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 After three decades of its introduction, the dynamic vehicle routing problem (DVRP) remains a 
fertile field for new studies. The technological evolution, which continues to progress day by 
day, has allowed better communication between different actors of this model and a more 
encouraging execution time. This encouraged researchers to investigate new variants of the 
DVRP and use more complicated algorithms for the resolution. Among these variants is the 
multi-tour DVRP (MTDVRP) with overtime (MTDVRPOT), which is the subject of this article. 
This paper proposes an approach with a memetic algorithm (MA). The results obtained in this 
study are better than those of the ant colony system (ACS) applied to the same problem and 
published in an earlier paper. 
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1. Introduction 
 

 
Dantzig and Ramser (1959) introduced a wide class of problems, the objective of which is to determine 
the best roads linking two or more points under certain constraints. Since then, many researchers have 
studied different possible variants of this problem. These variants are defined depending on the nature, 
constraints, and objectives of the problem. In the classical version, the objective is to determine the 
optimal set of routes that should deliver to a set of customers from a single depot with a limited fleet of 
trucks with limited capacities. These customers have varying demands for the same products. Golden et 
al. (1977) introduced the term ‘vehicle routing’ and called this variant ‘the generic vehicle routing 
problem’ (VRP). By imposing that the delivery to each customer is accomplished in a limited time 
window, a new VRP variant namely, VRP with time window was introduced by Solomon (1983). If there 
are several depots at which the trucks begin their tours, the multi-depot VRP is used, which was 
introduced by Kulkarni and Bhave (1985). If the fleet of trucks is inhomogeneous, the heterogenous VRP 
(HVRP) is employed, which was introduced by Golden et al. (1984). Thus, researchers have defined and 
treated a large number of VRPs according to the demands of the transport market and ability of the 
technological context (Eksioglu et al. (2009)).  
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The evolution of communication technologies and geolocation systems simplify the real-time 
management of a fleet of vehicles. These tools make it possible to locate the current position of the 
vehicles, communicate with drivers in real time, receive new requests more easily, and even estimate the 
routing time according to the current state of the network (Crainic et al. (2009)). In this context, a new 
VRP variant has emerged and received growing interest: the dynamic VRP (DVRP). In this model, unlike 
in the static one (Psaraftis et al., 2016)), the routes planned at the beginning of the day are not definitive; 
thus, they can be changed if necessary. Several scenarios can impose this change; for instance, a customer 
wants to modify or cancel his or her order, the roads between two customers are blocked or very 
congested, or an urgent request arrived. Nowadays, DVRPs have become a class of different problems 
that are very important in modern transport models. However, DVRPs contain variants that have been 
less studied despite their importance in real life: for example, the multi-tour DVRP (MTDVRP). Despite 
the many researchers studying this variant in the static VRP version, research studies of the multi-trip 
DVRP are rare. In the multi-tour VRP (VRPM) version, the fleet is generally small. In this case, it is not 
always possible to serve all customers during the legal working time. As a result, many studies dealings 
with VRPMs in the static version allow vehicles to use overtime. The dynamic case is more complicated 
and requires more time to complete the service. Hence, overtime must also be tolerated in this case. 
The topic of this study is the MTDVRP with overtime (MTDVRPOT), which is a multi-objective 
problem. The first objective is to minimize the total travelled distance and the second is to minimize the 
maximal performed overtime. Therefore, an approach based on the memetic algorithm (MA) is proposed. 
First, the competitiveness of this algorithm is demonstrated by testing it on known benchmarks from 
literature. Subsequently, the same algorithm is applied to the benchmark that was already proposed in a 
previous study with an ant colony system (ACS) (Ouaddi et al. (2018)) to compare the results. 
The remainder of this paper is organized as follows: Section 2 presents a literature review, and Section 3 
describes the investigated problem. The solution method is explained in the fourth section. Before the 
conclusion, the numerical results are presented in Section 5. 
2. Literature Review 
 
Each DVRP can be modelled in series of static VRPs. However, the characteristics of the problem change 
over time. In this article, the case of a capacitated MTDVRPOT is discussed. This problem can be 
decomposed into a series of static VRPs such that the first one is a capacitated VRPM with a 
homogeneous fleet and overtime, whereas the other problems comprise capacitated VRPMs with 
heterogeneous fleets, multi-depots, and overtime. Before talking about DVRP works, we present a brief 
review of this static VRP variants.  
2.1 Static VRP 
 

