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Community structure is one of the most important properties in networks, and community detection has

received an enormous amount of attention in recent years. Modularity is by far the most used and best known

quality function for measuring the quality of a partition of a network, and many community detection algorithms

are developed to optimize it. However, there is a resolution limit problem in modularity optimization methods. In

this study, a memetic algorithm, named Meme-Net, is proposed to optimize another quality function, modularity

density, which includes a tunable parameter that allows one to explore the network at different resolutions. Our

proposed algorithm is a synergy of a genetic algorithm with a hill-climbing strategy as the local search procedure.

Experiments on computer-generated and real-world networks show the effectiveness and the multiresolution

ability of the proposed method.
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I. INTRODUCTION

Many real-world complex systems can be represented

as networks. Collaboration networks, the World-Wide-Web,

power grids, biological networks, and social networks are

some examples. Networks could be modeled as graphs, where

nodes (or vertices) represent the objects and edges represent

the interactions among these objects. The area of complex

networks has attracted many researchers from different fields

such as physics, mathematics, biology, and sociology. Besides

a number of distinctive properties such as the small world

effect, the right-skewed degree distributions, and network

transitivity that many networks seem to share, community

structure is another important property in a complex network

[1]. Qualitatively, a community is defined as a subset of the

graph nodes which have a pattern of interconnections which

is denser than that observed with the rest of the network

nodes not in that community [2,3]. Community detection in

complex networks is potentially very useful. Nodes belonging

to the same community are more likely to have properties in

common. For instance, in the World-Wide-Web, community

analysis has uncovered thematic clusters [4,5].
Modularity, originally introduced by Newman and Girvan

[3] to define a stopping criterion for their algorithm (the
GN algorithm, which is a divisive hierarchical clustering
algorithm, one of the most well-known community detection
methods), has rapidly become an essential element of many
community detection algorithm. By a modeling assumption,
high values of modularity are associated with subjectively
good partitions. As a consequence, the partition that has
the maximum modularity is expected to be the subjectively
best partition, or at least a very good one. This is the main
motivation for modularity maximization, by far the most
popular class of methods to detect communities in graphs [6].
Many algorithms have been employed to optimize modularity,
including the greedy algorithm [7,8], simulated annealing [9],
extremal optimization [10], etc. Genetic algorithms (GAs)
have also been used to optimize modularity. In standard GAs,
a population of strings (called chromosomes), which encode
candidate solutions (called individuals) to an optimization
problem, evolves toward better solutions. The evolution

usually starts from a random set of individuals. In each
generation, the fitness of every individual in the population
is evaluated, multiple individuals are stochastically selected
from the current population based on their fitness, and modified
(recombined and possibly randomly mutated) to form a new
population. The new population is then used in the next
iteration of the algorithm. After several generations, only
solutions with large fitness survive. In a work by Tasgin
et al. [11], modularity is the fitness function and partitions are
the chromosomes. The algorithm does not require the number
of communities present in a graph. The number of communities
comes as an emergent result as the modularity value is
optimized. In another work, by Liu et al. [12], the maximum
modularity partition is obtained via successive bipartitions of
the the graph, where each bipartition is determined by applying
a GA to each subgraph (starting from the original graph itself),
which is considered isolated from the rest of the graph. A
bipartition is accepted only if it increases the total modularity
of the graph.

However, Fortunato and Barthélemy [13] have found that

modularity optimization may fail to identify modules smaller

than a scale which depends on the total size of the network

and on the degree of interconnectedness of the modules, even

in cases where modules are unambiguously defined. This is

the resolution limit of modularity optimization. Li et al. [14]

have introduced a quality function called modularity density.

The authors have demonstrated that this quantitative function

is superior to the widely used modularity. Also, a general

version of modularity density including a tunable parameter is

proposed which allows one to explore the network at different

resolutions.

