
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009 1151

Memetic Algorithm with Extended Neighborhood
Search for Capacitated Arc Routing Problems

Ke Tang, Member, IEEE, Yi Mei, Student Member, IEEE, and Xin Yao, Fellow, IEEE

Abstract— The capacitated arc routing problem (CARP) has
attracted much attention during the last few years due to its
wide applications in real life. Since CARP is NP-hard and exact
methods are only applicable to small instances, heuristic and
metaheuristic methods are widely adopted when solving CARP.
In this paper, we propose a memetic algorithm, namely memetic
algorithm with extended neighborhood search (MAENS), for
CARP. MAENS is distinct from existing approaches in the
utilization of a novel local search operator, namely Merge-Split
(MS). The MS operator is capable of searching using large step
sizes, and thus has the potential to search the solution space
more efficiently and is less likely to be trapped in local optima.
Experimental results show that MAENS is superior to a number
of state-of-the-art algorithms, and the advanced performance of
MAENS is mainly due to the MS operator. The application of the
MS operator is not limited to MAENS. It can be easily generalized
to other approaches.

Index Terms— Capacitated arc routing problem (CARP),
evolutionary optimization, local search, memetic algorithm,
metaheuristic search.

I. INTRODUCTION

THE ARC routing problem is a classic problem with
many applications in the real world, such as urban waste

collection, post delivery, sanding or salting the streets [1], [2],
etc. It is a combinatorial optimization problem that requires
determining the least cost routing plan for vehicles subject
to some constraints [3]. The capacitated arc routing problem
(CARP), which is the most typical form of the arc routing
problem, is considered in this paper. It can be described as
follows: a mixed graph G = (V, E, A), with a set of vertices
denoted by V , a set of edges denoted by E and a set of arcs
(i.e., directed edges) denoted by A, is given. There is a central
depot vertex dep ∈ V , where a set of vehicles are based. A
subset ER ⊆ E composed of all the edges required to be

Manuscript received November 18, 2008; revised February 14, 2009;
accepted May 5, 2009. First version published August 11, 2009; current
version published September 30, 2009. This work was supported in part
by the Engineering and Physical Sciences Research Council under Grant
EP/E058884/1 on “Evolutionary Algorithms for Dynamic Optimization Prob-
lems: Design, Analysis and Applications,” by the National Natural Science
Foundation of China under Grants 60533020 and U0835002, and by the Fund
for Foreign Scholars in University Research and Teaching Programs, Grant
B07033.

K. Tang and Y. Mei are with the Nature Inspired Computation and
Applications Laboratory, School of Computer Science and Technology, Uni-
versity of Science and Technology of China, Hefei 230027, China (e-mail:
ketang@ustc.edu.cn; meiyi@mail.ustc.edu.cn).

X. Yao is with the Center of Excellence for Research in Computational
Intelligence and Applications, School of Computer Science, University of
Birmingham, Birmingham B15 2TT, U.K. (e-mail: x.yao@cs.bham.ac.uk).

Digital Object Identifier 10.1109/TEVC.2009.2023449

served and a subset AR ⊆ A composed of all the arcs required
to be served are also given. The elements of these two subsets
are called edge tasks and arc tasks, respectively. Each edge
or arc in the graph is associated with a demand, a serving
cost, and a deadheading cost (the cost of a vehicle traveling
along the edge/arc without serving it). Both the demand and
the serving cost are zero for the edges and arcs that do not
require service. A solution to the problem is a routing plan
that consists of a number of routes for the vehicles, and the
objective is to minimize the total cost of the routing plan
subject to the following constraints:

1) each route starts and ends at the depot;
2) each task is served in exactly one route;
3) the total demand of each route must not exceed the

vehicle’s capacity Q.

Since CARP is NP-hard [4], exact methods are only applicable
to small-size instances. As a result, heuristics and meta-
heuristics are often considered in the literature. For example,
Augment–Merge [4], Path-Scanning [5], the “route first-cluster
second” type heuristic proposed in [6], and Ulusoy’s Heuris-
tic [7] are typical heuristic methods. In 2000, Hertz et al.
proposed a tabu search for CARP (CARPET) [8]. In CARPET,
a solution is represented as a set of routes, each of which is an
ordered list of vertices. Every vertex is associated with a 0-1
variable indicating whether the edge between this vertex and
the successive vertex is served. Based on CARPET, a variable
neighborhood descent (VND) algorithm was later proposed
by replacing the tabu search process in CARPET with a
variable neighborhood search process [9]. In 2003, Beullens
et al. developed a guided local search (GLS) algorithm for
CARP [10]. GLS adopts an edge marking scheme, which
marks (unmarks) edges based on the information of a previous
search procedure. Local search operators are only applied to
those marked edges so as to make the search process more
effective. After that, Lacomme et al. proposed a memetic al-
gorithm (LMA1), which combines the genetic algorithm (GA)
with local search [11]. LMA employs a genotype encoding
scheme. That is, a solution is represented as a sequence of
tasks, and the intermediate vertices between two subsequent
tasks are omitted. To obtain the complete routing plan from
a solution, one needs to connect every two subsequent tasks
with the shortest path between them, and then apply Ulusoy’s
heuristic to separate the sequence into a number of routes.

1In the literature, MA is usually referred to as a general framework rather
than any specific algorithm. For the sake of clarity, we denote the MA
proposed by Lacomme et al. [10] as LMA in this paper.

1089-778X/$26.00 © 2009 IEEE

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

1152 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

In 2006, Handa et al. proposed an evolutionary algorithm
(EA) [1], [2] for a salting route optimization problem in the
U.K. This EA adopts a similar encoding scheme as LMA, i.e.,
a solution is represented by a sequence of tasks. The difference
is that a solution obtained by the EA can be naturally separated
into different routes, and thus it is unnecessary to utilize
Ulusoy’s heuristic any more. Besides, EA and LMA also em-
ploy different evolutionary operators and evaluation schemes.
Recently, Brandão and Eglese proposed a deterministic tabu
search algorithm (TSA) [12] for CARP. In their work, two
variants of TSA were described, namely TSA1 and TSA2.
TSA1 is a rather standard tabu search algorithm, and TSA2 can
be viewed as applying TSA1 with a number of different initial
solutions. Experimental studies showed that TSA2 is superior
to TSA1 and outperformed both CARPET and LMA on three
sets of benchmark instances. In [13], we proposed a global
repair operator (GRO), which aims to amend low-cost infea-
sible solutions. It has been shown that combining GRO with
TSA1 can lead to significant improvement in terms of solution
quality, and may even accelerate convergence of the algorithm.

So far, we have introduced both heuristic and metaheuristic
methods. It can be observed that the former was popular in
early years while the latter is attracting more and more inter-
est recently. Moreover, many existing metaheuristic methods
incorporate previous heuristic methods in their framework.
For example, CARPET, LMA, and TSA all employ one or
more aforementioned heuristics to obtain initial solutions, and
then try to further improve them. Therefore, it is unsurprising
that metaheuristic approaches usually outperform heuristic
methods in terms of solution quality, although they are com-
putationally more expensive. Fortunately, powerful modern
computers can easily afford the additional computational cost.

In this paper, we investigate CARP within the framework
of MA. As an emerging area of evolutionary computation,
MAs are population-based metaheuristic search methods that
combine global search strategies (e.g., crossover) with local
search heuristics, and have been studied under a number of
different names, such as Baldwinian EAs, Lamarckian EAs,
cultural algorithms, genetic local search, etc. They are reported
to not only converge to high-quality solutions, but also search
more efficiently than conventional EAs. The successes of
MAs have been revealed on a wide variety of real-world
problems [14]–[16], including CARP, as demonstrated by
LMA [11]. Compared to conventional EAs, there are two
key issues for the success of MAs. One is an appropriate
balance between global and local search, and the other is a
cost effective coordination of local search. Hence, the local
search procedure, which is usually designed to utilize the
domain knowledge of the problem of interest, plays the most
important role in MAs. In the context of CARP, local search is
often conducted via some traditional move operators, such as
single insertion, double insertion, swap, etc. [11]. These move
operators modify only a small part of the current solution.
More intuitively, they can be said to have small search step size
and search within a small neighborhood of the current solution.
With such characteristics, these operators can be expected to
perform well on simple problems that have a small number
of local optima and a small solution space. However, they

may no longer work when the solution space becomes large
or contains many local optima, or in the case that the solution
space consists of separated feasible regions. In such cases, a
large-step-size local search may be more desirable, either for
jumping out of the local optimum or from one feasible region
to another, or to conduct the search more efficiently. From a
general optimization viewpoint, the benefits of large step size
have been theoretically addressed in [17], where it is proved
that simulated annealing (SA) with a larger neighborhood is
better than SA with a smaller neighborhood. Unfortunately, the
step size issue itself has rarely been addressed in the context
of CARP, let alone the design of a refined memetic approach.

Motivated by the above consideration, we propose a new
move operator for CARP, named the Merge-Split (MS) opera-
tor, in this paper. Compared to traditional move operators, the
MS operator has a larger search step size, which is variable.
Thus, it can flexibly conduct a local search within a large
neighborhood of a solution. We have incorporated the MS
operator into the MA framework, and developed the memetic
algorithm with extended neighborhood search (MAENS) for
CARP. MAENS has been evaluated on four sets of CARP
benchmark instances (a total of 181 instances) and compared
with five existing metaheuristic algorithms, i.e., CARPET [8],
VND [9], GLS [10], LMA [11], and TSA2 [12]. Experimental
results showed that MAENS outperformed all the five existing
algorithms on difficult instances with many local optima, and
performed almost the same as the existing algorithms on
simple instances since they all reach the global optimum.

The rest of this paper is organized as follows. Section II
introduces preliminary background of this paper, including the
formal problem definition of CARP, the general framework
of MA, and the traditional move operators for local search.
Section III describes the MS operator in detail. After that,
MAENS is proposed in Section IV. Section V presents the
experimental studies, which include empirical comparison
between MAENS and other algorithms and the demonstration
of the efficacy of the MS operator. Finally, conclusions and
future work will be presented in Section VI.

II. BACKGROUND

In this section, the background of the paper is presented.
We start from the notations, solution representation, and math-
ematical representation of CARP, and then briefly describe the
general framework of MA and traditional move operators for
CARP.