It should be noted that the capacity constraint is pervasive in most VRP studies. Nonetheless, Letchford 
and Eglese (1998) and Jaillet and Wagner (2008) presented counter-examples. In its simplest form, the 
static capacitated VRP (CVRP) contains a single depot with a homogeneous fleet. Several researchers 
have studied this problem variant (Taillard, 1993; Eydi & Javazi, 2012; Stewart & Golden, 1984; Gillett 
& Miller, 1974; Gendreau et al., 2008). The VRPM is another VRP with capacity; however, in this 
variant, vehicles are permitted to make several tours during the same day instead of only one. This variant 
was introduced for the first time by Fleischmann (1990). Many researchers have used the concept of 
overtime for the VRPM. However, it has been treated differently from one study to another. Taillard et 
al. (1996) proposed a method based on the Taboo search (TS) algorithm to solve the VRPM by allowing 
the use of overtime with a penalty payment. The objective is to minimize the total travelled distance and 
overtime penalty. To test their method, they proposed benchmarks with a restricted fleet and limited time. 
Several researchers have studied this problem in the form defined by Taillard et al. (1996) and used its 
benchmarks to validate their approaches. In addition to the total travelled distance, researchers who have 
based their tests on these benchmarks have used another comparison rate to compare infeasible solutions, 
i.e. the longest trip (LTR). The LTR reflects the degree of use of the maximal overtime, i.e. the longer 
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the LTR, the greater is the maximal overtime and vice versa. Brandão and Mercer (1998) were among 
the first to use Taillard benchmarks for their tests. They based their approach on the same metaheuristic 
TS and treated the same problem. By using the same benchmarks, Petch and Salhi (2003) tested a multi-
phase heuristic problem based on a generalized gain algorithm (Yellow,1970) and local search. The main 
difference between this problem and the previous ones is the objective function, which includes the 
minimization of the maximal performed overtime instead of the minimized total overtime. Furthermore, 
Olivera and Viera (2007) presented a formulation based on a path, which is a single feasible tour. For the 
resolution, they proposed an approach based on the TS and adaptive memory. Another mathematical 
formulation was proposed by Mingozzi et al. (2013). This time, the authors considered a list of possible 
schedules. A schedule reflects all the tours made by a single vehicle. The authors used an exact method 
based on the Lagrangian relaxation. They tested it on 52 instances from the Taillard et al. (1996) 
benchmarks with a maximum of 120 clients and solved 42 instances to optimality. Moreover, Ayadi & 
Benadada (2013) developed an MA for a VRPM that tolerates overtime. Therefore, they proposed two 
mathematical formulations (by arc and by path) and adopted the multi-line chromosome representation. 
The tests were also made based on the benchmarks of Taillard et al. (1996). Cheikh et al. (2015) used an 
approach based on the variable neighborhood search (VNS) algorithm to solve the VRPM. The algorithm 
could find a minimal number of non-feasible solutions as compared with those used in other studies in 
literature.  
Since its introduction by Golden et al. (1984), the VRP with heterogeneous fleet (HVRP) has established 
a fertile research field. The vehicles do not have the same characteristics or are of different types. In 
general, its purpose is to determine the composition of the fleet and vehicle tours. There are two major 
HVRP types: the Fleet Size and Mix Vehicle Routing Problem (FSM) introduced by Golden et al. (1984) 
and characterized by an unlimited heterogenous fleet and the Heterogeneous Fixed Fleet Vehicle Routing 
Problem (HF) introduced by Taillard (1999) with a limited heterogenous fleet. Koç et al. (2016) provided 
a more detailed classification (with five essential variants) of this problem: 
1) FSM with fixed or variable vehicle costs. This problem was introduced by Ferland & Michelon (1988) 
and noted FSM (F, V).  
2) FSM with fixed vehicle costs, introduced by Golden et al. (1984) and noted FSM (F) 
3) FSM with variable vehicle costs, introduced by Taillard (1999) and noted FSM (V) 
4) HF with fixed or variable vehicle costs, introduced by Li et al. (2007) and noted HF (F, V) 
5) HF with variable vehicle cost introduced by Taillard (1999) and noted HF (V)  
To the best of the authors’ knowledge, only three studies of the VRPM with heterogeneous fleet 
(HVRPM) have been conducted: Brandão & Mercer (1997), Prins (2002), and Seixas & Mendes (2013). 
The first researchers investigated a real case with a heterogeneous fleet. The distribution was done with 
the time windows constraint, and the possibility to reuse vehicles and overtime was tolerated. The multi-
objective problem was solved via a three-phase TS algorithm. In addition, Prins (2002) proposed 
adaptations of some classical heuristics to deal with the HVRPM. The objective was to minimize the 
total travel time and number of used vehicles. Seixas & Mendes (2013) proposed a column generation 
algorithm, a constructive heuristic, and a TS-based approach to solve the HVRPM with time windows.  
The multi-depot VRP (MDVRP) is another VRP variant. The objective of this problem is determining 
the routes of several vehicles from several depots to serve a set of customers at minimal transportation 
costs. This review focuses on the multi-tour MDVRP with a heterogeneous fleet. Several researchers 
have studied the MDVRP with a heterogeneous fleet; however, few have investigated the multi-tour 
MDVRP. Salhi & Sari (1997) studied the first case. Their problem is characterized by a fixed number of 
depots that have unlimited capacity and a limited number of vehicle types; however, each type has an 
unlimited number of vehicles. The vehicles have a known capacity and fixed or variable costs (FSM (F, 
V)). The objective is determining the composition of the fleet and vehicle tours at minimal cost. Salhi et 
al. (2014) investigated the same problem with a VNS algorithm. In addition, Bolaños et al. (2018) used 
a modified genetic algorithm, and Xu et al. (2012) studied the MDVRP with a heterogeneous fleet and 
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time window. Dondo & Cerdá (2007) and Irnich (2000) investigated MDVRPs with heterogeneous fleets, 
time windows, and pickup and delivery. 
However, only Levy et al. (2014) studied the multi-tour MDVRP (heterogeneous fleet). The objective is 
determining the tours that satisfy the fuel delivery constraints while allowing vehicles to be replenished 
from any depot when required. The authors used two methods: the variable neighborhood descent (VND), 
which provides better results than the second method, the VNS algorithm. 
2. Dynamic VRP 
 

According to Pillac et al. (2013), researchers have treated the DVRP based on four broad perspectives. 
 

 Periodic Continuous Stochastic Deterministic Problem type Resolution method 
Psaraftis (1980) √ 

 
 √ DR O 

Benyahia & Potvin (1998)  √  √ IC GA 
Gendreau et al. (1999)  √  √ IC-TW-PD TS 
Ichoua et al. (2000)  √  √ IC-TW-PD TS 
(Ichoua et al., 2003) 

 
√  √ IC-TW-TM-PD TS 

Haghani & Jung (2005) 
 

√  √ C-HF-PD-TW-TM GA 
Montemanni et al. (2005) √   √ C AS 
Chen & Xu  (2006) √   √ C-TW O 
Hvattum et al. (2006) √  √  C-PD O 
Gendreau et al. (2006)  √  √ IC-O-TW-PD NS 
Hanshar & Ombuki-Berman (2007) √   √ C GA, TS 
Cheung et al. (2008)  √  √ C GA 
Beaudry et al. (2010)  √  √ DR TS-O 
 Hemert & Poutré, (2010)  √ √  C-PD GA 
Hong (2012) √ 

 
 √ C-TW NS 

Azi et al. (2012) √ 
 

√  C-TW-MT NS 
Khouadjia et al. (2012) √   √ C PS 
Albareda-Sambola et al. (2014) √  √  C NS 
Lin et al. (2014)  √  √ C-TW-PD NS 
Barkaoui et al. (2015) √   √ C-TM-TW-PD GA 
Schyns (2015)  √ √  C-HF-TW ACS 
Mańdziuk & Żychowski (2016) √   √ C MA 
Ouaddi et al. (2018)  √   √ C-MT-O ACS 