Evolutionary algorithms that interspersed the recombi-

nation of high quality solutions with periods of intensive

individual optimization were named memetic algorithms

(MAs) in [15]. These methods are inspired by models of

natural systems that combine the evolutionary adaptation of

a population with individual learning within the lifetimes of

its members. The denomination “memetic” for this type of

algorithms was inspired by Dawkin’s concept of a meme,

which represents a unit of cultural evolution that can exhibit
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local refinement [16]. In MAs, a meme is generally considered

as an individual learning procedure capable of performing

local refinements. In the literature, MAs have also been

named hybrid genetic algorithms, genetic local searchers,

Lamarckian genetic algorithms, etc. From an optimization

point of view, MAs have been shown to be more efficient

and more effective than traditional GAs for some problem

domains. Over the past decade, MAs have been a hot topic in

the fields of both computer science and operational research

[17–25] (see [26] for more information about MAs). An

exhaustive optimization of modularity density (or other quality

functions) is impossible, due to the huge number of ways in

which it is possible to partition a graph, even when the latter

is small. MAs have proved to be of practical success in this

kind of non-deterministic polynomial-time complete (NPC)

problem. MAs have also been used for problems in physics.

For instance, in [27], the authors developed a matching-

based recombination algorithm to enhance the performance

of an MA for solving the Min Number Partition problem,

which is essentially equivalent to find the ground-state of an

infinite-range Ising spin-glass system with antiferromagnetic

couplings. In a study by Daolio et al. [28], the use of this type of

method can in turn reveal the structure of low-lying minima in a

disordered system.

It should be noted that two decades ago, Moscato and

Fontanari [29] had already described the phenomenon that

the stochasticity of the Metropolis updating in the simulated

annealing algorithm does not play a major role in the search

for near-optimal minima. This gives us the inspiration that

for solving a combinatorial optimization problem such as

community detection, the combination of some deterministic

individual optimization methods with stochastic algorithms

may produce better results. In a recent work by Rizzi [30],

the authors proposed a new objective function, the arithmetic-
harmonic cut, for graph bipartitioning. The objective function

seeks to minimize the intracluster distances and at the same

time it seeks to maximize the intercluster distances. The

authors posed the hierarchical clustering problem as a finite

number of instances of the arithmetic-harmonic cut problem.

The authors also implemented a MA for the problem and

demonstrated the effectiveness of the arithmetic-harmonic

cut on a number of data sets. Hierarchical clustering is a

popular class of methods for finding clusters in a set of

data points. Actually, hierarchical clustering can be also used

in community detection. However, it does not provide a

way to discriminate between the many partitions obtained

by the procedure, and to choose that or those that better

represent the community structure of the graph [6]. The

results of the method also depend on the specific distance (or

similarity) measure adopted. In our method, only information

about the vertices of the graph and their connections is

needed.

In this paper, we propose a community detection algorithm

which tries to optimize the network modularity density (the

general version including a tunable parameter) by employing

MAs. The proposed algorithm, named Meme-Net, combines

GAs and a hill-climbing strategy as the local search procedure.

Experiments on computer-generated and real-world networks

show the effectiveness of our algorithm. The algorithm does

not require the number of communities present in the graph in

advance. In addition, by tuning the parameter in the quality

function, we are able to explore the network at different

resolutions and may reveal the hierarchical structure of the

network.

II. CONCEPTION OF MODULARITY DENSITY

Before describing our algorithm in detail, in this section

we shall follow the work by Li et al. [14] to give a brief

introduction to the quantitative function modularity density.

We consider an undirected graph G = (V,E) with |V | = n

vertices and |E| = e edges. The adjacent matrix of the graph

is A. If V1 and V2 are two disjoint subsets of V , we define

L(V1,V2) =
∑

i∈V1,j∈V2
Aij , L(V1,V1) =

∑
i∈V1,j∈V1

Aij , and

L(V1,V1) =
∑

i∈V1,j∈V1
Aij , where V1 = V − V1. Given a

partition � = {V1,V2, . . . ,Vm} of the graph, where Vi is the

vertex set of subgraph Gi for i = 1, . . . ,m, the modularity

density (also called the D value) is then defined as

D =

m∑

i=1

L(Vi,Vi) − L(Vi,Vi)

|Vi |
. (1)

In this equation, each summand means the ratio between the

difference of the internal and external degrees of the subgraph

Gi and the size of the subgraph. The larger the value of D,

the more accurate a partition is. So the community detection

problem can be viewed as a problem of finding a partition of

a network such that its modularity density D is maximized.