A. Notations and Problem Definition

CARP involves seeking a minimum cost routing plan for
vehicles to serve all the required edges ER ⊆ E and required
arcs AR ⊆ A of a given graph G = (V, E, A), subject to
some constraints. Each arc task is assigned a unique ID, say
t . Each edge (i, j) is considered as a pair of arcs <i, j>
and < j, i>, one for each direction. Thus, each edge task is
assigned two IDs. For the sake of convenience, the IDs are set
to positive integers. Each ID t is associated with five features,
namely tail(t), head(t), sc(t), dc(t), and dem(t), standing for
the tail and head vertices, serving cost, deadheading cost, and

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

TANG et al.: MEMETIC ALGORITHM WITH EXTENDED NEIGHBORHOOD SEARCH 1153

3(8)

2(7)
1(6)

4(9)

5(10)depot

S = (0,3,2,1,0,4,5,0)

The ordered list of task IDs

Fig. 1. Illustration of the solution representation. IDs in parentheses represent
inversions of the current directions.

Initialization: Generate an initial population1
while stopping criteria are not satisfied do2

Evaluate all individuals in the population3
Evolve a new population using evolutionary operators4
for each individual do5

Perform local search around it with probability Pls ;6
end7

end8

Fig. 2. General framework of MAs.

demand of the corresponding task, respectively. If t belongs
to an edge task, let inv(t) denote the inversion of task t . The
serving cost, deadheading cost, and demand of task inv(t) are
the same as sc(t), dc(t), and dem(t), respectively. But note that
each edge task should be served only once, in either direction
(i.e., only one of tasks t and inv(t) is served). To separate
different routes in a solution, we also define the dummy task.
Both the tail and head vertices of a dummy task are the depot
vertex dep, and its ID is set to 0. Like many other existing
metaheuristic approaches, we represent a solution to CARP as
an ordered list of tasks (IDs), denoted by S = (S1, S2, . . . , K),
where Si is the i th element (task) of S. Fig. 1 presents a
simple illustration of such a solution representation. Given a
solution S, the corresponding routing plan can be obtained by
connecting every two subsequent tasks with the shortest path
between them (i.e., finding a shortest path from the tail vertex
of the former task to the head vertex of the subsequent task),
which can be easily found by Dijkstra’s algorithm [18]. In
the context of CARP, the term “shortest path” is equivalent
to the path with minimum deadheading cost. Let sp(Si , Si+1)
denote the total deadheading cost of the shortest path between
Si and Si+1, then the total cost of S can be written as

T C(S) =
length(S)−1∑

i=1

[sc(Si)+ sp(Si , Si+1)] (1)

where length(S) stands for the length of the sequence S.
From Fig. 1, we may see that each solution S may consist

of multiple routes (e.g., the example in Fig. 1 has two routes),
and each starts from and ends at the depot. Hence, we can
further write S in the form

S = (R1, R2, K , Rm)

= (0, R11, R12, K ,︸ ︷︷ ︸
R1

0, R21, R22, K ,︸ ︷︷ ︸
R2

0, Rm1, Rm2, K ,︸ ︷︷ ︸
Rm

0)

(2)

where m is the number of routes in S and each Ri de-
notes a single route. Obviously, every Ri also consists of a

subsequence of tasks, and the load (i.e., total demand) of it is

load(Ri) =
length(Ri)∑

k=1

dem(Rik). (3)

Given all the above notations and the aforementioned three
constraints of CARP, we now arrive at the following repre-
sentation of CARP:

min
S

T C(S) =
length(S)−1∑

i=1

[sc(Si)+ sp(Si , Si+1)]

s.t. : app(Si) = 1,∀Si ∈ AR

app(Si)+ app(inv(Si)) = 1,∀Si ∈ ER

m ≤ nveh

load(Ri) ≤ Q

(4)

where app(Si) counts the times that task Si appears in the
whole sequence, nveh is the number of vehicles available at
the depot, and Q is the vehicle’s capacity.

B. General Framework of Memetic Algorithms (MAs)

First introduced by Moscato in 1989 [19], MAs were
inspired by both Darwinian principles of natural evolution
and Dawkins’ notion of memes [20]. From the evolutionary
computation perspective, MAs can be viewed as a form of
population-based EAs hybridized with individual learning pro-
cedures that are capable of performing local refinements [19].
Without loss of generality, the framework of MAs can be
summarized by Fig. 2.

From Fig. 2, we can see that one major difference between
MAs and conventional EAs is that the mutation operators
of EAs are replaced by local search in MAs. Hence, the
success of MAs is largely due to the appropriate adoption
of local search operators, and it is not surprising that much
important work in the incremental development of MAs is
centered around the local search procedure [21]–[24]. Unlike
the evolutionary operators, which are usually very general and
applicable to various problems, the local search operators are
usually expected to incorporate some domain specific heuris-
tics, so that the MAs can balance well between generality
and problem specificity. To name a few, local heuristics or
conventional exact enumerative methods, such as the Simplex
method, Newton/Quasi-Newton method, conjugate gradient
method, and line search, are typical local search strategies for
numerical optimization. In the context of combinatorial opti-
mization, local search methods are often specifically designed
to serve a problem of interest well, e.g., k-gene exchange,
the k-opt algorithm for the traveling salesman problem, and
many others. In the next section, some traditional local search
operators for CARP will be briefly introduced.

C. Traditional Move Operators for Local Search

Recall that a solution to CARP is encoded as a sequence
of task IDs, and thus local search around a candidate solution
is often conducted by applying move operators to it. In the

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

1154 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

depot

5(10)

1(6)

9(4)

7(2)

8(3)

S = (0,1,9,8,7,5,0) S’ = (0,1,2,3,4,5,0)

5(10)
4(9)

3(8)

2(7)1(6)

depot

Fig. 3. 2-opt for a single route.

5(11)

3(9)

2(8)

S’ = (0,1,2,5,6,0,4,3,0)S = (0,1,2,3,0,4,5,6,0)

Plan 1

S’’ = (0,1,2,10,0,9,5,6,0)

Plan 2

1(7) 4(10)

5(11)

4(10)
3(9)

2(8)

depot depot

1(7)

6(12)

5(11)

10(4)

9(3)

2(8)

1(7)

6(12)6(12)

depot

Fig. 4. 2-opt for double routes.

literature, there are four commonly used move operators for
CARP, namely single insertion, double insertion, swap, and
2-opt [11].

1) Single Insertion: In the single insertion move, a task is
removed from its current position and re-inserted into another
position of the current solution or a new empty route. If the
selected task belongs to an edge task, both its directions will be
considered when inserting the task into the “target position.”
The direction leading to a better solution will be chosen.

2) Double Insertion: The double insertion move is similar
to the single insertion except that two consecutive tasks are
moved instead of a single task. Similar to the single insertion,
both directions are considered for edge tasks.

3) Swap: In the swap move, two candidate tasks are se-
lected and their positions are exchanged. Similar to the single
insertion, both directions are considered for edge tasks.

4) 2-opt: There are two types of 2-opt move operators,
one for a single route and the other for double routes. In
the 2-opt move for a single route, a subroute (i.e., a part
of the route) is selected and its direction is reversed. When
applying the 2-opt move to double routes, each route is first
cut into two subroutes, and new solutions are generated by
reconnecting the four subroutes. Figs. 3 and 4 illustrate the two
2-opt move operators, respectively. In Fig. 3, given a solution
S = (0, 1, 9, 8, 7, 5, 0), the subroute from task 9 to 7 is
selected and its direction is reversed. In Fig. 4, given a solution
S = (0, 1, 2, 3, 0, 4, 5, 6, 0), the first route is cut between tasks
2 and 3, and the second route is cut between tasks 4 and 5.
A new solution can be obtained either by connecting task 2
with task 5, and task 4 with task 3, or by linking task 2 to
the inversion of task 4, and task 5 with inversion of task 3.
In practice, one may choose the one with the smaller cost.
Unlike the previous three operators, the 2-opt operator is only
applicable to edge tasks. Although it can be easily modified
to cope with arc tasks, such work remains absent in the
literature.

All the above move operators were first proposed to ad-
dress the vehicle routing problem (VRP) [25], and were then
extended and widely used in CARP [1], [2], [8]–[12], [26].
They adopt rather simple schemes to generate new solutions,

and thus are likely to generate new solutions that are quite
similar to the current solutions. Intuitively speaking, we may
say that these traditional move operators have “small” step
size and thus are only capable of searching within a “small”
neighborhood. However, a small step-size local search operator
might not perform well in a case where a CARP has a large
solution space, or the capacity constraints are tight. In the
former case, it may take much longer time for a traditional
move operator to find the global optimum, i.e., the search
process will become inefficient as the solution space enlarges.
In the latter case, the solution space will become more rugged
and contain more local optima as the capacity constraints
become tighter. Consequently, it is likely that the feasible
regions in the solution space are isolated by infeasible regions.
A small step-size local search might easily be trapped in local
optima, and might not be able to “jump” from one feasible
solution to another. Therefore, it may never search all the
feasible regions appropriately.

Obviously, for both the above cases, a local search with
large search step size is more desirable. At first glance, it
appears that a large search step size can be obtained with
little effort, i.e., we may simply apply the traditional move
operators for multiple times. Such an idea can be found in [27],
where Liang et al. tackled a different type of combinatorial
problem—the cutting stock problem. But taking a closer look
at the traditional move operators for CARP, we found that all
of them define a neighborhood of size �(n2), where n is the
number of tasks. For example, the single insertion selects one
task out of n, and there are n + m − 1 possible positions for
the task to be inserted in, where m is the number of routes.
Thus, the single insertion can at most generate n(n + m − 1)
different solutions. The swap operator requires selecting two
tasks out of n, and there exist n(n − 1)/2 different choices.
Similar observations can be made upon the double insertion
and 2-opt, too. Therefore, consecutively applying single move
operators for k times defines a neighborhood of size O(n2k),
which increases exponentially with k. In consequence, it is
prohibitive to enumerate all the possible solutions when k
becomes large. One simple solution to this problem is to
randomly sample a part of the huge neighborhood. However,
it is often the case that some regions in the solution space are
more promising than the others. Hence, random sampling is
a bit blind and might waste a lot of computational resource.
To summarize, although a large step-size local search can be
beneficial, it cannot be implemented by simply extending the
traditional move operators, and a more refined approach is
required. For this purpose, we developed the MS operator.