 
The first (the deterministic perspective) considers only known requests and responds reactively to 
dynamic ones (e.g. Montemanni et al., 2005; Ouaddi et al., 2018; Khouadjia et al., 2012). The second 
takes advantage of the forecasts to provide a prior plan (e.g. Schyns, 2015; Albareda-Sambola et al., 
2014), which is a stochastic approach. Other approaches perform the optimization throughout the day 
and maintain data on best solutions in an adaptive memory (Taillard et al., 2001). Whenever new request 
appears, this data is used to update the routing plan. They call this method ‘continuous optimization’ plan 
(e.g. Gendreau et al., 1999; Ichoua et al., 2000; Ichoua et al., 2003).In addition, other approaches 
decompose the planning period into time intervals. Thus, re-optimization is periodically made at the 
beginning or end of each interval (e.g. Khouadjia et al., 2012; Mańdziuk & Żychowski, 2016). This 
DVRP model was first introduced by Kilby et al. (1998) while presenting a test benchmark for the 
capacitated DVRP.  Furthermore, the DVRP can handle variations in the travel time. This case occurs in 
urban areas where the network travel time is difficult to predict because of the congestion, in particular 
during peak hours (Lin et al. (2014)). Table 1 presents a summary of the various DVRP studies. We adopt 
these notations to describe problem types: Capacitated (C), Incapacitated (IC), Time Windows (TW), 
Pick-up and Delivery (PD), Dial-a-ride (DR), Multi Tour (MT), Travel time (TM), Overtime toleration 
(O) and Heterogeneous Fleet (HF). To describe resolution method, we use: Taboo Search (TS), Genetic 
Algorithm (GA), Memetic algorithm (MA), Particle Swarm (PS), Ant Colony System (ACS), 
Neighborhood search (NS), Other (O). There are only two scientific articles (Azi et al., 2012; Ouaddi et 
al., 2018) on the MTDVRP. The idea of the first is to fix the routes of vehicles at the beginning. For 
dynamic queries, the decision to consider only their acceptance or rejection depends on their proximity 
to the already planned routes. To solve this problem, the authors developed an adaptation of the large 
neighborhood search algorithm, which exploits the forecasts of requests to create a population of likely 
future scenarios based on which the routes will be created. The second paper presents a previous study 
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of the same problem with an ACS algorithm (Ouaddi et al., 2018). The concept of overtime is barely 
present in the DVRP literature. To the best of the authors’ knowledge, apart from their previous study 
(Ouaddi et al., 2018), there is only one study that tolerated the use of overtime. In this study, a DVRP 
with pickups, delivery, and time window without capacity constraint is investigated. Thus, new studies 
that cover this DVRP variant with other resolution methods are required to determine the best solutions. 
The contribution of this article is an approach that is based on an MA for the MTDVRPOT. 
3. Problem Description  
In this study, the case of a transportation company that delivers to a set of customers from a single depot 
is investigated. Customers can make their requests during the day, and the company must answer the 
maximal number of requests the same day. After the time limit Tf, new requests will be postponed to the 
next day. The workday is divided into several equal time periods. Thus, incoming requests during a 
period are gathered to insert them together at the end of this period. At the beginning of the day, the 
trucks start at the central depot with a routing plan containing the undelivered requests of the previous 
day. At the end of the first period, the current positions of the trucks are marked. If the truck has delivered 
to the customer or is in route for delivery, this customer will be considered a fictitious depot in the 
following period.An optimization is conducted to determine the new routes that will contain the new and 
remaining customers from the previous period. Therefore, a multi-tour model is proposed, which tolerates 
the use of overtime. Thus, the trucks can make multiple tours during the same working day and use extra 
time (overtime) when necessary. The objective is minimizing the total travelled distance and maximal 
performed overtime. This problem is multi-objective. Therefore, the total travelled distance with zero 
overtime is minimized first. If no feasible solution can be found, the overtime is minimized. The 
mathematical model of each sub-problem (problem of a single period) was already presented in detail in 
a previous paper  (Ouaddi et al., 2018). This paper provides a summary. 
We use the following notations: O: Index of central depot 
F: Set of depots 
I: Set of customers to be served (fictitious depots are not included)  
K: Number of trucks 
n: Maximum number of tours for a truck 
dij: Distance between customer i and customer j 
tij: Travel time between customer i and customer j 
Qk: Remaining capacity of the truck k 
Q: The initial capacity of trucks 
Tp: Normal travel time remaining for the period p 
T: Length of the working day 
αT: Maximal legal overtime 
qi: Quantity requested by the customer i. 

To distinguish the tours of each truck, the set of n possible tours served by the truck k is defined as S ; 
Sk={k+qK, q = 0..n-1} (3) 

And 

fk= 1, if the truck k is initially stationed in a fictitious depot
0, else                                                                                           (1) 

xij
r = 1, if the customer j was visited after the customer i during the tour r

0, else                                                                                                              (2) 
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ST= Sk
k∈K

 (4) 

 Q  is the available quantity for the tour r. If this tour starts at the central depot, Q  is equal to the initial 
capacity of the vehicle (Q). If the tour starts at a fictitious depot, Q  is equal to the remaining capacity 
of the vehicle at the fictitious depot at the beginning of the current period. In this case, r is the first tour 
of this vehicle (r ∈ 1, .., K ). Thus, Q =

Qk  if r∈ 1,..,K
Q    else           

 (5) 

 
The objective function is:  
 
min dij

j∈Ji∈I∪Jr∈ST

xij
r   

(6) 
 
min(OT ) 

 
(7) 

 
where OT = max1≤k≤K  (OTk)   (8) 
and  

OTk= max⎝⎜
⎛

0, tijxij
r

j∈J
j≠i

i∈I∪Jr∈Sk

-T ⎠⎟
⎞

 

 
 

(9) 

 OT  and OTk refer to the maximal overtime that should be minimized and the overtime of the truck 
indexed by k. The constraints of this problem are modelled as follows: ∑ ∑ 𝑞 xij

r
j∈(I⋃{O})

j≠i
i∈I∪F ≤Q ,  ∀r∈ST 

(10) 

∑ ∑ ∑ tijxij
r

j∈(I⋃{O})
j≠i

i∈I∪Fr∈Sk -T ≤αT, ∀ k∈{1,..,K} (11) 

∑ ∑ xij
r

j∈(I⋃{O})
j≠i

r∈ST =1,  ∀i∈I∪(F∖ (12) 