Li et al. also proved the equivalence of modularity density

and kernel k means, and proposed a more general modularity

density measure:

Dλ =

m∑

i=1

2λL(Vi,Vi) − 2(1 − λ)L(Vi,Vi)

|Vi |
. (2)

When λ = 1, Dλ is equivalent to the ratio association; when

λ = 0, Dλ is equivalent to the ratio cut; when λ = 0.5, Dλ

is equivalent to the modularity density D. So the general

modularity density Dλ can be viewed as a combination of

the ratio association and the ratio cut. Generally, optimization

of the ratio association algorithm often divides a network

into small communities, while optimization of the ratio cut

often divides a network into large communities. This general

modularity density Dλ, which is a convex combination of these

two indexes, can avoid the resolution limits. In other words,

by varying the λ value, we can use this general function to

analyze the topological structure and uncover more detailed

and hierarchical organization of the complex network [14].

III. PROPOSED MEMETIC ALGORITHM FOR

COMMUNITY DETECTION

In this section, we will give a detailed description of the

proposed algorithm Meme-Net. Our goal is to maximize the

modularity density, so the objective function (also the fitness

056101-2



MEMETIC ALGORITHM FOR COMMUNITY DETECTION IN . . . PHYSICAL REVIEW E 84, 056101 (2011)

function) is defined in Eq. (2). The framework of Meme-Net

is given as Algorithm 1.

Algorithm 1 Algorithm framework of Meme-Net

1: Input: Maximum number of generations: Gmax ; Popu-
lation size: Spop ; Size of mating pool: Spool ; Tournament
size: Stour ; Crossover probability: Pc; Mutation proba-
bility: Pm.

2: P ←GenerateInitialPopulation(Spop);
3: repeat

4: Pparent ←Selection(P,Spool ,Stour );
5: Pchild ←GeneticOperation(Pparent ,Pc,Pm);
6: Pnew ←LocalSearch(Pchild );
7: P ←UpdatePopulation(P,Pnew );
8: until TerminationCriterion(Gmax )
9: Output: Convert the fittest chromosome in P into a par-

tition solution and output.

This framework requires some explanation. First of all,

the GenerateInitialPopulation() procedure is responsible for

creating the initial population. The Selection() function is

used to select parental population for mating in GA. Here

we use deterministic tournament selection other than widely

used roulette wheel selection because the value of evaluation

function (2) may be negative. The GeneticOperation() function

is used to perform crossover and mutation operation. The Up-

datePopulation() procedure is used to reconstruct the current

population using the population P and Pnew. Here, the current

population is constructed taking the best Spop individuals

from P ∪ Pnew. As for the TerminationCriterion() function,

it can be defined as setting a limit of the total number of

iterations, reaching a maximum number of iterations without

improvement, etc.

In the following, we will give a more careful description

of the initialization procedure, genetic operation, local search

strategy, and the parameter setting.

A. Representation and initialization

A partition � of the network G is encoded as an integer

string

x = {x1 x2 · · · xn}.

Here, n is the number of the vertices in the graph, and xi is

the integer cluster identifier of vertex vi , which can be any

integer number between 1 and n. The vertices having the same

cluster identifier are considered in the same community. This

representation does not need the number of clusters present in

the graph, which actually is a result of our algorithm. A graph

of n vertices can be partitioned into n clusters at most, and in

this case, each cluster contains only one vertex, which can be

denoted as {1 2 · · · n}. However, it should be noted that there

are many different representations corresponding to the same

partition. For instance, given a graph of four vertices, {3 1 2 3}

and {1 2 3 1} represent the same partition {{1,4},{2},{3}} of the

graph.

The population initialization procedure is given as Algo-

rithm 2. Initially each vertex is put in a different cluster for

all chromosomes, that is, each chromosome in the population

is {1 2 · · · n}. However, this initial population has a lack of

diversity and each solution is of low quality. In GAs it is

common to initialize a higher quality population to speed

up the convergence. Here we employ a simple heuristic as

in [11]. For each chromosome, we randomly select a vertex

and assign its cluster identifier to all of its neighbors. We repeat

this operation α · n times for each chromosome in the initial

population where α is a parameter and α = 0.2 is used for

the experiments reported in this paper. This operation is very

fast and results in local small communities, but the resulting

clusterings are still far from being optimal.