III. MERGE-SPLIT OPERATOR FOR LOCAL SEARCH

The MS operator aims to improve a given solution by mod-
ifying multiple routes of it. As indicated by its name (Merge-
Split), this operator is composed of two components, i.e.,
the Merge and Split. Given a solution, the Merge component
randomly selects p(p > 1) routes of it and, combines them
together to form an unordered list of task IDs, which contains
all the tasks of the selected routes. The Split component
directly operates on the unordered list generated by the Merge

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

TANG et al.: MEMETIC ALGORITHM WITH EXTENDED NEIGHBORHOOD SEARCH 1155

The current
solution S

New solution S’
Merge

Path
scanning

Ulusoy’s
splitting

procedure

Select
the best
solution

New solution 1

New solution 2

New solution 3

New solution 4

New solution 5

Ordered list 1

Ordered list 2

Ordered list 3

Ordered list 4

Ordered list 5

An unordered
list

Fig. 5. Merge-Split operator.

(1,8)

(2,9)

(3,10)

(4,11)
(5,12)

(6,13)

(7,14) depot

Merge Split

S = (0,1,2,3,4,5,6,7,0) Unordered list S’ = (0,5,11,10,0,9,8,14,13,0)

1(8)

2(9)

3(10)

4(11)
5(12)

7(14)

6(13)

depot

8(1)

9(2)
10(3)

11(4)
5(12)

13(6)

14(7)

Fig. 6. Demonstration of the Merge-Split operator.

component. First, the path scanning (PS) heuristic [5] is
applied. PS starts by initializing an empty path. At each
iteration, PS finds out the tasks that do not violate the capacity
constraints. If no task satisfies the constraints, it connects the
end of the current path to the depot with the shortest path
between them to form a route, and then initializes a new empty
path. If a unique task satisfies the constraints, PS connects that
task to the end of the current path (again, with the shortest
path between them). If multiple tasks satisfy the constraints,
the one closest to the end of the current path is chosen. If
multiple tasks not only satisfy the capacity constraints but are
also the closest to the end of the current path, five rules are
further adopted to determine which to choose: 1) maximize
the distance from the head of task to the depot; 2) minimize
the distance from the head of task to the depot; 3) maximize
the term dem(t)/sc(t), where dem(t) and sc(t) are demand
and serving cost of task t , respectively; 4) minimize the term
dem(t)/sc(t); 5) use rule 1) if the vehicle is less than half-
full, otherwise use rule 2). If multiple tasks still remain, ties
are broken arbitrarily. PS terminates when all the tasks in the
unordered list have been selected. Note that PS does not use
the five rules alternatively. Instead, it scans the unordered list
of tasks for five times. In each scan, only one rule is used.
Hence, PS will generate five ordered lists of tasks in total.
In the Split component, PS is followed by Ulusoy’s splitting
procedure [7]. In other words, Ulusoy’s splitting method is
applied to all the five ordered lists obtained by PS to further
improve them. Given an ordered list of tasks, Ulusoy’s splitting
procedure is an exact algorithm that seeks the optimal way

to split the ordered list into different routes. Since Ulusoy’s
splitting procedure is an exact algorithm and has been well
known for years, we omit its detailed steps in this paper.
Interested readers may refer to the original publication [7].

To summarize, the MS operator first merges multiple routes
to obtain an unordered list of tasks, and then employs PS to
sort the unordered list. After that, Ulusoy’s splitting procedure
is used to split the ordered lists into new routes in the optimal
way. Finally, we may obtain five new solutions of CARP by
embedding the new routes back into the original solution, and
the best one is chosen as the output of the MS operator. Fig. 5
demonstrates the whole process of MS operator.

One main advantage of the MS operator is its capability of
generating new solutions that are significantly different from
the current solution. As illustrated in Fig. 6, the MS opera-
tor generates a solution S′ = (0, 5, 11, 10, 0, 9, 8, 14, 13, 0)
based on the solution S = (0, 1, 2, 3, 4, 0, 5, 6, 7, 0). If using
traditional move operators, S′ may be achieved by applying
single insertion and double insertion consecutively, but cannot
be reached by applying any of the traditional move operators
only once. Hence, we may say that the MS operator has a
larger search step size than the traditional move operators. In
general, the larger the p (i.e., the number of routes involved
in MS), the more distant the new solution is from the current
solution. Another appealing property of the MS operator is
that it is likely to generate high-quality new solutions. This is
due to the adoption of PS and Ulusoy’s splitting procedure,
both of which are known to be capable of generating relatively
good solutions. The major drawback of the MS operator is its

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

1156 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

Input: A CARP instance, psize, opsize, ubtrial, Pls
Output: A feasible solution Sbf
// Initialization:
Set the current population pop = ∅;1
while |pop| < psize do2

Set the trial counter ntrial = 0;3
repeat4

Generate an initial solution Sinit ;5
ntrial ← ntrial + 1;6

until Sinit is not a clone of any solution S ∈ pop or ntrial = ubtrial;7
if Sinit is a clone of some S ∈ pop then8

break;9
end10
pop← pop ∪ Sinit ;11

end12
psi ze = |pop|;13
// Main Loop:
while stopping criterion is not met do14

Set an intermediate population popt = pop;15
for i = 1→ opsi ze do16

Randomly select two different solutions S1 and S2 as the parents from pop;17
Apply the crossover operator to S1 and S2 to generate Sx ;18
Sample a random number r from the uniform distribution between 0 and 1;19
if r < Pls then20

Apply local search to Sx to generate Sls ;21
if Sls is not a clone of any S ∈ popt then22

popt = popt ∪ Sls23
24 else if Sx is not a clone of any S ∈ popt then25

popt = popt ∪ Sx26
end27

28 else if Sx is not a clone of any S ∈ popt then29
popt = popt ∪ Sx30

end31
end32
Sort the solutions in popt using stochastic ranking;33
Set pop = {the best psize solutions in popt };34

end35
return the best feasible solution Sbf in pop;36

Fig. 7. Pseudocode of MAENS.

high computational complexity compared to traditional move
operators. Fortunately, such a drawback may be more or less
alleviated by a careful coordination of the MS operator and
other search operators. In the next section, we will propose
the MAENS, in which the MS and traditional move operators
are integrated to form the local search operator.

IV. MEMETIC ALGORITHM WITH EXTENDED

NEIGHBORHOOD SEARCH FOR CARP

In this section, we first briefly summarize MAENS. Then
the algorithmic details, including initialization, crossover, and
local search, will be described.

Like most other MAs, MAENS starts by initializing a
population of solutions. At each iteration, crossover and local
search are conducted to generate new candidate solutions,
i.e., the offspring population. Then, the parent population
and offspring population are combined and individuals are
sorted using stochastic ranking [28], which is commonly used
when applying EAs to constrained optimization problems.
Identical solutions, also called clones, are not allowed to
appear in a population simultaneously, in order to maintain
diversity of the population. This rule applies to both the initial
population and all intermediate populations during the search.
The Pseudocode of MAENS is provided in Fig. 7, where
psize is the population size, opsize is the number of offspring
generated in each generation, ubtrial is the maximum number

of trials allowed for generating a nonclone initial solution,
and Pls is the probability of carrying out local search on an
individual solution.

1) Initialization: During the initialization phase, the initial
population pop is set to empty first. Then nonclone individual
solutions are generated and inserted into pop one by one. The
initialization phase terminates when psize nonclone solutions
have been generated or no eligible solution has been generated
for ubtrial consecutive trials. In the latter case, psize is reset
to the number of solutions finally obtained. Lines 1 to 13 in
Fig. 7 demonstrate the initialization phase.

2) Crossover: At each iteration of MAENS, crossover is
implemented by applying the sequence based crossover (SBX)
operator to two parent individuals randomly selected from the
current population. Each pair of parent individuals leads to a
single offspring individual. Originally proposed for VRP [29],
SBX was designed to work on a sequence of vertex IDs.
However, similar to CARP, the aim of VRP is also to sort
the elements of the sequence in the optimal order and split
them into different groups. Hence, it actually does not matter
whether the elements (IDs) represent vertices or edges (arcs)
of a graph, and SBX can be applied to CARP with little
effort. Given two parent solutions S1 and S2, SBX randomly
selects two routes R1 and R2 from them, respectively. Then,
both R1 and R2 are further randomly split into two subroutes,
say R1 = (R11, R12) and R2 = (R21, R22). After that, a

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

TANG et al.: MEMETIC ALGORITHM WITH EXTENDED NEIGHBORHOOD SEARCH 1157

TABLE I

SUMMARY OF THE PARAMETERS OF MAENS

Name Description Value

psize Population size 30

ubtrial Maximum trials for generating initial solutions 50

opsize No. of offspring generated in each generation 6*psi ze

Pls Probability of carrying out local search (mutation) 0.2

p Number of routes involved in Merge-Split operator 2 (the first set of experiments)
2, 3, and 4 (the second set of experiments)

Gm Maximum number of generations 500

TABLE II

RESULTS ON THE gdb BENCHMARK TEST SET IN TERMS OF COSTS OF SOLUTIONS. “BEST” AND “AVERAGE” STAND FOR THE BEST

AND AVERAGE RESULTS OBTAINED FROM 30 INDEPENDENT RUNS. “NS” STANDS THE NUMBER OF SUCCESSFUL RUNS

Name |V | |E | LB CARPET VND LMA TSA2 MAENS TSAbest
Average Std NS Best

1 12 22 316 316 316 316 316 316.0 0.0 30 316 316
2 12 26 339 339 339 339 339 339.0 0.0 30 339 339
3 12 22 275 275 275 275 275 275.0 0.0 30 275 275
4 11 19 287 287 287 287 287 287.0 0.0 30 287 287
5 13 26 377 377 377 377 377 377.0 0.0 30 377 377
6 12 22 298 298 298 298 298 298.0 0.0 30 298 298
7 12 22 325 325 325 325 325 325.0 0.0 30 325 325
8 27 46 348 352 350 350 348 348. 7 1.0 20 348 348
9 27 51 303 317 315 303 303 303.0 0.0 29 303 303
10 12 25 275 275 275 275 275 275.0 0.0 30 275 275
11 22 45 395 395 395 395 395 395.0 0.0 30 395 395
12 13 23 458 458 458 458 458 458.0 0.0 30 458 458
13 10 28 536 544 544 536 540 536.0 0.0 30 536 536
14 7 21 100 100 100 100 100 100.0 0.0 30 100 100
15 7 21 58 58 58 58 58 58.0 0.0 30 58 58
16 8 28 127 127 127 127 127 127.0 0.0 30 127 127
17 8 28 91 91 91 91 91 91.0 0.0 30 91 91
18 9 36 164 164 164 164 164 164.0 0.0 30 164 164
19 8 11 55 55 55 55 55 55.0 0.0 30 55 55
20 11 22 121 121 121 121 121 121.0 0.0 30 121 121
21 11 33 156 156 156 156 156 156.0 0.0 30 156 156
22 11 44 200 200 200 200 200 200.0 0.0 30 200 200
23 11 55 233 235 235 233 235 233.0 0.0 30 233 233