∑ xij
r

i∈I∪F
i≠j

=∑ xji
r

i∈(I⋃{O})
i≠j

,  ∀ j∈(I⋃{O}),  ∀ r∈ST
(13) 

∑ ∑ ∑ xij
r

j∈(I⋃{O})
i≠j

≥fk, ∀ k∈{1,..,K}i∈I∪Fr∈Sk 
(14) 
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r

i∈I∪F
j≠i

r∈ST =0   ∀j∈(F∖) 
(15) 

∑ ∑ xij
r

j∊S
j≠i

i∊S ≤|S|-1, ∀r∈ST, S⊂I, 2≤|S|≤ |I|-1  
(16) 

xij
r ϵ{0,1}, (i,j)∈I∪F,   ∀r∈ST

 
(17) 

Constraint (10) is made to respect the remaining capacity of the trucks in each sub-problem. Eq. (11) 
restricts the overtime to a permitted maximum. Each customer is visited once, which is ensured by 
constraint (12). Eq. (13) represents the flow conservation constraint at the customer and central depot; 
each truck that visits a customer must leave him or her after his delivery request, and every truck that 
leaves the central depot must come back at the end of the working period. Constraint (14) ensures that 
the trucks initially parked in a fictitious depot other than the central one performs at least one tour. 
Consequently, these trucks return to the central depot at the end of the day. Constraint (15) states that a 
fictitious depot cannot be a destination, and constraint (16) prohibits the creation of sub-tours. Finally, 
the integrity constraints associated with decision variables are included in (17). 
4. Memetic Algorithm 
 

The genetic algorithm is a well-known metaheuristic and widely used to solve VRPs. It can be combined 
with other heuristics to obtain better results within a reasonable time. For instance, MAs use the same 
solving process of the genetic algorithm in combination with local search operators. In this study, an MA 
is used, the steps of which are explained in detail in the remainder of this section.  
First, the initial population is created based on the insertion heuristic. If the number of solutions generated 
by this heuristic is below the number required to complete the initial population, the random insertion 
heuristic is used to generate new individuals. The generated tours are allocated to the available vehicles 
depending on the capacity and remaining time period of the work day of each vehicle. The individuals 
of the initial population are treated with a local search heuristic to improve their quality. Subsequently, 
two individuals are selected from the initial population. Depending on the probability of crossover (Pc), 
it is decided whether these individuals undergo the crossover step or go directly to the mutation stage. 
Depending on the number of available vehicles, two crossover types are employed. If this number is over 
one, Several Vehicle Crossover is applied, or else, One Vehicle Crossover is used. If the crossover of 
one vehicle is terminated, and the resulting individuals no longer respect the constraints, a correction 
procedure and the local search heuristic are applied before the mutation. The mutation is applied with 
mutation probability. The resulting individuals are corrected with the correction procedure, and the tours 
are reassigned to the vehicles and improved again by the local search heuristic. For the static problem of 
the first time slot, the algorithm of Ayadi and Benadada (2013) is applied. The same algorithm is used 
for the crossover, mutation, and correction procedure of the dynamic algorithm. In addition, the methods 
used by Ouaddi et al. (2018) are adopted for local research and vehicle affectation. 
4.1 Chromosome conception and population initialization 
Owing to the MTDVRP, chromosomes of the population should effectively reflect the essential 
information of a multi-tour and multi-depot solution, i.e. the order of client visits in each tour, the 
fictitious depot at which the tour starts, and the assignment of the tours to the trucks. For this reason, 
multi-line coding is adopted. Each line represents the complete journey of a single truck for the remaining 
period of the current day. A trip is the set of tours made by the same vehicle. The first box in the line 
represents the depot at which the truck begins its journey. If the truck starts at the central depot, this box 
exhibits a 0. Otherwise, this box is filled by the index f of the fictitious depot. In addition, a delimiter 
(marked 0) denotes the central depot to separate the tours. Fig. 1 shows a coding example of the solution 
for K = 2.  
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4.1.1 Insertion Heuristic  
 
The principle of this heuristic is to determine all feasible insertions of new customers in the previous 
period remaining solution by inserting a customer each time. Thus, all feasible insertions of the first 
dynamic customer are determined, and in each solution based on these insertions, the feasible insertions 
of the second and following dynamic customers are determined. By applying the same procedure 
iteratively to the rest of the dynamic customers, a set of feasible solutions is constructed. This can be 
used as the initial population for the memetic algorithm. If the number of solutions exceeds the number 
required to complete the initial population, the individuals of the initial population are randomly selected 
from the determined solutions (Algorithm 1). 
 
Algorithm 1 𝐶 {𝑐 , 𝑐 , . . , 𝑐 } list of new customers 𝑆 {𝑡 , 𝑡 , . . , 𝑡 }  Tours of the remaining solution from previous period  
Find all possible insertions of 𝑐  in 𝑆 . 𝑆  is the union of resulting solutions 
For each i from 2 to n 
Find all possible insertions of 𝑐  in each solution of 𝑆  
End for 
Return  𝑆  

 
4.1.2 Random Insertion Heuristic 
 
This heuristic is only used if the number of solutions generated by the insertion heuristic is below the 
number required to complete the initial population. In this method, a tour starting at each fictitious depot 
is created. Then, customers are randomly selected. For each selected customer, the first feasible insertion 
in one of the previously created tours is determined. If no insertion is possible, a new tour, starting at the 
central depot and visiting this customer, is created. The algorithm stops when all customers have been 
inserted (Algorithm 2). 
 