Algorithm 2 Population initialization procedure

1: Input: Population size: Spop .
2: Generate a population P, each chromosome xk of which

is set to {1 2 · · ·n}, where k = 1, 2, · · · , Spop .
3: for each chromosome xk do

4: tcounter ← 0;
5: repeat

6: randomly select a vertex vi;
7: x

j

k ← xi
k whenever (vi, vj ∈ E);

8: tcounter ← tcounter + 1;
9: until tcounter = α · n

10: end for

11: Output: Population P.

B. Genetic operators

Crossover. Traditionally, a one-point crossover takes two

chromosomes, randomly selects a single crossing over point,

exchanges all the elements of the chromosomes after that

selection point between the two chromosomes, and returns

two new chromosomes. However, this straightforward crossing

over operation is not suitable for our algorithm, because

for each chromosome, the clusters to which the vertices

are assigned are represented by arbitrary integers. In our

algorithm, based on one-way crossing over introduced in [11],

we employ a two-way crossing over operation. The crossing

over procedure is defined as follows. The two selected chro-

mosomes are called xa and xb, respectively. We pick a vertex vi

at random, determine its cluster (i.e., xi
a) in the chromosome

xa and make sure that all the vertices in this cluster of xa

are also assigned to the same cluster in the chromosome xb

(i.e., xk
b ← xi

a, ∀ k ∈ {k | xk
a = xi

a}). Simultaneously, we also

determine the cluster of the vertex vi in xb, and make sure

that all the vertices in this cluster of xb are also assigned

to the same cluster in xa (i.e., xk
a ← xi

b, ∀ k ∈ {k | xk
b = xi

b}).

This procedure returns two new chromosomes xc and xd . An

example of two-way crossing over is given in Table I. This

two-way crossing over operation can generate descendants

carrying features common to the parents, which represents

the exploitative side of the crossover operator; on the other

hand, the crossing over operation is exploratory, which means

it can generate descendants carrying combinations of features

taken from the parents. For instance, as shown in one of the

descendants, xc in Table I, v4 becomes in the same community

with v3. These properties make the two-way crossing over

operation suitable for our algorithm.

Mutation. In this process, we randomly pick a chromosome

to be mutated. Then we employ one point mutation on this

chromosome: a vertex is picked randomly on the chromosome,

then the cluster of the vertex is randomly changed to the cluster
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TABLE I. Two-way crossing over when v3 is selected.

v xa xb xc xd xa xb v

1 ©5 → 2 → ©5 5 5 2 1

2 3 6 6 ©6 ← 3 ← ©6 2

©3 → ©5 → 6 → ©5 ©6 ← 5 ← ©6 ← ©3

4 7 5 5 7 7 5 4

5 2 6 6 ©6 ← 2 ← ©6 5

6 ©5 → 3 → ©5 5 5 3 6

7 3 2 2 3 3 2 7

of one of its neighbors. This operation is repeated n times on

the chromosome. The specialized mutation operator that only

considers the neighbors of the vertex can decrease useless

exploration and reduce the search space.

C. Local search procedure

We first define the neighbors of a partition. Given a partition

� = {V1,V2, . . . ,Vm} (2 � m � n) of a graph G, where m

is the number of clusters of this partition and n is the

number of vertices in the graph, a single vertex, chose from

a cluster Vi (i ∈ 1, . . . ,m), is reassigned into another cluster

Vj (j ∈ 1, . . . ,m and j �= i). The new partition �nbr after

this reassignment is called a neighbor of the partition �. In

particular, when m = 1, � = {V1}, a neighbor of � is defined

as �nbr = {V1 − v, {v}}, where v is a vertex from V1, and {v} is

a cluster including the single vertex v (a single-vertex cluster).

Then we can figure out N�, the number of all possible

neighbors of the partition �. If m = 1, N� = n; if 2 � m � n,

N� = n(m − 1) − 1
2
s(s − 1), where s is the number of single-

vertex clusters in this partition. For example, when m = n,

the value of s must be n, so N� = n(n − 1) − 1
2
n(n − 1) =

1
2
n(n − 1).

Algorithm 3 Local search procedure

1: Input: Pchild.
2: ncurrent ←FindBest(Pchild);
3: yislocal ← FALSE;
4: repeat

5: L ←FindNeighbors(n current);
6: nnext ←FindBest(L);
7: if Eval(nnext) >Eval(n current) then

8: ncurrent ← nnext ;
9: else

10: yislocal ← TRUE;
11: end if

12: until yislocal is TRUE
13: Output: Pchild .

