Mol2Vec embedding outperformed the CDDD and ECFP

embeddings and hence was chosen for further trials with ultra

large docking libraries.

The libraries of compounds used for virtual ligand screening

campaigns are fairly large. To substantially reduce the compu-

tational cost and deal with molecules with desired physico-

chemical properties which are more in line with known drug

proles, rule-based ltering is oen employed.58,59 Depending

on the objectives of a given project, different ltering criteria are

applied based on parameters such as the molecular weight,

hydrogen bond acceptor and donors, rotatable bonds, log P,

Pan-assay interference compounds (PAINS) and the topological

polar surface area (TPSA) among many others.60 TPSA is

Fig. 6 (a)–(c) show the performance of DeepMEMES on an Ultra Large Docking Library against target protein AmpC. (a) shows the fraction of the

top 1000 sampled molecules that are actual top hits in the library. The result shown is an average over three runs. The Venn diagram (b)

demonstrates the overlap of the top 1000 hits identified by DeepMEMES (Mol2Vec), random sampling and the whole dataset. (c) shows the

distribution of the docking scores for top 10 000 molecules sampled by DeepMEMES, random sampling and the whole dataset. The vertical red

line denotes the cutoff docking score for the top 1000 hits (the distribution plot and Venn diagram are made from one of the three runs).

© 2021 The Author(s). Published by the Royal Society of Chemistry Chem. Sci., 2021, 12, 11710–11721 | 11717
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a popular descriptor in medicinal chemistry that is used for

ltering molecules with blood–brain barrier crossing

tendency.61 Trials were performed on the Enamine dataset

using the MEMES framework combined with rule based

ltering to demonstrate that such ltering techniques improve

the efficiency of the proposed framework (see ESI Discussion 3‡

for more details).

Ultra large docking library

In a recent study, Lyu et al.31 introduced a large compound

library containing 96 million molecules. The whole library was

docked to nd potential molecules against the AmpC b-lacta-

mase (AmpC) receptor. The DeepMEMES framework with

Mol2Vec as molecular embedding was applied to this molecular

library to show that top docking hits can be identied by per-

forming docking calculations on a fraction of the complete

library. Fig. 6a shows the fraction of top 1000 sampled mole-

cules that are actual top hits sampled from the docking library

using DeepMEMES (Mol2Vec), and Fig. 6c shows the compar-

ison of the distribution of the docking scores. Similar analysis

for the top 500 and top 5000 molecules is given in ESI Fig. S11

and S12.‡ Fig. 6b shows the overlap of the top 1000 molecules

sampled using the DeepMEMES framework (using Mol2Vec

embedding), random sampling, and actual top hits for target

protein AmpC. ESI Table S3‡ demonstrates the overlap results

for the top 500, top 1000 and top 5000 molecules for three runs.

From Fig. 6a–c we can infer that 90% of molecules sampled by

the DeepMEMES framework matches the actual top hits only by

performing 5 800 000 docking calculations, �6% of the

complete library. It is a signicant improvement over random

sampling where only 5.5% of sampled molecules matches

actual top hits.

Effect of the docking library size on the performance of

DeepMEMES

The previous section shows the application of DeepMEMES on

Enamine HTS collection37 and an ultra large docking library31

for target protein TTBK1 and AmpC, respectively. The purpose

of this exercise is to demonstrate the robustness of the

proposed framework on docking libraries of varying sizes. K-

means clustering was performed on an ultra large docking

library,31 creating 1000 clusters, and subsets of different sizes

ranging from 2 million to 96 million were created by uniformly

sampling from each of the resulting clusters. Finally, Deep-

MEMES performance was assessed on each of the resulting

subsets.

Fig. 7 shows the fraction match of the sampled molecules

that matches actual top hits for different docking library sizes.

85–95% of the molecules sampled by the DeepMEMES frame-

work with Mol2Vec featurization matches the actual top hits

irrespective of the docking library's size, demonstrating the

consistent performance of the proposed framework.

In summary, high throughput virtual screening requires

exhaustive evaluation of each molecule in a complete docking

library to nd potential candidate molecules. In this study, the

MEMES framework based on Bayesian optimization for efficient

sampling of the chemical space for high throughput exercises is

proposed. We showcase the MEMES framework application in

hit identication, i.e., to sample molecules with high docking

scores against target receptors. Two variants of the MEMES

framework are introduced, ExactMEMES and DeepMEMES,

depending on the choice of surrogate function. Various MEMES

runs were performed with Mol2Vec, CDDD and ECFP as

molecular featurization techniques, and with different sized

molecular libraries ranging from 2 million to 96 million to nd

hit molecules against different target receptors to showcase the

efficiency of the proposed framework. The MEMES framework

was able to identify more than 90% of the actual top hits while

only calculating the docking score for about 6% of the complete

molecular library showing the robustness of the proposed

framework. In this work, MEMES framework application was

demonstrated on virtual screening of molecular libraries, but it

can also be applied on other screening applications where

exhaustive evaluation is infeasible.

Fig. 7 Fraction of top molecules sampled by DeepMEMES (with Mol2Vec as the featurization technique) that matches with actual top hits from

the corresponding subsets against the percentage of the dataset sampled.
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