Fig. 1. Chromosome representation 
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Algorithm 2 𝐶 = {𝑐 , 𝑐 , . . , 𝑐 } set of all not served customers  𝐷 = {𝑑 ,𝑑 , . . ,𝑑 }  set of fictitious depots  
From each fictitious depot of D we create an empty tour returning to central depot 𝑇 = {𝑡 , 𝑡 , . . , 𝑡 } set of created tours 
For each 𝑐  de C, 
If we found 𝑡  from T where we can insert 𝑐  𝑡′ = 𝑡 ∪ 𝑐   𝑇 = (𝑇|𝑡 ) ∪ 𝑡′     𝐶 = 𝐶|𝑐  
Else 
Create tour 𝑡  starting from the central depot, visiting 𝑐  and going back to central depot 𝑇 = 𝑇 ∪ 𝑡  
m=m+1 
End if 
End for 
Return T 

 
4.2 Crossover 
 

The Crossover is a crucial operation in a genetic algorithm. This operator combines two chromosomes 
called ‘parents’ to produce children. In this study, two crossover methods are used, which depend on the 
number of available vehicles. The first is applied for a single vehicle (Cross over One Vehicle), and the 
second is used for more vehicles (Cross over Several Vehicles). 
4.2.1 Cross Over Several Vehicles 
 

For several vehicles, one of the parents is considered the receiver and the second the donor. The crossover 
is applied to generate the first child. Subsequently, the roles are reversed to generate the second child. 
The tours of the vehicle that consumes the most time are removed from the receiving parent, while the 
first box that represents the depot is retained if it is fictitious. Hence, the first part of the child is obtained. 
At the donor parent level, only customers that have been deleted from the receiver are retained. 
Consequently, the boxes indicating fictitious depots are marked by 0, and the second part of the child is 
obtained. The two parts are combined to form the new child, which will be treated with the local search 
heuristic. The example in Fig. 2 illustrates this crossover. 
 
4.2.2 Cross Over One Vehicle  
 
In this case, each chromosome is represented by a single line. The first case presents a fictitious depot in 
which the vehicle is initially stationed. Other cases exhibit the visited customers. The tours are separated 
by case 0, and two random tours are chosen. The first tour belongs to the first parent and the second to 
the second parent. Customers of the first tour replace those of the second in the second parent and 
customers of the second tour replace those of the first in the first parent while keeping the same fictitious 
depot of the parent. Each of the generated children receives the correction procedure described in 
Section 4.4. The example of Fig. 3 illustrates this crossover. 
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Fig. 2. One Vehicle Cross over 

 

 
Fig. 3. Several Vehicles Cross over 

 
4.3 Mutation 
 
Two random operations are used in the mutation phase to obtain a population with new characteristics 
and thus extend the search area: 
Random exchange: this operator chooses two customers randomly from two different tours and 
exchanges their positions. 
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Fig. 4. Mutation operator 

 

 
Fig. 5. Correction procedure  

Random insertion: this operator chooses two tours randomly. A customer is selected from the first tour 
and inserted into the second at a randomly chosen position. The example in Figure 4 represents the 
mutation operator. 

 

4.4 Correction Procedure 
 

This procedure is applied to the individuals resulting from the one-vehicle crossover or mutation phase. 
First, the redundant customers are removed, and the order of the visits to the customers in each tour is 
improved to minimize the routing time. If the routing time or quantity of tours exceeds the time limit or 
capacity of the vehicle, it will be divided into two or more tours. If some customers are not included in 
any tour, they are inserted into one of the existing tours. If no insertion is feasible for a customer, a new 
dedicated tour starting at the central depot is created. Finally, the Clarke and Wright algorithm is used to 
combine short tours. Fig. 5 shows the correction procedure applied to the children of the one-vehicle 
crossover in Fig. 3. 
4.5 Evaluation 
 

To compare the solutions, their objective function is determined. Therefore, the total travelled distance 
and maximal overtime performed by each individual are determined. The individuals are compared as 
follows: If one or both individuals exceeds/exceed the time horizon, the one that achieves minimal 
overtime is the best. If both individuals respect the time constraint, the best individual is that with minimal 
travel costs. 
5. Computational Results 
 

First, the results obtained by applying the MA to the instances presented by Kilby et al. (1998) are 
presented to assess its performance based on the classical DVRP. Subsequently, the results obtained by 
applying the MA to the instances of Ouaddi et al. (2018) and those obtained by the ACS of the same 
study (Ouaddi et al., 2018) are compared.  
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5.1 Setting of Memetic Algorithm 
 

The size of the population is set to 100 for the static part of the problem (first period of the day) and to 
20 for the dynamic part of the problems (for the rest of the day). For the static part, the population size 
(100) allows a better exploration of the search area because the execution time of this phase is not strictly 
limited. For the remaining dynamic problems, generating feasible and different individuals for the initial 
population takes more time. If the size of the initial population is considerably large, the speed of the 
algorithm may be decreased. Preliminary tests have shown that the number 20 allows a balance between 
the execution time and exploration of the search area. In addition, preliminary tests with several values 
for the mutation and crossover probabilities are performed. Results of Table 1 (for the C50 instance) 
show that Pm=0.4 for mutation probability and Pc=0.9 for cross over probability are the most 
appropriates.  
 

Table 1 
Preliminary tests on the probability of cross over and mutations 

 𝑃  𝑃  𝑃  𝑃  𝑃  𝑃  𝑃  𝑃  
0.1 0.9 0.1 0.7 0.4 0.9 0.4 0.7 

1 648,8 627,64 563,46 618,48 
2 641,89 619,12 616,59 616,22 
3 636,05 609,23 617,27 630,4 
4 616,39 620,23 593,76 624,53 
5 652,57 621,11 624,08 611,67 
Min 616,39 609,23 563,46 611,67 
Average 639,14 619,466 603,032 620,26 

 
The algorithm stops after 200 iterations or if it realizes 100 iterations without any improvement in the 
objective function. The algorithm is coded in Java and executed on a machine with Intel Core i7 for the 
classical DVRP tests. In addition, the same machine used by Ouaddi et al. (2018) (Core i5 processor) is 
used to perform the MTDVRPOT tests. 
5.2 Results of Classical DVRP 
 

As shown in Table 2, the MA provides better results than Hanshar’s genetic algorithm for 13 instances 
(62%) and Montemanni’s algorithm for 19 instances (90%). In addition, the algorithm does not exceed 
8.5 min.  
Table 2  
Results of MA on classical DVRP compared to Hanshar 2007 and Montemmani 2005 

 MA Hanshar 2007 Montemmani 2005  MA Hanshar 2007 Montemmani 2005 
  

c50 563,46 570,89 631,3 tai75c 1473,97 1440,54 1574,98 
c75 977,73 981,57 1009,36 tai75d 1391,19 1399,83 1472,35 

c100 967,02 961,1 973,26 tai100a 2208,31 2232,71 2375,92 
c100b 889,88 881,92 944,23 tai100b 2211,63 2147,7 2283,97 
c120 1258,19 1303,59 1416,45 tai100c 1486,75 1541,28 1562,3 
c150 1282,55 1348,88 1345,73 tai100d 1767,57 1834,6 2008,13 
c199 1623,09 1654,51 1771,04 tai150a 3327,58 3328,85 3644,78 
f71 316,13 301,79 311,18 tai150b 3057,77 2933,4 3166,88 
f134 1381,27 1552,88 1513,55 tai150c 2668,34 2612,68 2811,48 

tai75a 1776,56 1782,91 1843,08 tai150d 3061,13  2950,61 3058,87 
tai75b 1434,1 1464,56 1535,43     

 
The GAP between a solution s and solution s’ allows to measure the relative difference by comparing 
their objective functions. 