The local search procedure used in Meme-Net is a hill-

climbing strategy, and the implementation is given as Algo-

rithm 3. In computer science, hill-climbing is a mathematical

optimization technique which belongs to the family of local

search. It is an iterative algorithm that starts with an arbitrary

solution to a problem, then attempts to find a better solution

by incrementally changing a single element of the solution.

If the change produces a better solution, an incremental

change is made to the new solution, repeating until no further

improvements can be found. Here we apply this optimization

technique to a partition of the network. In Algorithm 3, the

FindBest() function is responsible for evaluating the fitness

of each chromosome in the input population, and return the

chromosome having maximum fitness, on which the local

search procedure will be performed. The Eval() function is

used to evaluate the fitness of a solution. The FindNeighbors()

function is responsible for finding the neighbors of a partition,

which can be done easily according to the definition of the

neighbors of a partition.

It is vital to note that the design of MAs raises a number

of important issues which must be addressed [19]: Where, and

when, should local search be applied within the evolutionary

cycle? Which individuals in the population should be improved

by local search, and how should they be chosen? How much

computational effort should be allocated to each local search?

In our algorithm, the local search is applied on Pchild, which

is the population after crossover and mutation. Not all of

the chromosomes in this population are undergoing the local

search procedure. We only find the fittest chromosome in Pchild

and perform local search on it, until no improvement can be

made.

It should be noted that the hill-climbing algorithm is

sensitive to the starting point. In our algorithm, the larger the

number of clusters included in a partition, the more effort the

local search on this partition needs. This is because a partition

consisting of a large number of clusters usually has a large

number of neighbors, as denoted in N�. From this point of

view, the initialization procedure introduced in Sec. III A also

speeds up the local search procedure.

D. Parameters

The proposed algorithm Meme-Net is not parameter free.

Some parameters such as population size, number of genera-

tions, and crossover probability should be set to some values

by us in advance. Since our purpose in this study is to show that

the proposed Meme-Net is effective for community detection,

some of the parameters are set to the values we found by

trial and error. A thorough analysis of the effect of different

parameters is out of the scope of this paper. Some parameters

we have mentioned and their values we used in the experiments

are summarized in Table II.

IV. EXPERIMENTAL RESULTS

In this section, we will test Meme-Net on 11 computer-

generated networks and four real-world networks for which the

partitions in communities are known. The results obtained by

the fast modularity algorithm [8] are also given for comparison.

TABLE II. Some parameters in the algorithm.

Parameter Meaning Value

Gmax The number of iterations 50

Spop Population size 450

Spool Size of the mating pool
Spop

2

Stour Tournament size 2

Pc Crossover probability 0.8

Pm Mutation probability 0.2
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The experiments on these networks show the effectiveness

and the multiresolution ability of our method on community

detection.

First, we will introduce the similarity measure called

normalized mutual information (NMI) as described in [31],

which is used in Meme-Net for estimating the similarity

between the true partitions and the detected ones. Given two

partitions A and B of a network in communities, let C be the

confusion matrix whose element Cij is the number of nodes of

community i of the partition A that are also in the community j

of the partition B. The normalized mutual information I (A,B)

is defined as

I (A,B) =
−2

∑cA

i=1

∑cB

j=1 Cij log(CijN/Ci·C·j )
∑cA

i=1 Ci· log(Ci·/N ) +
∑cB

j=1 C·j log(C·j/N )
,

where cA (cB) is the number of groups in the partition A (B),

Ci· (C·j ) is the sum of elements of C in row i (column j ),

and N is the number of nodes (note that, some denominations

here are different from the ones in previous sections just for

convenience). If A = B, then I (A,B) = 1; if A and B are

completely different, then I (A,B) = 0.

A. Computer-generated network

The network we used here is the benchmark network

proposed by Lancichinetti et al. [32], which is an extension

of the classic benchmark network proposed by Girvan and

Newman in [1]. The network consists of 128 nodes divided

into four communities of 32 nodes each. Every node has an

average degree of 16 and shares a fraction 1 − μ of its links

with the other nodes of its community and a fraction μ with

the other nodes of the network; μ is the mixing parameter.