Mean — — 253.8 255.0 254.8 253.9 254.0 253.8 — 29.5 253.8 253.8
No. best — — — 19 19 22 21 21 — — 23 23

APD — — — 0.35 0.30 0.03 0.07 0.01 — — 0.00 0.00

new route is obtained by replacing R12 with R22. Finally,
it is possible that some tasks appear more than once in the
new route, or some tasks in R1 are no longer served in
the new route. In the former case, the duplicated tasks are
removed from the new route. In the latter case, the missing
tasks are re-inserted into the new route. The re-insertions may
induce additional cost and violation of the capacity constraints.
Hence, each missing task is re-inserted into such a position
that re-insertion into any other position will not induce both
lower additional cost and smaller violation of the capacity
constraints. If multiple positions satisfy this condition, one of
them will be chosen arbitrarily.

3) Local Search: After generating the offspring population
using SBX, each offspring will be further improved by a local
search with probability Pls . In the previous section, we have
introduced some traditional move operators for local search,

and proposed the novel MS operator. Now, the question is,
how to make use of these operators to conduct local search
effectively. As mentioned before, traditional move operators
have small search step size, while the step size of the MS
operator is relatively large and generally increases with the
number of routes involved in it. Numerous previous papers
on EAs have shown that neither type of search operators is
universally the best. A small step-size operator may be easily
trapped in local optima, while a large step size might miss
the global optimum when the current solution is close to it.
Hence, a natural idea is to search in a small region around
the current solution first. When a local optimum is reached,
we extend the search step size, trying to jump out from it. If
successful, the step size will be reduced again to exploit the
new local region to the full extent. Following this idea, we
developed the local search procedure of MAENS as below.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

1158 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

TABLE III

RESULTS ON THE val BENCHMARK TEST SET IN TERMS OF COSTS OF SOLUTIONS. “BEST” AND “AVERAGE” STAND FOR THE BEST

AND AVERAGE RESULTS OBTAINED FROM 30 INDEPENDENT RUNS. “NS” STANDS THE NUMBER OF SUCCESSFUL RUNS

Name |V | |E | LB CARPET VND LMA TSA2 MAENS TSAbest
Average Std NS Best

1A 24 39 173 173 173 173 173 173.0 0.0 30 173 173
1B 24 39 173 173 173 173 173 173.0 0.0 30 173 173
1C 24 39 245 245 245 245 245 245.0 0.0 30 245 245
2A 24 34 227 227 227 227 227 227.0 0.0 30 227 227
2B 24 34 259 260 259 259 259 259.0 0.0 30 259 259
2C 24 34 457 494 457 457 457 457.2 1.1 29 457 457
3A 24 35 81 81 81 81 81 81.0 0.0 30 81 81
3B 24 35 87 87 87 87 87 87.0 0.0 30 87 87
3C 24 35 138 138 140 138 138 138.0 0.0 30 138 138
4A 41 69 400 400 400 400 400 400.0 0.0 30 400 400
4B 41 69 412 416 414 412 412 412.0 0.0 30 412 412
4C 41 69 428 453 428 428 428 431.1 3.1 14 428 428
4D 41 69 526 556 544 541 530 532.9 3.3 15 530 530
5A 34 65 423 423 423 423 423 423.0 0.0 30 423 423
5B 34 65 446 448 449 446 446 446.0 0.0 30 446 446
5C 34 65 473 476 474 474 474 474.0 0.0 30 474 474
5D 34 65 573 607 599 583 583 582.9 2.2 21 577 577
6A 31 50 223 223 223 223 223 223.0 0.0 30 223 223
6B 31 50 233 241 233 233 233 233.0 0.0 30 233 233
6C 31 50 317 329 325 317 317 317.0 0.0 30 317 317
7A 40 66 279 279 279 279 279 279.0 0.0 30 279 279
7B 40 66 283 283 283 283 283 283.0 0.0 30 283 283
7C 40 66 334 343 335 334 334 334.0 0.0 30 334 334
8A 30 63 386 386 386 386 386 386.0 0.0 30 386 386
8B 30 63 395 401 403 395 395 395.0 0.0 30 395 395
8C 30 63 518 533 543 527 529 525.9 1.7 29 521 521
9A 50 92 323 323 323 323 323 323.0 0.0 29 323 323
9B 50 92 326 329 326 326 326 326.0 0.0 30 326 326
9C 50 92 332 332 336 332 332 332.0 0.0 30 332 332
9D 50 92 385 409 399 391 391 391.0 0.0 30 391 391

10A 50 97 428 428 428 428 428 428.0 0.0 30 428 428
10B 50 97 436 436 436 436 436 436.0 0.0 29 436 436
10C 50 97 446 451 446 446 446 446.0 0.0 30 446 446
10D 50 97 525 544 538 530 530 533.6 1.5 0 531 528

Mean — — 343.2 350.8 347.5 345.2 344.9 345.1 — 27.8 344.5 344.4
No. best — — — 16 22 30 32 26 — — 33 34

APD — — — 1.60 0.82 0.27 0.22 0.26 — — 0.15 0.13

Given an offspring individual Sx generated by crossover,
three traditional move operators, i.e., the single insertion,
double insertion, and swap, are separately applied to the
individual to conduct a best improvement local search. That
is, for each move operator, all solutions that can be reached
by it from Sx are examined, and the current solution will
only be updated when a better solution has been found.
This procedure terminates when the current solution can no
longer be improved. By this means, we will obtain three new
solutions, and the best one will be chosen as the output of
this stage. Since this stage conducts exhaustive search within
the neighborhoods defined by the three operators, its output
is assured to be a local optimum. After that, the MS operator
is applied to this local optimal solution, forming the second
stage of local search. Assume that the current solution consists
of m routes and the MS operator works on p of them, where

p is the predefined parameter of the MS operator. Then, the
MS operator may at most generate C p

m different solutions.
This number can be really huge for a large m. Besides,
generating a single solution using MS is already much more
time consuming than the traditional move operators. Hence, it
might be prohibitive to enumerate all the C p

m possible solutions
when C p

m is too large. For this reason, we restrict the MS
operator to generating 100 solutions at most in this stage,
which is implemented by random sampling among the C p

m
possibilities (all the solutions will be enumerated if C p

m ≤
100). Again, this stage is a best improvement procedure. The
current solution will be updated only when the MS operator
has generated a better solution. If the MS operator manages
to find a better solution, we further apply the three traditional
move operators in exactly the same way as the first stage
to exploit the new local region. Otherwise, the second stage

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

TANG et al.: MEMETIC ALGORITHM WITH EXTENDED NEIGHBORHOOD SEARCH 1159

TABLE IV

RESULTS ON THE egl BENCHMARK TEST SET IN TERMS OF COSTS OF SOLUTIONS. “BEST” AND “AVERAGE” STAND FOR THE BEST

AND AVERAGE RESULTS OBTAINED FROM 30 INDEPENDENT RUNS. “NS” STANDS THE NUMBER OF SUCCESSFUL RUNS

Name |V | |R| |E | LB LMA TSA2 MAENS TSAbest
Average Std NS Best

E1-A 77 51 98 3548 3548 3548 3548.0 0.0 30 3548 3548
E1-B 77 51 98 4498 4498 4533 4516.5 17.6 13 4498 4498
E1-C 77 51 98 5566 5595 5595 5601.6 9.9 20 5595 5595
E2-A 77 72 98 5018 5018 5018 5018.0 0.0 30 5018 5018
E2-B 77 72 98 6305 6340 6343 6341.4 12.0 6 6317 6317
E2-C 77 72 98 8243 8415 8347 8355.7 35.9 22 8335 8335
E3-A 77 87 98 5898 5898 5902 5898.8 2.9 27 5898 5898
E3-B 77 87 98 7704 7822 7816 7802.9 27.3 23 7775* 7777
E3-C 77 87 98 10163 10433 10309 10321.9 18.0 11 10292* 10305
E4-A 77 98 98 6408 6461 6473 6475.2 10.3 1 6456 6456
E4-B 77 98 98 8884 9021 9063 9023.0 18.7 17 8998* 9000
E4-C 77 98 98 11427 11779 11627 11645.8 46.7 9 11561* 11601
S1-A 140 75 190 5018 5018 5072 5039.8 35.9 20 5018 5018
S1-B 140 75 190 6384 6435 6388 6433.4 8.6 1 6388 6388
S1-C 140 75 190 8493 8518 8535 8518.3 1.5 28 8518 8518
S2-A 140 147 190 9824 9995 10038 9959.2 34.6 28 9895* 9956
S2-B 140 147 190 12968 13174 13178 13231.6 63.2 7 13147* 13165
S2-C 140 147 190 16353 16795 16505 16509.8 51.8 16 16430* 16505
S3-A 140 159 190 10143 10296 10451 10312.7 26.5 6 10257* 10260
S3-B 140 159 190 13616 14053 13981 13876.6 67.8 29 13749* 13807
S3-C 140 159 190 17100 17297 17346 17305.8 41.4 7 17207* 17234
S4-A 140 190 190 12143 12442 12462 12419.2 33.2 24 12341 12341
S4-B 140 190 190 16093 16531 16490 16441.2 38.1 28 16337* 16442
S4-C 140 190 190 20375 20832 20733 20767.2 74.6 8 20538* 20591
Mean − − − 9673.8 9842.3 9823 9806.8 − 17.1 9756.8 9773.9

No. best − − − − 7 4 2 − − 24 12
APD − − − − 1.38 1.3 1.14 − − 0.70 0.84

terminates. This accomplishes the local search procedure of
MAENS.