K. Ouaddi et al. / International Journal of Industrial Engineering Computations 11 (2020) 655𝐺𝐴𝑃(𝑠/𝑠′) =  100 ∗ 𝑓(𝑠)𝑓(s ) − 1    
In this case, the objective is minimizing the total travelled distance. Thus, the higher the GAP, the better 
is the quality of solution s’ compared to that of s. The lower the GAP, the better is the solution s compared 
to that that of s’. Later, f (s) will be replaced by the value of the solution determined by the MA, while f 
(s') will be replaced by the value of the solution determined by the second algorithm. In this study part, 
the GAP is used to compare the solutions found by OBM with those found by the methods of Hanshar 
2007 and Montemanni 2005. Table 3 presents the maximal and minimal GAP related to these two 
algorithms. The maximal GAP does not exceed 5% in the best case, while the minimal GAP reaches up 
to approximately -12%. Figure 7 in Appendix B describes the tours of the solution that exhibits a lower 
GAP compared to that of Hanshar 2007. It is a solution of the f134 instance. 
 

Table 3  
GAP of memetic algorithm related to Hanshar 2007 and Montemmani 2005 

GAP Hanshar 2007 Montemanni 2005 
Max 4,75% 1,59% 
Min -11,05% -11,97% 

 
5.3 Results of MTDVRPOT 
 
In this study part, the data set of Ouaddi et al. (2018) is used for the MTDVRPOT. The data set is inspired 
by the 21 problem of Kilby et al. (1998). A similar approach to that of Taillard et al. (1996) is adopted 
to generate the instances, and the same demands and truck capacities of the basic problems are used. In 
addition, the instances are generated by proposing several values of m (number of available vehicles) and 
restricted values of the time horizon T=[1,1*z*/𝑚], where z* is the value of the best solution determined 
by Rochat & Taillard (1995) for the classical static VRP. The arrival time of the customer requests is 
proportional to the arrival time proposed by Kilby et al. (1998). Moreover, the maximal allowed overtime 
for each instance is set to one quarter of the normal time horizon, and the time and distance are considered 
equivalent. For each instance, m between 1 and 5 is applied. To distinguish the problems of this data set 
from the original problems (Kilby et al., 1998), the first letter of each problem is capitalized. For example, 
instance C100-3 corresponds to the instance with m = 3 of the problem C100. A solution is feasible if 
the realized overtime does not exceed the maximal allowed overtime. In this section, the results obtained 
by the MA are compared with those obtained by the ACS (Ouaddi et al., 2018). Three runs of both 
algorithms are considered for each instance. Table 4 provides the number of feasible solutions found by 
each algorithm, and table 7 in Appendix A provides the detailed computational results. 
 
Table 4 
Number of feasible solutions found by MA and ACS algorithm  

 MA ACS  MA ACS     
C50 4 4 Tai75c 3 4 
C75 5 4 Tai75d 5 4 
C100 5 5 Tai100a 5 5 
C100b 5 4 Tai100b 5 4 
C120 2 1 Tai100c 5 3 
C150 5 0 Tai100d 5 2 
C199 5 0 Tai150a 5 4 
F71 3 2 Tai150b 5 3 
F134 4 2 Tai150c 5 2 
Tai75a 5 3 Tai150d 5 2 
Tai75b 5 4    
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The MA obtains feasible solutions for 96 of 105 instances, and the ACS obtains only 62 feasible 
solutions. Amongst all the instances, there is only one for which the ACS algorithm can determine a 
solution whereas the MA cannot (Thai75c-4). Furthermore, the MA provides better results than the ACS 
algorithm for both objectives of the problem with 94 instances, and the ACS provides better results than 
the MA for only two instances (C100 -2, Thai75c -1). For C100-2, the solution provided by the ACS is 
better in terms of distance; however, the overtime achieved by the MA is better. In addition, the ACS 
provides a better solution for the two objectives in the Thai75c-1 instance. Table 5 presents the maximal 
and minimal GAPs related to the ACS for the two objectives of the problem. 
Table 5  
GAP related to the ACS algorithm 

GAP Distance Overtime 
Min -92,11% -100% 
Max 2,5% 69,49% 

 
As already stated in Section 4.5, the best solution should exhibit the shortest overtime if it exceeds 0. 
Otherwise, the best solution should exhibit the minimal total travelled distance. Thus, a solution may be 
better if it exhibits a minimal overtime despite its non-minimal distance. Regarding coherence, two 
objectives are coherent for a given instance if the best solution (among the three executions done by each 
algorithm) for this instance is a solution that achieves the minimal distance and overtime. Otherwise, the 
objectives are not coherent for this instance. This case is only true if the best solution does not exhibit 
the minimal total travelled distance. Fig. 6 shows the number of instances in which the objectives are 
coherent in both algorithms. The two objectives are coherent for 88 from 96 instances solved by the MA 
and for 54 from 62 instances solved by the ACS. 
 