When μ < 0.5 the neighbors of a node inside its group are

more than the neighbors belonging to the other three groups,

thus a good algorithm should discover them. We use this

computer-generated network to test if Meme-Net effectively

detects the community structure inside the network.

We generated 11 different networks for the value of mixing

parameter μ ranging from 0 to 0.5 and used the NMI to

measure the similarity between the true partitions and the

detected ones. For each network, we computed the average

NMI over ten independent runs. Figure 1 shows the average
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FIG. 1. Average NMI vs mixing parameter μ for different values

of λ.
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FIG. 2. Average NMI vs mixing parameter μ for λ = 0.5.

NMI for different values of λ (the parameter in the objective

function Dλ), when the mixing parameter increases from 0 to

0.5. As shown in Fig. 1, for λ = 0.5, when the value of mixing

parameter μ is small (μ � 0.25), which means the fuzziness of

the community in the network is low, our algorithm find the true

partition correctly (NMI equals 1). When the mixing parameter

increases, it is more difficult to detect the true partition, but the

detected partition is also close to the true one (NMI is about

0.9 when μ = 0.35). Only when μ � 0.4 is no community

structure detected. However, the higher value of λ could

help discover smaller communities. For instance, for λ = 0.7,

when the mixing parameter μ = 0.45, Meme-Net is able to

detect about 80% of the community structure information.

On the other hand, lower values of λ could help discover

larger communities. For example, for λ = 0.3, when μ � 0.3,

Meme-Net tends to consider the whole network as a large

single community (NMI equals 0). Notice that when μ = 0.5,

each node has half of the links inside the community and

the other half with the rest the network. This means that the

community structure is very fuzzy, and any algorithm can

hardly find the true partition of the network.

The local search procedure plays a very important role

in Meme-Net. We simply developed a GA version of this

algorithm by removing the LocalSearch function in Algorithm

1. Then we tested this GA version algorithm on the computer-

generated networks with the same parameters as in Meme-

Net. Figure 2 shows the average NMI obtained by Meme-Net

and this GA version algorithm for λ = 0.5, when the mixing

parameter increases from 0 to 0.5. It clearly shows that with

the local search procedure, when μ � 0.25, Meme-Net is able

to detect the true partition of the network; however, without

the local search procedure, it becomes harder for the algorithm

to detect the true partition when μ > 0.15.

The local search procedure also speeds up the convergence

of Meme-Net. Figure 3 displays the values of Dλ and the

corresponding NMI obtained by Meme-Net and the GA

version algorithm in one run, for μ = 0.15 and λ = 0.5, when

the number of generations increases from 1 to 50. The figure

shows that with the local search procedure, Meme-Net finds

a maximum objective function value of 44.75 in just two

generations, and the corresponding NMI is 1, which means

the true partition is found. However, without the local search
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FIG. 3. (a) Dλ and (b) corresponding NMI vs the number of

iterations for μ = 0.15 and λ = 0.5.

procedure, after 50 generations, the algorithm does not find

the true partition of the network.

B. Real-world networks

We now show the application of Meme-Net on four

real-world networks: the Zachary’s karate club, the Dolphin

social network, the American college football, and the Books

about US politics. The results obtained by the fast modularity

algorithm [33] are also given at the end of the section for

comparison.

Zachary’s karate club. The karate club network was

constructed by Zachary, who observed 34 members of a karate

club over a period of 2 years [34]. During the course of the

study, a disagreement developed between the administrator of

TABLE III. Results of 30 runs of Meme-Net on four real-world

networks for different values of λ.