In addition to the above descriptions, two issues of the local
search procedure still remain to be further elaborated. The first
one is how to choose the parameter p of the MS operator.
Generally speaking, p can be set to any integer larger than 1.
But recall that C p

m increases rapidly with p, thus the chance
of finding the best one among C p

m possibilities by random
sampling will decrease with p and eventually deteriorate
the performance of the operator. Besides, a larger step size
never guarantees a better solution. Therefore, we recommend
p = 2 as the default choice. As will be demonstrated by our
experimental results, p = 2 performs much better than other
values such as 3 and 4.

The final important issue that must be addressed is how to
evaluate a solution and determine whether it is better than the
current solution. In particular, since CARP is a constrained
optimization problem, it is inevitable that the search process
will encounter infeasible solutions. As stated at the beginning
of this section, in each generation of MAENS, the parent and
offspring populations are combined together after crossover
and local search. Then, the stochastic ranking [28] will be
applied to obtain the parent population for the next generation.
Let lower ranks indicate better individuals and stochastic
ranking sort individuals through a bubble-sort-like procedure.
Each pair of adjacent individuals is compared and their ranks

will be swapped if the individual with higher rank is better.
If the two compared individuals are both feasible, comparison
will be made solely according to the fitness. Otherwise, the two
individuals will be compared either according to their fitness
or according to their constraint violations, with a predefined
probability. Although the stochastic ranking can be readily
applied to the local search procedure, it is inappropriate to
do so due to the high computational cost involved. For each
individual, using the stochastic ranking in local search involves
a time complexity of O(2n2 Niter), where n is the number of
tasks and Niter is the number of iterations of the traditional
move operators. Given that n is typically larger than 50 for
most CARP instances studied in the literature, it may take
quite a long time to carry out the stochastic ranking for a
single individual at each iteration of the local search. Hence,
we resort to a much simpler method here. That is, evaluating
the quality of a solution by a weighted sum of the extent it
violates the constraints and its cost, as given in (5)

f (S) = TC(S)+ λ∗TV(S) (5)

where TC(S) is the total cost of S and TV(S) is the total
violation of it, which can be calculated by summing up the
violations of all routes in S. λ is a penalty parameter that
balances the tradeoff between cost and violation. The solution
with the smallest value of f (S) is considered as the best
solution obtained by local search. The use of (5) reduces the

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

1160 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

TABLE V

RESULTS ON SET C OF THE BENCHMARK SETS OF BEULLENS ET AL. IN TERMS OF COSTS OF SOLUTIONS. “BEST” AND “AVERAGE” STAND FOR THE

BEST AND AVERAGE RESULTS OBTAINED FROM 30 INDEPENDENT RUNS. “NS” STANDS THE NUMBER OF SUCCESSFUL RUNS

Name |V | |R| |E | LB GLS TSA2 MAENS TSAbest
Average Std NS Best

C1 69 79 98 1590 1660 1660 1707.0 23.9 5 1660 1660
C2 48 53 66 1095 1095 1095 1095.7 3.7 29 1095 1095
C3 46 51 64 875 925 925 927.8 3.9 18 925 925
C4 60 72 84 1285 1340 1340 1342.7 4.5 22 1340 1340
C5 56 65 79 2410 2475 2470 2522.3 30.0 4 2470 2470
C6 38 51 55 855 895 895 907.5 3.4 1 895 895
C7 54 52 70 1735 1795 1795 1795.0 0.0 30 1795 1795
C8 66 63 88 1640 1730 1730 1732.3 4.3 23 1730 1730
C9 76 97 117 1775 1825 1830 1852.8 21.5 7 1820 1820
C10 60 55 82 2190 2290 2270 2317.8 43.8 10 2270 2270
C11 83 94 118 1725 1815 1815 1853.7 34.1 7 1815 1815
C12 62 72 88 1510 1610 1610 1610.0 0.0 30 1610 1610
C13 40 52 60 1050 1110 1110 1122.0 21.4 17 1110 1110
C14 58 57 79 1620 1680 1680 1687.3 10.8 15 1680 1680
C15 97 107 140 1765 1860 1865 1896.5 16.3 2 1860 1860
C16 32 32 42 580 585 585 585.2 0.9 29 585 585
C17 43 42 56 1590 1610 1610 1618.3 17.8 24 1610 1610
C18 93 121 133 2315 2410 2415 2411.7 18.9 20 2390* 2410
C19 62 61 84 1345 1395 1400 1425.7 19.1 1 1395 1395
C20 45 53 64 665 665 665 668.5 6.7 21 665 665
C21 60 76 84 1705 1725 1725 1725.2 0.9 29 1725 1725
C22 56 43 76 1070 1070 1070 1070.0 0.0 30 1070 1070
C23 78 92 109 1620 1690 1700 1724.3 30.8 8 1690 1700
C24 77 84 115 1330 1360 1360 1368.5 6.2 7 1360 1360
C25 37 38 50 905 905 905 907.0 7.6 28 905 905

Mean — — — 1449.8 1500.8 1501.0 1515.0 — 16.7 1498.8 1500.0
No. best — — — — 21 20 3 — — 25 23

APD — — — — 3.30 3.32 4.19 — — 3.21 3.27

computational complexity to O(2nNiter) and thus alleviates
the computational cost involved in local search. As stated in
the constraint handling literature, determining an appropriate
value of λ is a nontrivial task [30]. Intuitively, since TV(S) is
usually much smaller than TC(S), normalization is required
to make the two terms within the same magnitude, so that
TV(S) will not be neglected. Furthermore, λ should decrease
with the total cost of the current solution while increase with
the total violation, so as to provide different biases to different
solutions. Based upon these considerations, we have designed
an adaptive λ for MAENS. When conducting local search
around solution S, λ is first initialized as

λ = TC(Sbest)

Q
∗

(
TC(Sbest)

TC(S)
+ TV(S)

Q
+ 1

)
(6)

where Sbest represents the best feasible solution found so far.
In (6), TC(Sbest)/Q functions as the normalization factor. The
term TC(Sbest)/TC(S) makes λ decrease with the total cost of
S, and the term TV(S)/Q makes λ increase with the constraint
violation of S. The term “1” is included to ensure a sufficiently
large λ in case S is a feasible solution with a very large
cost. During the local search procedure, λ is halved if feasible
solutions have been reached for five consecutive iterations and
is doubled if infeasible solutions have been reached for five
consecutive iterations.

V. EXPERIMENTAL STUDIES

To evaluate the efficacy of the MS operator and MAENS,
two sets of experiments have been carried out. In the first
set, we comprehensively compared MAENS to a number of
state-of-the-art algorithms. After that, the effect of the MS
operator was investigated. In particular, the performance of
MAENS was studied in four scenarios, that is, removing the
MS operator from MAENS and setting p to 2, 3, and 4.

A. Experimental Setup

All the experiments were carried out on four benchmark
test sets of CARP instances, referred to as the gdb set [31],
the val set [32], the egl set [33]–[35], and the Beullens et al.’s
sets [10]. The gdb set was generated by DeArmon in [31]
and consists of 23 instances. The val set was generated by
Benavent et al. in [32]. It contains 34 instances based on
10 different graphs. Different instances based on each graph
were generated by changing the capacity of the vehicles.
The egl set was generated by Eglese based on data from
a winter gritting application in placeLancashire [33]–[35]. It
consists of 24 instances based on two graphs, each with a
distinct set of required edges and capacity constraints. The
test set generated by Beullens et al. in [10] is based on the
intercity road network in Flanders. It further contains four

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

TANG et al.: MEMETIC ALGORITHM WITH EXTENDED NEIGHBORHOOD SEARCH 1161

TABLE VI

RESULTS ON SET D OF THE BENCHMARK SETS OF BEULLENS ET AL. IN TERMS OF COSTS OF SOLUTIONS. “BEST” AND “AVERAGE” STAND FOR THE

BEST AND AVERAGE RESULTS OBTAINED FROM 30 INDEPENDENT RUNS. “NS” STANDS THE NUMBER OF SUCCESSFUL RUNS

Name |V | |R| |E | LB GLS TSA2 MAENS TSAbest
Average Std NS Best

D1 69 79 98 725 725 740 745.0 0.0 0 745 740
D2 48 53 66 480 480 480 480.0 0.0 30 480 480
D3 46 51 64 415 415 415 415.2 0.9 29 415 415
D4 60 72 84 615 615 615 616.0 3.8 28 615 615
D5 56 65 79 1040 1040 1040 1040.0 0.0 30 1040 1040
D6 38 51 55 485 485 485 493.0 15.6 23 485 485
D7 54 52 70 735 835 835 847.3 17.7 13 835 835
D8 66 63 88 615 685 685 704.2 15.5 7 685 685
D9 76 97 117 680 680 680 680.0 0.0 30 680 680

D10 60 55 82 900 910 910 910.0 0.0 30 910 910
D11 83 94 118 920 930 960 935.2 6.2 4 920* 940
D12 62 72 88 680 680 680 680.0 0.0 30 680 680
D13 40 52 60 690 690 695 691.0 2.0 24 690 690
D14 58 57 79 920 930 940 931.0 3.1 27 930 930
D15 97 107 140 910 910 950 919.0 3.1 3 910 950
D16 32 32 42 170 170 170 170.0 0.0 30 170 170
D17 43 42 56 675 675 675 675.0 0.0 30 675 675
D18 93 121 133 930 930 930 934.2 8.7 23 930 930
D19 62 61 84 650 680 690 680.0 0.0 30 680 680
D20 45 53 64 415 415 415 415.2 0.9 29 415 415
D21 60 76 84 695 805 825 834.2 18.8 0 810 815
D22 56 43 76 690 690 690 690.0 0.0 30 690 690
D23 78 92 109 715 735 735 748.2 8.4 3 735 735
D24 77 84 115 620 670 670 683.5 19.3 18 670 670
D25 37 38 50 410 410 410 410.0 0.0 30 410 410
mean − − − 671.2 687.6 693.2 693.1 − 21.2 688.2 690.6

No. best − − − − 24 18 10 − − 23 21
APD − − − − 2.38 3.02 3.18 − − 2.48 2.74

subsets, namely the sets C , D, E , and F , each of which
contains 25 instances. Instances of sets D and F share the
same networks with instances of sets C and E, respectively,
but with a larger capacity of vehicles. In total, 181 instances
were used in our studies. Although MAENS can be directly
applied to the mixed CARP without any modification, all these
benchmark test sets are undirected CARP only, i.e., all the
tasks are edge tasks. It is well known that mixed CARP is more
challenging than undirected CARP. However, few (if any)
benchmark instances of mixed CARP are publicly available.
Hence, we had to restrict our experimental study to undirected
CARP.