 
Fig. 6. Coherence of problem objectives 

 
Because both algorithms have been executed on the same machine, their execution times can be 
compared. Table 6 shows the average execution time of the instances of each problem and both 
algorithms. Neither algorithm dominates in terms of execution time. For several problems, the ACS 
performs much faster than the MA. This is the case for the problems: C75, Tai75b, Tai75c, Tai75d, 
Tai100a, Tai100b, Tai100d, Tai150a, Tai150b and Tai150c, in which the GAP exceeds -50% and 
achieves up to 208%. These problems constitute 47% of the total number of problems. In addition, there 
are problems for which the MA performs much faster (C150, F134). In these instances, the GAP is below 
-50%. However, their number (9% of the total number of problems) remains minimal compared to the 
number of instances in which the ACS obtains results faster than the MA. Furthermore, the two 
algorithms consumed comparable execution time (-50% <GAP <50%) for the rest of the problems. It 
should be noted that two problems (C100b, C120) are not included in this comparison because the ACS 
could not find any solution for any of their instances.  
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Table 6 
Average of execution time in second 

  MA ACS GAP  MA ACS GAP 
C50 42,4 40,7 4,1% Tai100a 302,7 112,7 168,5% 
C75 78,2 42,5 84% Tai100b 288,9 117,3 146,2% 
C100 199 211 -5,6% Tai100c 252,8 202,5 24,8% 
C150 607,9 - - Tai100d 389,7 206 89,1% 
C199 1253,7 - - Tai150a 584,6 328,5 77,9% 
C120 513,3 1237 -58,5% Tai150b 979,1 614,4 59,3% 
C100b 196,3 193 1,7% Tai150c 1038,6 647 60,5% 
F71 145,4 205,9 -29,3% Tai150d 528,4 517,1 2,1% 
F134 1266,3 6138,8 -79,3%     
Tai75a 62,4 42 48,5%     
Tai75b 156,6 55 184,7%     
Tai75c 125,4 40,6 208,8%     
Tai75d 201,3 81,4 147,2%     

 
6. Conclusion 
 

In this article, an MA for the MTDVRPOT is proposed, which provides very competitive results for the 
capacitated DVRP and MTDVRPOT. For the first problem, tests on the benchmarks presented by Kilby 
et al. (1998) were conducted, and the results were compared with the results of Hanshar & Ombuki-
Berman (2007) and Montemanni et al. (2005); 62% of the results of this study are better. Regarding the 
second problem, tests on datasets that were proposed in a previous study were performed. According to 
the results, the MA is quantitatively and qualitatively better than the ACS. In the future, other 
metaheuristics will be tested on the same problem to realize a comparative study of different approaches. 
Adding more constraints to the problem (e.g. soft time windows) could be a subject for future studies. In 
that case, more objectives (e.g. maximizing customer satisfaction) could be added to the objective 
function, and the problem could be treated based on a multi-objective aspect to provide decision-makers 
with a set of good solutions for each objective. 
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Appendix A 
Table 7 provides detailed computational results provided by MA compared to those of the ACS. T is the 
normal working time while m represents the number of used vehicles. A feasible solution is a solution 
whose overtime does not exceed the maximal allowed overtime. Instances denoted by * are instances in 
which only one feasible solution was found, while those denoted by ** are instances in which two feasible 
solutions were found. We leave the cells empty for the instances to which we could not find any feasible 
solution. For the other instances, three feasible solutions were found. We consider three executions for 
each instance. If the objectives are coherent, the minimum distance and overtime are the values of the 
best-found solution. Otherwise, the two objectives are not coherent (the best solution does not match to 
the solution with minimal traveled distance). These instances are highlighted into dark shaded cells. We 
use Table 8 to represent their best-found solutions. 
 
Table 8 
Results of the memetic algorithm on multi-tour DVRP with overtime compared to those obtained by the 
ACS 
   Memetic algorithm Ant colony system algorithm 

 
m T 

Best Average Best Average 
 Dist Over Dist Over Dist Over Dist Over 

C50 

1 577 565,4 0 579,3 8,8 625,3 48,3 629,9 52,9 
2 289 600 11,2 620,5 22,1 658,1 40,7 673,8 53,8 
3 192 613,1 15,2 644,2 21,9 652,5 26,3 672,2 36,2 
4 144 620,5 21,6 642,8 27,3 674* 36* 674* 36* 
5 115         

C75 

1 919 911,4 0 920,3 5,4 992,8 73,8 1082,7 163,7 
2 459 931,5 7,3 962,1 22,5 1064 73,6 1079,1 81,5 
3 306 930,8 8,8 948,9 15,2 1069,1 58,8 1092,2 64,3 
4 230 952,1 10,8 983,2 18,3 1046,8 45,1 1060,7 48,8 
5 184 964,4 9,7 985,4 14,9     

C100 

1 909 977,4 68,4 986,3 77,3 988,6 79,6 1015,3 106,3 
2 454 991 44 1023,2 58,4 983,5 46,1 1018,8 66,1 
3 303 1008,3 34,3 1057,8 50,5 1015,4 40,7 1064,4 59,9 
4 227 1005,3 26,5 1026,4 40,3 1021,1 39,7 1047 44,7 
5 182 1052 35,5 1067,8 41,5 1114,1* 44,7* 1114,1* 44,7* 

C150 

1 1131 1304,4 173,4 1313,7 182,7     
2 565 1249,4 59 1272,1 70,7     
3 377 1271,9 50,6 1279 51,2     
4 282 1257,8 32,1 1290,5 41,4     
5 226 1364,4 52,9 1377 53     
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C199 

1 1421 1549,3 128,3 1565 144     
2 710 1589,8 85,1 1613,3 97,2     
3 473 1598,1 59,1 1609,2 63,1     
4 355 1633,1 53,7 1641 56,4     
5 284 1621,3 40,5 1642,4 45,1     

C120 

1 1146 1133,1 0 1163,9 22,2 1426,16** 280,16** 1429,115** 283,115** 
2 573 1363* 108,6* 1363* 108,6*     
3 382         
4 287         
5 229         

C100b 

1 902 865,9 0 870,1 0 1007,8 105,8 1015 113 
2 451 917,5 7,8 925,1 13 1049,7 75,6 1054 83,3 
3 301 867,6 0 871,3 0,7 982,7 29,5 1038,5 53,4 
4 225 873,3 0 882,7 0 998,6 45,8 1012,4 49,1 
5 180 987,8 27,2 1002,4 29,5     

F71 

1 266 277,4 11,4 297,9 31,9 304,8** 38,8** 312,6** 46,6** 
2 133 294,6 15 305,6 20,1 314 24,1 322,2 28,6 
3 89 295 15,9 309 18     
4 66         
5 53         

F134 

1 1279 1189,5 0 1255,3 12,1 1508,5 229,3 1547,4 268,2 
2 639 1214,2 0 1252,9 2 1500,7* 142,8* 1500,7* 142,8* 
3 426 1267,1 0 1323,3 16,9     
4 319 1348,8 23,3 1382,7 32,1     
5 255         