Network λ Iav Istd ImaxD Ncluster

Zachary’s karate club 0.2 0 0 0 1

0.3 1 0 1 2

0.4 0.740 0.104 0.699 3

0.5 0.699 0 0.699 3

0.6 0.690 0.007 0.687 4

0.7 0.688 0.004 0.687 4

0.8 0.651 0.038 0.628 5

Dolphin social network 0.2 0.889 0 0.889 2

0.3 1 0 1 2

0.4 0.787 0.073 0.756 3

0.5 0.569 0.035 0.586 5

0.6 0.467 0.048 0.477 9

0.7 0.400 0.034 0.385 11

0.8 0.346 0.017 0.334 14

American college football 0.2 0.595 0.118 0.359 2

0.3 0.723 0.078 0.523 3

0.4 0.851 0.032 0.824 8

0.5 0.890 0.033 0.911 11

0.6 0.904 0.022 0.924 12

0.7 0.912 0.011 0.911 13

0.8 0.911 0.010 0.911 13

Books about US politics 0.2 0.583 0.015 0.598 2

0.3 0.576 0.008 0.574 3

0.4 0.588 0.011 0.590 4

0.5 0.481 0.029 0.455 7

0.6 0.449 0.018 0.434 9

0.7 0.423 0.013 0.402 11

0.8 0.394 0.014 0.378 14
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FIG. 4. Statistic values of NMI over the 30 runs on (a) Zachary’s

karate club, (b) Dolphin social network, (c) American college

football, (d) Books about US politics for different values of λ. Here,

box plots are used to illustrate the distribution of these samples. On

each box, the central mark ⊙ is the median, the edges of the box

are the 25th and 75th percentiles, the whiskers extend to the most

extreme data points the algorithm considers to be not outliers, and

the outliers are plotted individually. Symbol + denotes outliers.

the club and the club’s instructor, which ultimately resulted in

the instructor’s leaving and starting a new club, taking about

half of the original club’s members with him.

Dolphin social network. The network of 62 bottlenose dol-

phins, living in Doubtful Sound, New Zealand, was compiled

by Lusseau from the observation of dolphin behavior for 7

years [35]. A tie between two dolphins was established by their

statistically significant frequent association. The network split

naturally into two large groups, the number of ties being 159.

American college football. This network represents Amer-

ican football games between Division IA colleges during

the regular fall season in 2000, as compiled by Girvan and

Newman [1]. Nodes in the graph represent teams, and edges

represent the regular season games between the two teams they

connect. The teams are divided into conferences. The teams

on average played four interconference matches and seven

intraconference matches, thus teams tended to play between

members of the same conference. The network consists of 115

nodes and 616 edges grouped into 12 teams.

Books about US politics. This is a network of 105

books about US politics published around the time of the

2004 presidential election and sold by the online bookseller

Amazon.com. Edges between books represent frequent cop-

urchasing of books by the same buyers [36]. Books were

divided separately by Newman [37] based on a reading of

the descriptions and reviews of the books posted on Amazon.
We set λ = 0.5 as the default value for λ in the objective

function Dλ. For each network, we ran our algorithm 30 times,

computed the average value and standard deviation of NMI (Iav

and Istd) over the 30 runs, and recoded the value of NMI and

the number of clusters corresponding to the maximum value

of Dλ(ImaxD and Ncluster) in the 30 runs. Then we repeated this

for λ = 0.2 to 0.8. The results are reported in Table III. We
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FIG. 5. (Color online) Detected partitions on Zachary’s karate

club network for (a) λ = 0.3, (b) λ = 0.4 or 0.5, (c) λ = 0.6 or 0.7,

and (d) λ = 0.8.

also showed the statistic values of NMI over the 30 runs on

the four real-world networks for different values of λ in terms

of box plots in Fig. 4. As we can see from Fig. 4, on each of

the four networks, the variability of NMI values obtained over

the 30 runs is relatively small, especially for some values of λ.

For instance, on Zachary’s karate club network, this is true for

almost all the λ values. In the following, we will give a more

careful analysis about the experimental results.

On Zachary’s karate club network, for λ = 0.5, in fact in all

30 runs, Meme-Net found a partition which consisted of three

clusters, and the corresponding NMI was 0.699. Additionally,
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FIG. 6. (Color online) Dolphin social network.

the algorithm converges very fast, which just needs a few

iterations (usually less than 10 generations). Although this

detected partition is different from the true one, it is very

meaningful. In fact, this solution splits one of the two large

groups into two smaller ones and never misplaces any node.