Throughout the experiments, MAENS adopted the same
parameters. The algorithm was terminated when a predefined
number of generations were reached. Table I summarizes the
parameter settings of MAENS used in the experiments. All the
experiments were conducted for 30 independent runs, and the
best and average results obtained are reported in this paper.

B. Comparing MAENS to Existing Algorithms

We consider five existing algorithms in the comparative
study: including CARPET [8], VND [9], GLS [10], LMA [11],
and TSA2 [12]. Results of these algorithms are directly
obtained from the original publications. Despite the existence
of some other algorithms for CARP, it has been shown [12]

that the above algorithms are state of the art. For each CARP
instance we have studied (except for the instance 10D of the
val set), at least one of the five algorithms has been reported
to obtain the best known solution. Hence, comparison to these
algorithms would be sufficient for our evaluation. On the gdb
set and the val set, results of CARPET, VND, LMA, and TSA2
are available. LMA and TSA have been applied to the egl
set only. GLS and TSA have been compared on the Beullens
et al.’s sets. Tables II to VIII present the cost of the final
solutions obtained by the compared algorithms on all the 4 test
sets. A brief description of the contents in the tables is given
as below.

1) The columns headed |V |, |R|, and |E | indicate the
number of vertices, required edges, and total edges,
respectively. Since all edges are required to be served
in the gdb and val sets, the column |R| is omitted from
Tables II and III.

2) The columns headed LB give the lower bounds found
so far for the instances, which were collected from [10],
[12], [36]–[39].

3) For MAENS, the columns headed Average and Std
provide the average results and standard deviations cal-
culated over the 30 runs. The columns headed NS stand
for the number of successful runs of MAENS. Here,
for each instance, a run is considered to be successful

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

1162 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

TABLE VII

RESULTS ON SET E OF THE BENCHMARK SET OF BEULLENS ET AL. IN TERMS OF COSTS OF SOLUTIONS. “BEST” AND “AVERAGE” STAND FOR THE

BEST AND AVERAGE RESULTS OBTAINED FROM 30 INDEPENDENT RUNS. “NS” STANDS THE NUMBER OF SUCCESSFUL RUNS

Name |V | |R| |E | LB GLS TSA2 MAENS TSAbest
Average Std NS Best

E1 73 85 105 1855 1940 1935 1967.8 35.0 3 1935 1935
E2 58 58 81 1580 1610 1610 1615.5 14.2 24 1610 1610
E3 46 47 61 750 750 750 752.0 4.1 24 750 750
E4 70 77 99 1580 1610 1615 1684.3 21.1 2 1610 1615
E5 68 61 94 2130 2170 2160 2228.7 49.0 3 2160 2160
E6 49 43 66 670 670 670 670.0 0.0 30 670 670
E7 73 50 94 1780 1900 1900 1900.0 0.0 30 1900 1900
E8 74 59 98 2080 2150 2155 2150.5 1.5 27 2150 2150
E9 93 103 141 2160 2250 2300 2327.7 38.2 1 2235* 2295
E10 56 49 76 1690 1690 1690 1691.5 5.7 28 1690 1690
E11 80 94 113 1810 1850 1855 1932.0 44.5 2 1850 1840
E12 74 67 103 1580 1710 1730 1764.3 17.9 0 1710 1705
E13 49 52 73 1300 1325 1325 1335.3 22.2 24 1325 1325
E14 53 55 72 1780 1810 1810 1817.0 10.9 20 1810 1810
E15 85 107 126 1555 1610 1610 1617.8 13.0 12 1595* 1610
E16 60 54 80 1785 1825 1825 1825.0 0.0 30 1825 1825
E17 38 36 50 1290 1290 1290 1294.3 6.3 18 1290 1290
E18 78 88 110 1600 1610 1610 1612.3 6.3 26 1610 1610
E19 77 66 103 1400 1435 1435 1437.0 3.1 20 1435 1435
E20 56 63 80 950 990 990 990.0 0.0 30 990 990
E21 57 72 82 1700 1705 1705 1755.5 22.9 2 1705 1705
E22 54 44 73 1155 1185 1185 1187.5 6.3 25 1185 1185
E23 93 89 130 1395 1430 1445 1469.0 13.1 0.0 1435 1435
E24 97 86 142 1695 1785 1785 1822.2 26.3 6 1785 1785
E25 26 28 35 655 655 655 655.0 0.0 30 655 655

Mean — — — 1517.0 1558.2 1561.6 1580.1 — 16.7 1556.6 1559.2
No. best — — — — 19 18 5 — — 22 21

APD — — — — 2.51 2.69 3.77 — — 2.41 2.54

only if the obtained solution is not worse than the
solutions obtained by the compared algorithms. Finally,
the columns headed “best” present the cost of the best
solutions obtained among the 30 runs.

4) For TSA2, two types of solutions were reported in [12].
The columns headed TSA2 present the results obtained
by TSA2 using the same standard parameter settings for
all instances, while results given in the columns headed
TSAbest were obtained by fine-tuning the parameters of
TSA2 for each instance so as to get the best solutions.

5) For each table, three additional rows are included at
the bottom. The first row presents the average values
calculated for each algorithm over all the instances in
one test set. The average values of lower bounds were
also calculated for reference. The second row summa-
rizes the number of instances on which the algorithm has
achieved the best solution among the compared methods.
The third row calculates for each algorithm the average
percentage deviation (APD) from the lower bounds.

6) In all the tables, results are highlighted in bold for the
instances on which MAENS achieved the best solutions
among the compared methods. Results with “*” indicate
that MAENS has attained new best known solutions (i.e.,
never found before) for the corresponding instances.

7) In [10], results on Beullens et al.’s four test subsets were
reported in terms of the cost of deadheading only. Hence,
we present the results of MAENS in the same form in
Tables V–VIII.

The efficacy of MAENS can be evaluated from two per-
spectives, i.e., the best and the average performance it has
achieved in the 30 independent runs. Since MAENS is a
stochastic algorithm while most of the compared algorithms
(except LMA) are deterministic, it might be unfair to make
comparisons based on the best performance of MAENS. Nev-
ertheless, such comparison does provide some information on
MAENSs search capability. Considering the columns headed
“best,” it can be found that MAENS obtained the best solutions
on 175 out of 181 CARP instances, which is significantly
better than the compared algorithms. In particular, even after
fine-tuning the parameters for each instance, TSA2 performed
the best one on 152 instances, not to mention the remaining
algorithms. More importantly, MAENS managed to find new
best known solutions on 12 instances of the egl set and 4
instances of the benchmark sets of Beullens et al. In terms of
APD, MAENS outperformed the other algorithms on the egl
set and the sets C and E of Beullens et al. It also obtained
the lowest APD on the gdb set and the set F of Beullens
et al., while being only slightly inferior to the best algorithms

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

TANG et al.: MEMETIC ALGORITHM WITH EXTENDED NEIGHBORHOOD SEARCH 1163

TABLE VIII

RESULTS ON SET F OF THE BENCHMARK SETS OF BEULLENS ET AL. IN TERMS OF COSTS OF SOLUTIONS. “BEST” AND “AVERAGE” STAND FOR THE

BEST AND AVERAGE RESULTS OBTAINED FROM 30 INDEPENDENT RUNS. “NS” STANDS THE NUMBER OF SUCCESSFUL RUNS

Name |V | |R| |E | LB GLS TSA2 MAENS TSAbest
Average Std NS Best

F1 73 85 105 1065 1065 1085 1071.0 7.9 13 1065 1070
F2 58 58 81 920 920 920 920.0 0.0 30 920 920
F3 46 47 61 400 400 400 400.0 0.0 30 400 400
F4 70 77 99 930 940 960 963.5 8.4 1 940 945
F5 68 61 94 1180 1180 1180 1180.3 1.3 28 1180 1180
F6 49 43 66 490 490 490 490.0 0.0 30 490 490
F7 73 50 94 1080 1080 1080 1090.7 24.5 24 1080 1080
F8 74 59 98 1135 1145 1145 1145.0 0.0 30 1145 1145
F9 93 103 141 1145 1145 1170 1197.8 27.6 2 1145 1155
F10 56 49 76 1010 1010 1010 1010.0 0.0 30 1010 1010
F11 80 94 113 1015 1015 1015 1037.5 16.3 7 1015 1015
F12 74 67 103 900 910 910 939.5 33.0 11 910 910
F13 49 52 73 835 835 835 835.0 0.0 30 835 835
F14 53 55 72 1025 1025 1035 1065.5 14.4 3 1025 1035
F15 85 107 126 945 945 990 951.7 9.9 20 945 965
F16 60 54 80 775 775 775 775.0 0.0 30 775 775
F17 38 36 50 605 605 630 605.0 0.0 30 605 605
F18 78 88 110 835 850 850 861.2 23.3 18 850 850
F19 77 66 103 685 725 740 725.0 0.0 30 725 725
F20 56 63 80 610 610 610 614.8 0.9 1 610 610
F21 57 72 82 905 905 905 905.0 0.0 30 905 905
F22 54 44 73 790 790 790 790.0 0.0 30 790 790
F23 93 89 130 705 725 730 736.3 14.3 12 725 730
F24 97 86 142 975 975 1010 1001.3 17.1 4 975 1010
F25 26 28 35 430 430 430 430.0 0.0 30 430 430

Mean — — — 855.6 859.8 867.8 869.6 — 20.2 859.8 863.4
No. best — — — — 25 16 12 — — 25 18

APD — — — — 0.54 1.44 1.55 — — 0.54 0.91

TABLE IX

RUNTIME (IN CPU SECONDS) OF THE COMPARED ALGORITHMS ON THE TEST SETS (AVERAGED OVER 30 RUNS FOR MAENS)

Test set CARPET VND GLS LMA TSA2 MAENS

gdb 4.9 0.5 — 2.6 1.7 6.3
val 34.6 2.1 — 21.6 14.1 68.1
egl — — — 263.5 204.0 702.1

Set C of Beullens et al. — — 59.0 — 60.1 233.1
Set D of Beullens et al. — — 24.1 — 26.9 309.2
Set E of Beullens et al. — — 56.5 — 64.4 226.6
Set F of Beullens et al. — — 14.8 — 29.5 235.0

on the val set and the set D of Beullens et al. All of the
above observations are evidence that MAENS is capable of
achieving better solutions than the state-of-the-art algorithms
over a wide range of different test problem instances, although
such capability may not be guaranteed due to its stochastic
nature.