Thai75a 

1 1780 1735,1 0 1758 0 1876 96 1982,8 202,8 
2 890 1740,1 0 1774,9 5,1 1990,8 108 2035,6 134,8 
3 593 1704,2 0 1780,2 13,1 2086,2** 108** 2097,3** 119,6** 
4 445 1819 12,1 1850 21,8     
5 356 1860,2 26,5 1958,2 49,5     

Thai75b 

1 1479 1356,7 0 1414 9,6 1478,2 0 1540,2 61,4 
2 740 1358,6 0 1366,6 0 1540,4 32 1579,5 52,2 
3 493 1431,1 0 1433,1 0 1613,2 53,8 1659,3 66,9 
4 370 1581,2 40,4 1622,9 44,7 1658** 64,7** 1679,6** 76** 
5 296 1611,8 71,5 1666,7 82,4     

Thai75c 

1 1420 1510 90 1566,1 146,1 1473,1 53,1 1568,3 148,3 
2 710 1524,9 52,6 1531,9 56,1 1651,2 118,7 1686,4 141,2 
3 473 1524,1 56,5 1603,3 74,2 1617,1* 70,3* 1617,1* 70,3* 
4 355     1712,6* 80,5* 1712,6* 80,5* 
5 284         

Thai75d 

1 1502 1449,6 0 1502,6 18 1619,2 117,2 1761,2 259,2 
2 751 1453,5 0 1475,4 4,6 1572 35,3 1610,8 65,9 
3 501 1386 0 1416,8 0 1665 64,2 1738,8 90,3 
4 375 1421,3 0 1442 1,7 1761,5** 93** 1806,9** 93,2** 
5 300 1496 13,8 1544,9 32,8     

Thai100a 

1 2245 2100 0 2179,9 9,3 2487,7 242,7 2513,6 268,6 
2 1123 2106,5 0 2145,2 0 2621,6 192,8 2683,3 221,1 
3 748 2130,6 0 2247,8 14 2377,9 50,5 2531,4 106,9 
4 561 2169,2 0 2265,9 18,1 2462,6 75,9 2557,7 106,8 
5 449 2322,5 29,3 2349,3 36,3 2626,6** 92** 2653,2** 99,1** 

Thai100b 

1 2134 2087,9 0 2106 0 2443,4 309,4 2522,8 388,8 
2 1067 2079,9 0 2131,9 8 2584,2 229,4 2633,2 253,2 
3 711 2146,1 7,4 2195,3 22,6 2388,6 95,1 2462,9 118,7 
4 533 2130,6 1,1 2160,4 12,3 2497,6** 96,2** 2528,6** 106,6** 
5 427 2189,1 30,9 2217,9 43,5     

Thai100c 

1 1547 1444,7 0 1465,5 0 1567 20 1633,1 86,1 
2 773 1440,8 0 1466 0 1505,8 0 1692,3 80,7 
3 516 1470,8 0 1515,8 2,4 1717,1 60,2 1820,9 95,4 
4 387 1652,7 27,7 1660,2 29,6     
5 309 1558,8 13,1 1672,4 35,7     

Thai100d 

1 1739 1767 28 1783,3 44,3 2017,6 278,6 2102,6 363,6 
2 869 1750,8 6,5 1800,3 31,8 2156,8* 216,7* 2156,8* 216,7* 
3 580 1755,5 5,7 1818,8 26,6     
4 435 1776,1 14,2 1867,1 35,2     
5 348 1820 27,9 1882,4 38,4     

Thai150a 

1 3361 3464,5 103,5 3534,3 173,3 3772,7** 411,7** 3881,8** 520,8** 
2 1680 3437,3 39,1 3470,2 57,1 3887,2 274,9 4065 360,4 
3 1120 3200,3 0 3402,2 32,7 3819,7* 164,8* 3904,3* 206,4* 
4 840 3411,5 17,9 3460,5 33,4 3934,3 172,3 3956,2 173,6 
5 672 3296,8 0 3357,9 7,9     

Thai150b 1 3000 2943,4 0 3013,1 32 3426,5 426,5 3436,2 436,2 
2 1500 3079,8 40 3135,3 67,8 3281,8 155,4 3405,9 212,1 



 

 

662 

3 1000 2973,6 0 3014,1 11,6 3612,9 230,5 3612,9 230,5 
4 750 2947,5 0 3029,8 17,8     
5 600 3173,8 41,1 3186 47,9     

Thai150c 

1 2595 2498,2 0 2599,2 50,5 3006,8 411,8 3086,4 491,4 
2 1297 2481,2 0 2584,2 15,3 3190,4* 312,3* 3190,4* 312,3* 
3 865 2681,5 29,6 2720,6 42,4     
4 649 2557,1 0 2613,3 10,4     
5 519 2561,1 0 2747,6 36,3     

Thai150d 

1 2910 2875,7 0 2894,4 0 3323 413 3416,5 506,5 
2 1455 2927,3 8,9 2943 16,6 3431,4 271,4 3459,5 289,5 
3 970 2903,7 1,1 2920,8 8,9     
4 727 2913,7 3,5 2930,5 7,5     
5 582 2967,2 11,8 3003,4 21,5     

 
Table 8 
Best solution of highlighted instances 

  m T 
Memetic Hybrid Ant colony 

Dist Over Dist Over 
 C75 3 306 942,9  8,8 
 C75 4 230   1069,3  45,1  
 C100 2 454   989,7  46,1  
 C150 3 377 1279,4  50,6   
 C150 5 226 1389,6 52,9   
 C199 4 355 1633,8 53,7    
 C100b 2 451   1052,9  75,6  
 C100b 4 225   1010,6  45,8  
 C100b 5 180 1022,3  27,2    
 F134 1 1279   1549,2  270  
 Thai75b 4 370 1627  40,4    
 Thai75d 4 375   1852,2  93  
 Thai100a 5 449 2330,4  29,3    
 Thai150a 4 840 3946,6 172,3 
 Thai150b 5 600 3197,4 41,1 
 Thai150d 2 1455    3435,1  271,4  

 
Appendix B 
 
Fig. 7 presents the tours of the solution that exhibits a lower GAP compared to that of Hanshar 2007 
(section 5.2). 

Fig. 7. Solution that exhibits a lower GAP compared to that of Hanshar 2007 (F134) 
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