Figure 5 displays the detected partitions corresponding to

ImaxD on this network for different values of λ. As we can

see from the table, for λ = 0.2, the whole network is grouped

into one cluster; for λ = 0.3, the network is grouped into two

clusters [Fig. 5(a)], which is exactly the true partition, and the

corresponding NMI is 1; for λ = 0.4 or 0.5, the network is

grouped into three clusters, which splits the left part of the

network into two smaller ones [Fig. 5(b)]; for λ = 0.6 or 0.7,

four clusters are found, and this solution splits each of the two

large groups into two smaller ones [Fig. 5(c)]; for λ = 0.8,

the network is grouped to five clusters, which further splits

the right part into three clusters [Fig. 5(d)]. If λ is set to 0.9

or larger, many small clusters containing only two or three

vertices are detected. We did not display this network partition

in Fig. 5.

On the Dolphin social network, for λ = 0.3, two clusters

are found and the corresponding NMI is 1. This means that the

detected partition is exactly the true one, which is shown in

Fig. 6. For λ = 0.4, the network is grouped into three clusters

and the corresponding NMI is 0.756. We find that this partition

splits the lower right group of the network into two smaller

ones and never misplaces a vertex. For λ = 0.5, five clusters

are found and the corresponding NMI is 0.586, which splits

the upper left group of the network into two smaller ones, and

the lower right group into three smaller ones. For λ = 0.6 or

larger, more smaller clusters are found. The experiments show

that by tuning the parameter λ, we could explore the network

at different resolutions. In general, the larger the λ value is,

the smaller the communities Meme-Net tends to find.

Because of the complexity of the networks themselves,

we did not find the “true” partition on the American college

football network [Fig. 7(a)] and the Books about US politics

network [Fig. 7(b)]. However, the detected ones are very

close to the true partitions. For instance, on the American

college football network, for λ = 0.5, 11 clusters are found

and the corresponding NMI is 0.911, only a few vertices are

misplaced. On the Books about US politics network, the results

are also competitive with other popular community detection

algorithms.

The results obtained by the fast modularity algorithm are

given in Table IV. Now we consider the results obtained by

Meme-Net for λ = 0.5. We can see that on Zachary’s karate

club network, the fast modularity algorithm found a solution

with a NMI value of 0.693, while for all 30 runs Meme-Net

found a solution with a NMI value of 0.699. On the American

college football network, the average NMI value found by

TABLE IV. Results obtained by the fast modularity algorithm.

Network Number of clusters NMI

Zachary’s karate club 3 0.693

Dolphin social network 4 0.573

American college football 7 0.762

Books about US politics 4 0.531
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(a) (b)

FIG. 7. (Color online) (a) American college football network and (b) Books about US politics network.

Meme-Net is 0.890, while the fast modularity algorithm found

the NMI value of 0.762. On these two networks the results

obtained by Meme-Net are better than the fast modularity

algorithm. On the Dolphin social network and Books about US

politics network, the average values of NMI found by Meme-

Net are 0.569 and 0.481, respectively, while the fast modularity

algorithm found the NMI values of 0.573 and 0.531, which

are slightly better than Meme-Net. However, by tuning the

parameter λ, we can also get better results. For example, on

the Dolphin social network, when λ = 0.3, the solution found

by Meme-Net is exactly the true partition. On the Books about

US politics network, when λ = 0.4, the solutions with the

average NMI value of 0.588 found by Meme-Net are more

closer to the true partition. This comparison clearly shows the

very good performance of Meme-Net with respect to the fast

modularity algorithm.

In practice, we set λ = 0.5 as the default value for λ in

the objective function Dλ, because this value indeed produces

good results as we have seen in the experiments. Then if we

want to analyze the network in a higher resolution, we can tune

the value of λ larger. On the other hand if we want to analyze

the network in a lower resolution, we can set the value of λ

smaller.

V. CONCLUSION

In this paper, we propose the algorithm Meme-Net to

optimize the modularity density for community detection. The

proposed algorithm is a synergy of a genetic algorithm with

a hill-climbing strategy as the local search procedure. Exper-

iments show that combined with the local search procedure,

Meme-Net performs better than traditional GAs on this subject

and is competitive with state-of-the-art methods. In addition,

experiments have shown that beyond the traditional quality

function modularity, the modularity density is very suitable for

community detection. By tuning the parameter λ in modularity

density, we can analyze networks at different resolutions, and

uncover topological structure and more detailed hierarchical

organization of networks. Future work will aim at converting

this single modularity density optimization problem into a

multiobjective optimization problem, which can avoid tuning

the parameter λ manually and automatically produce a set of

meaningful candidate solutions in one run.
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