Instead of using the best performance, comparing MAENS
to other algorithms based upon its average performance might
be fairer. For a similar reason, it would be inappropriate to take
the results of TSAbest into account, because it tunes parameters
for individual instances. Therefore, only the standard TSA2
should be adopted. From the tables, one may find that the
average performance of MAENS is also very competitive.
MAENSs average results are comparable to the best solutions

in all cases. In fact, the average performance of MAENS
is still better than CARPET, VND, and LMA (as shown
in Tables II–IV). Furthermore, MAENS has always obtained
the best solutions for most instances from the gdb and val
sets. Since LMA is the only population-based (and the only
stochastic) algorithm among the five compared algorithms,
comparison between MAENS and LMA might be of particular
interest. Unfortunately, it is not clearly stated in [11] whether
the results reported were averaged over a number of indepen-
dent runs, or just the best ones obtained. Hence, a truly fair
comparison is difficult. Nevertheless, given the fact that the
average results of MAENS are better than the results reported
for LMA, we may conclude that MAENS is superior in terms
of solution quality. In addition to the quality of solutions, it is

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

1164 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

TABLE X

AVERGE APD OF MAENS ON THE BENCHMARK SETS WITH DIFFERENT VALUE OF “ p”

Test set Best of the 30 runs Average of the 30 runs
Without P = 2 for P = 3 for P = 4 for Without P = 2 for P = 3 for P = 4 for

MS MS MS MS MS MS MS MS
gdb 0.00 0.00 0.00 0.00 0.16 0.01 0.01 0.00
val 0.23 0.15 0.14 0.20 0.56 0.26 0.33 0.38
egl 1.51 0.70 0.77 0.82 2.53 1.14 1.20 1.35

Set C of Beullens et al. 3.39 3.21 3.27 3.38 5.45 4.19 4.27 4.53
Set D of Beullens et al. 2.54 2.48 2.62 2.75 4.04 3.18 3.61 3.83
Set E of Beullens et al. 2.94 2.41 2.62 2.71 5.15 3.77 3.82 4.12
Set F of Beullens et al. 0.71 0.54 0.65 0.79 2.49 1.55 1.82 2.08

natural to ask how stable MAENS is, i.e., how likely MAENS
would perform well. This issue can be evaluated by counting
the number of successful runs out of 30. Here, a run is regarded
as successful only when MAENS obtains a solution with the
lowest cost among all the compared algorithms. As shown in
the tables, the average number of successful runs of MAENS
is larger than 15 for all the benchmark test sets. In particular,
MAENS always obtained the best solution (i.e., succeed in
all the 30 runs) on 79 out of 181 instances. Such observation
more or less demonstrates the stability of MAENS.

However, MAENS suffers from a high computational cost
introduced by the MS operator. In Table IX, the average run-
times of each compared algorithm on the four test sets are pre-
sented. In our experiments, MAENS was coded in C language
and run using an Intel(R) Xeon(R) E5335 2.00 GHz. Since the
compared algorithms were implemented on different comput-
ers, normalization has been carried out to make fair compar-
isons on the runtimes. That is, all the runtimes presented in this
paper were obtained by dividing the runtimes in the original
publications by some factors. To be specific, CARPET and
VND were implemented on the Graphics Indigo2 (195 MHz);
therefore the runtimes presented in [8] and [9] were divided by
10. The results of GLS in [10] were obtained using a Pentium
II 500 MHz, and therefore we divided the runtimes there by 4.
LMA was implemented on a Pentium III 1 GHz [11] and the
TSA on a Pentium Mobile 1.4 GHz [12]. Hence, the runtimes
of LMA and TSA given in the corresponding papers have
been divided by 2 and 10/7, respectively. It should be noted
that the comparison between the CPU time is meant to be
indicative, because we do not have access to other information
that influences the computation time, such as the operating
systems, compilers, coding skills of the programmer, etc. From
Table IX, it can be found that MAENS is much more time
consuming than all the compared algorithms. We will address
this issue in our future work. Some potential ideas will be
discussed in the next section.

C. Further Analysis of the Effects and Settings of the Merge-
Split Operator

As mentioned before, four scenarios were considered in this
set of experiments. To investigate the contributions of the MS
operator to MAENS, we removed it from the algorithm while
keeping all the other parts unchanged. Besides, we also set the
parameter p of the MS operator to 3 and 4 to investigate how

it influences the performance of MAENS. The resultant three
algorithms were then run on all the instances for 30 times and
compared to the MAENS with p = 2. Table X summarizes
the results, where the best and average results obtained are
given. For the sake of brevity, only the average APD for each
benchmark set is given. The best results are highlighted in
bold. We may see clearly that MAENS performed the best
when p = 2, and its performance generally deteriorated with
the increase of p. On the other hand, though setting p to 3 or
4 led to inferior performance; they still outperformed the MA
without MS operator. For example, if we consider the average
performance, incorporation of MS operator with p = 3 and
4 both resulted in enhanced results on all benchmark sets. In
summary, experimental results show that the MS operator is
indeed crucial for our algorithm and p = 2 is a reasonably
good default choice if no prior knowledge suggests other
alternatives.

Finally, we can observe that incorporation of MS resulted
in the most significant improvement of MAENS on the egl
set, while it is not that obvious on the gdb and val sets.
Taking a closer look at the CARP instances, it can be found
that the egl set consists of quite a few challenging instances,
which have 190 edge tasks. On the other hand, instances of
the gdb and val sets contain no more than 100 edge tasks.
That means, instances of the egl set generally have larger
solution spaces. Therefore, the success of MAENS on the egl
set seems to validate our hypothesis that a large step-size local
search operator, such as the MS operator, would benefit those
problems with large solution space.

VI. CONCLUSION AND FUTURE WORK

In this paper, we investigated CARP within the framework
of MA. First, a novel local search operator, the MS operator,
was proposed. Unlike existing local search operators, which
only modify a small part of the candidate solutions, the MS
operator may result in significantly different solutions. Hence,
the MS operator is capable of searching using large step
size. For this reason, the MS operator is less likely to be
trapped in local optima. Second, we proposed the MAENS
algorithm. MAENS combines the advantages of both the
traditional and MS operators in its local search procedure so as
to attain a good tradeoff between exploitation and exploration.
Based upon our comprehensive experimental studies, two
main conclusions can be drawn. First of all, MAENS is

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

TANG et al.: MEMETIC ALGORITHM WITH EXTENDED NEIGHBORHOOD SEARCH 1165

capable of achieving better solutions than the state-of-the-
art algorithms. MAs are very promising approaches to CARP
and deserve more in-depth investigation. Second, removing
the MS operator from MAENS led to significant deterioration
of the quality of solutions, and thus the MS operator plays an
important role in the success of MAENS. The same conclusion
can also be drawn from the comparison between MAENS and
LMA, since LMA employs the same framework and traditional
local search operators as MAENS, but does not contain the MS
operator.

The importance of large search step size has been clearly
demonstrated for numerical optimization for a long time [40],
[41] and it is well acknowledged that a good combination
of large and small step sizes can lead to better solutions
to numerical optimization problems. The success of the MS
operator showed that similar insight also holds for combi-
natorial problems. It is worth noting that the MS operator
is not specifically proposed for MAENS, but is applicable
to ANY existing algorithms for CARP. Given a candidate
solution obtained by any existing algorithm, the MS operator
can be applied to it.

Although MAENS has shown excellent performance in our
experimental studies, it is by no means perfect. The main
disadvantage of MAENS, i.e., the high computational cost,
remains to be addressed in the future. To reduce the time com-
plexity of MAENS, one may consider a more refined scheme
of carrying out local search. It has been commonly stated in
the literature that not all individuals in the population deserve
a local search. Hence, heuristics can be included in MAENS
to apply local search to only those “promising” (e.g., low cost
and feasible) individuals. Another potential improvement to
MAENS might be to incorporate a time-variant parameter p.
To be specific, one may design a scheme to monitor the search
process of MAENS and decide which value of p to use based
upon the status of the current population. Such a scheme might
make MAENS converge faster to even better solutions.

REFERENCES

[1] H. Handa, D. Lin, L. Chapman, and X. Yao, “Robust solution of salting
route optimisation using evolutionary algorithms,” in Proc. IEEE Congr.
Evol. Comput. 2006, Vancouver, BC, Canada, pp. 3098–3105.

[2] H. Handa, L. Chapman, and X. Yao, “Robust route optimization for
gritting/salting trucks: A CERCIA experience,” IEEE Comput. Intell.
Mag., vol. 1, no. 1, pp. 6–9, Feb. 2006.

[3] M. Dror, Arc Routing, Theory, Solutions, and Applications. Boston, MA:
Kluwer, 2000.

[4] B. L. Golden and R. T. Wong, “Capacitated arc routing problems,”
Networks, vol. 11, no. 3, pp. 305–315, 1981.

[5] B. L. Golden, J. S. DeArmon, and E. K. Baker, “Computational
experiments with algorithms for a class of routing problems,” Comput.
Oper. Res., vol. 10, no. 1, pp. 47–59, 1983.

[6] H. I. Stern and M. Dror, “Routing electric meter readers,” Comput. Oper.
Res., vol. 6, no. 4, pp. 209–223, 1979.

[7] G. Ulusoy, “The fleet size and mix problem for capacitated arc routing,”
Eur. J. Oper. Res., vol. 22, no. 3, pp. 329–337, 1985.

[8] A. Hertz, G. Laporte, and M. Mittaz, “A tabu search heuristic for the
capacitated arc routing problem,” Oper. Res., vol. 48, no. 1, pp. 129–135,
2000.

[9] A. Hertz and M. Mittaz, “A variable neighborhood descent algorithm for
the undirected capacitated arc routing problem,” Transport. Sci., vol. 35,
no. 4, pp. 425–434, 2001.

[10] P. Beullens, L. Muyldermans, D. Cattrysse, and D. V. Oudheusden,
“A guided local search heuristic for the capacitated arc routing problem,”
Eur. J. Oper. Res., vol. 147, no. 3, pp. 629–643, 2003.

[11] P. Lacomme, C. Prins, and W. Ramdane-Cherif, “Competitive memetic
algorithms for arc routing problem,” Ann. Oper. Res., vol. 131, no. 1–4,
pp. 159–185, 2004.

[12] J. Brandao and R. Eglese, “A deterministic tabu search algorithm for
the capacitated arc routing problem,” Comput. Oper. Res., vol. 35, no. 4,
pp. 1112–1126, 2008.

[13] Y. Mei, K. Tang, and X. Yao, “A global repair operator for capacitated
arc routing problem,” IEEE Trans. Syst., Man, Cybern. B, Cybern.,
vol. 39, no. 3, pp. 723–734, Jun. 2009.

[14] E. Ozcan and E. Onbasioglu, “Memetic algorithms for parallel code
optimization,” Int. J. Parallel Programm., vol. 35, no. 1, pp. 33–61,
2006.

[15] M. Tang and X. Yao, “A memetic algorithm for VLSI floorplanning,”
IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 37, no. 1, pp. 62–69,
Feb. 2007.

[16] Z. Zhu, Y. S. Ong, and M. Dash, “Wrapper-filter feature selection
algorithm using a memetic framework,” IEEE Trans. Syst., Man, Cybern.
B, Cybern., vol. 37, no. 1, pp. 70–76, Feb. 2007.

[17] X. Yao, “Simulated annealing with extended neighbourhood,” Int. J.
Comput. Math., vol. 40, no. 3, pp. 169–189, 1991.

[18] E. W. Dijkstra, “A note on two problems in connection with graphs,”
Numer. Math., vol. 1, no. 1, pp. 269–271, 1959.

[19] P. Moscato, “On evolution, search, optimization, genetic algorithms and
martial arts: Toward memetic algorithms,” Caltech Concurrent Comput.
Program, CalTech, Pasadena, CA, Rep. 826, 1989.

[20] R. Dawkins, The Selfish Gene. Oxford, U.K.: Oxford Univ., 1989.
[21] K.-H. Liang, X. Yao, and C. Newton, “Evolutionary search of approxi-

mated N-dimensional landscapes,” Int. J. Knowledge-Based Intell. Eng.
Syst., vol. 4, no. 3, pp. 172–183, 2000.

[22] K. W. C. Ku, M. W. Mak, and W. C. Siu, “A study of the lamarckian
evolution of recurrent neural networks,” IEEE Trans. Evol. Comput.,
vol. 4, no. 1, pp. 31–42, Apr. 2000.

[23] Y. S. Ong and A. J. Keane, “Meta-lamarckian learning in memetic
algorithms,” IEEE Trans. Evol. Comput., vol. 8, no. 2, pp. 99–110,
Apr. 2004.

[24] N. K. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler, “Systematic
integration of parameterized local search into evolutionary algorithms,”
IEEE Trans. Evol. Comput., vol. 8, no. 2, pp. 137–155, Apr. 2004.

[25] M. Dror and L. Levy, “A vehicle routing improvement algorithm
comparison of a ‘greedy’ and a matching implementation for inventory
routing,” Comput. Oper. Res., vol. 13, no. 1, pp. 33–45, 1986.

[26] P. A. Mullaseril, M. Dror, and J. Leung, “Split-delivery routing heuristic
in livestock feed distribution,” J. Oper. Res. Soc., vol. 48, no. 2, pp. 107–
116, 1997.

[27] K.-H. Liang, X. Yao, C. S. Newton, and D. Hoffman, “A new evolu-
tionary approach to cutting stock problems with and without contiguity,”
Comput. Oper. Res., vol. 29, no. 12, pp. 1641–1659, 2002.

[28] T. P. Runarsson and X. Yao, “Stochastic ranking for constrained
evolutionary optimization,” IEEE Trans. Evol. Comput., vol. 4, no. 3,
pp. 284–294, Sep. 2000.

[29] J. Y. Potvin and S. Bengio, “The vehicle routing problem with time
windows part II: Genetic search,” Informs J. Comput., vol. 8, no. 2,
pp. 165–172, 1996.

[30] C. A. C. Coello, “Theoretical and numerical constraint-handling tech-
niques used with evolutionary algorithms: A survey of the state of
the art,” Comput. Methods Appl. Mech. Eng., vol. 191, no. 11–12,
pp. 1245–1287, 2002.

[31] J. S. DeArmon, “A comparison of heuristics for the capacitated Chinese
postman problems,” M.S. thesis, Univ. Maryland, College Park, MD,
1981.

[32] E. Benavent, V. Campos, E. Corberan, and E. Mota, “The capacitated arc
routing problem. Lower bounds,” Networks, vol. 22, no. 4, pp. 669–690,
1992.

[33] R. W. Eglese, “Routing winter gritting vehicles,” Discrete Appl. Math.,
vol. 48, no. 3, pp. 231–244, 1994.

[34] R. W. Eglese and L. Y. O. Li, “A tabu search based heuristic for arc
routing with a capacity constraint and time deadline,” in Metaheuristics:
Theory and Applications, Boston, MA: Kluwer, 1996, pp. 633–650.

[35] L. Y. O. Li and R. W. Eglese, “An interactive algorithm for vehicle rout-
ing for winter-gritting,” J. Oper. Res. Soc., vol. 47, no. 2, pp. 217–228,
1996.

[36] J. M. Belenguer and E. Benavent, “A cutting plane algorithm for the
capacitated arc routing problem,” Comput. Oper. Res., vol. 30, no. 5,
pp. 705–728, 2003.

[37] D. Ahr, “Contributions to multiple postmen problems,” Ph.D. disserta-
tion, Rupercht-Karls-Univer., Heidelberg, Germany, 2004.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

1166 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 5, OCTOBER 2009

[38] R. Baldacci and V. Maniezzo, “Exact methods based on node-routing
formulations for undirected arc-routing problems,” Networks, vol. 47,
no. 1, pp. 52–60, 2006.

[39] H. Longo, D. A. M. Poggi, and E. Uchoa, “Solving capacitated arc
routing problems using a transformation to the CVRP,” Comput. Oper.
Res., vol. 33, no. 6, pp. 1823–1837, 2006.

[40] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Trans. Evol. Comput., vol. 3, no. 2, pp. 82–102, Jul. 1999.

[41] C. Y. Lee and X. Yao, “Evolutionary programming using the mutations
based on the Lévy probability distribution,” IEEE Trans. Evol. Comput.,
vol. 8, no. 1, pp. 1–13, Feb. 2004.

Ke Tang (S’05–M’07) received the B.Eng. de-
gree from the Huazhong University of Science and
Technology, Wuhan, China, in 2002 and the Ph.D.
degree from the School of Electrical and Elec-
tronic Engineering, Nanyang Technological Univer-
sity, Singapore, in 2007.

He is currently an Associate Professor with
the Nature Inspired Computation and Appli-
cations Laboratory, School of Computer Sci-
ence and Technology, University of Science
and Technology of China, Hefei, China. He is

the coauthor of more than 30 refereed publications. His major re-
search interests include machine learning, pattern analysis, evolution-
ary computation, data mining, metaheuristic algorithms, and real-world
applications.

Dr. Tang is an editorial board member of three international journals and
the Chair of IEEE Task Force on Large Scale Global Optimization.

Yi Mei (S’09) received the B.S. degree in mathemat-
ics from the Nature Inspired Computation and Appli-
cations Laboratory, School of Computer Science and
Technology, University of Science and Technology
of China, Hefei, in 2005, and is currently working
toward the Ph.D. degree.

His current research interests include memetic
algorithm, tabu search, and other metaheuristics for
solving arc routing problems.

Xin Yao (M’91–SM’96–F’03) received the B.Sc. de-
gree from the University of Science and Technology
of China (USTC), Hefei, China, in 1982, the M.Sc.
degree from the North China Institute of Computing
Technology, Beijing, China, in 1985, and the Ph.D.
degree from USTC in 1990.

From 1985 to 1990, he was an Associate Lecturer
and Lecturer with USTC, while working toward
the Ph.D. degree in simulated annealing and evo-
lutionary algorithms. In 1990, he was a Postdoc-
toral Fellow with the Computer Sciences Laboratory,

Australian National University, Canberra, Australia, where he continued
his work on simulated annealing and evolutionary algorithms. In 1991, he
was with the Knowledge-Based Systems Group, Commonwealth Scientific
and Industrial Research Organization, Division of Building, Construction
and Engineering, Melbourne, Australia, where he worked primarily on an
industrial project on automatic inspection of sewage pipes. In 1992, he
returned to Canberra to take up a lectureship in the School of Computer
Science, University College, University of New South Wales, Australian
Defense Force Academy, Sydney, Australia, where he was later promoted
to a Senior Lecturer and Associate Professor. Since April 1999, he has been
a Professor (Chair) of computer science in the University of Birmingham,
Birmingham, U.K. He is currently the Director of the Center of Excellence
for Research in Computational Intelligence and Applications, School of
Computer Science, University of Birmingham, Birmingham, U.K. and also a
Changjiang (Visiting) Chair Professor (Cheung Kong Scholar) with the Nature
Inspired Computation and Applications Laboratory, School of Computer
Science and Technology, USTC. He has given more than 50 invited keynote
and plenary speeches at conferences and workshops worldwide. He has
more than 300 referenced publications. His major research interests include
evolutionary artificial neural networks, automatic modularization of machine-
learning systems, evolutionary optimization, constraint-handling techniques,
computational time complexity of evolutionary algorithms, coevolution, iter-
ated prisoner’s dilemma, data mining, and real-world applications.

Dr. Yao was the Editor-in-Chief of the IEEE TRANSACTIONS ON EVOLU-
TIONARY COMPUTATION from 2003 to 2008, an Associate Editor or editorial
board member of 12 other journals, and the Editor of the World Scientific
Book Series on Advances in Natural Computation. He was the recipient
of the President’s Award for Outstanding Thesis by the Chinese Academy
of Sciences for his Ph.D. work on simulated annealing and evolutionary
algorithms in 1989. He was the recipient of the 2001 IEEE Donald G. Fink
Prize Paper Award for his work on evolutionary artificial neural networks.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on December 27, 2009 at 11:08 from IEEE Xplore. Restrictions apply.

