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ABSTRACT With the development of lean manufacturing and economic globalization, supply networks

increasingly become complex and large-scale, within which thousands of firms inter-depend with each

other. Due to these increasing inter-dependencies, disruption of a quite few critical suppliers, namely

bottleneck suppliers, can induce high loss to a supply network and evenmake the whole network dysfunction.

Identification of bottleneck suppliers is significantly important for supply network risk management. Thus,

in this article, a method based on a memetic algorithmwith local neighborhood search (MALNS) is proposed

to identify bottleneck suppliers in a two-stage supply network. Firstly, a model based on multipartite network

is designed to describe the product supply-demand relations between multiple manufacturers and suppliers,

which considers the different roles of manufacturer and supplier and differentiates the products that suppliers

supply. To assess the loss caused by supplier disruptions, two performance metrics of supply networks,

average product availability rate and manufacturer functioning rate, are presented. Then, a MALNS-based

method is proposed to identify bottleneck suppliers, i.e., suppliers whose disruption will decrease both

performance metrics most greatly. Finally, a case study based on a real automobile supply network is

presented to validate the applicability and effectiveness of the proposed method.

INDEX TERMS Supply network disruption, complex network theory, bottleneck supplier identification,

memetic algorithm.

I. INTRODUCTION

Supply networks are constructed when manufacturers rely

on suppliers to purchase products in order to accomplish the

final products [1]. Moreover, supply networks become more

and more complex and large-scale with the increasing devel-

opment of lean manufacturing and economic globalization.

Thousands of firms reciprocally depend on each other to form

a complex system [2].

In the same time, these inter-dependencies also make sup-

ply networks vulnerable. Due to these inter-dependencies,

disruption of a few critical suppliers can propagate through-

out the whole network and finally dysfunction the entire

system [3]–[7]. In 2011, Thailand flooding damaged several

hard disc suppliers, leading multiple computer manufacturers
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depending on them unable to continue production [8]. Around

the same year, Tohoku earthquake affected almost all major

automobile manufacturers globally, because several Japanese

suppliers were damaged severely in the earthquake [9].

In 2018, the main plant of an automobile supplier, Meridian

Magnesium, caught fire. This incidence also forced multi-

ple automobile manufacturers to stop production including

BMW, Mercedes-Benz, General Motors, Fiat Chrysler Auto-

mobiles and Ford Motor Co. [10]. In the meanwhile, there

were also man-made supply disruptions in supply networks.

In 2016, three German plants of Volkswagen halted their

production due to supply disruptions [3]. These halts were

caused by a legal dispute with a supplier which belongs to

the Prevent group. It turned out the Prevent Group as a whole

provided multiple critical products, such as gear boxes and

car seats textiles. A supply disruption caused by one of these

suppliers may be mitigated, but the combined disruption of
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these suppliers finally led to production halts. These real

cases demonstrate risks exposed to manufacturers. In such

a complex supply network with a large number of suppliers

and manufacturers, there is a category of critical suppliers,

namely bottleneck suppliers. Bottleneck suppliers refer to

suppliers whose disruption can inflict great loss to the per-

formance of entire supply network [11]. Due to the structural

positions in a supply network, namely how their business

relationships are linked with others, bottleneck suppliers act

as the ‘‘linchpin’’ of the supply network and the remov-

ing of them can destroy the entire network [5], [11]–[13].

In order to guarantee the operation of a supply network, it is

highly important to identify bottleneck suppliers. Identifica-

tion of bottleneck suppliers can give an accurate robustness

assessing of supply networks. By identifying these critical

suppliers, the worst-case supplier disruption scenario can be

determined. Since system robustness refers to its ability to

maintain the basic operation under disruptions, greater ability

to withstand the worst-case disruption certainly indicates

greater robustness. Besides, identification of these critical

suppliers may allow the redesign of supply networks and

development of specific risk mitigation policies in order

to enhance the robustness of supply networks. However,

because of the structural complexity of supply networks, it is

difficult to identify bottleneck suppliers.

Recently, complex network theory which has been applied

into many areas, provides a powerful tool to depict the struc-

tural complexity of supply networks. To identify bottleneck

suppliers, studies based on complex network theory were

proposed in the past decades. Most of them use network cen-

trality metrics to identify bottleneck suppliers, since network

centrality metrics indicate the position importance of a node

in the network [4], [12]–[14]. Based on complex network-

based modeling methods, a supply network can be abstracted

as a set of nodes (firms) and links connecting nodes (inter-

firm relations). Bottleneck suppliers are identified using net-

work centrality metrics. The most commonly used metric

is degree centrality, namely the number of edges attached

to a node [13], [14]. Such methods assume that disruption

of suppliers with higher centrality can inflict greater loss to

the entire supply network. In other words, the importance

to supply network performance is assigned to a supplier

before assessing the impact of its disruption. However, these

network centrality metrics can only provide a rough approx-

imation on how vital a supplier is to the performance of a

supply network. In many cases, these metrics are found not

correlatedwith the severity of network loss [15]. AsKim et al.

found in their study, disruption of suppliers with higher value

of degree centrality may not inflict greater damage to a supply

network [5]. On the contrary, the disruption of a supplier

with a small value of degree may dysfunction the whole

network. Besides, network centrality metrics only provide

the importance of a single supplier, it remains unclear how

useful these measures are in detecting which combinations

of multiple disrupted suppliers can inflict the greatest loss on

the performance of a supply network [16]. Since disruptive

events may damage multiple suppliers simultaneously. It is

necessary to consider the impact of simultaneous disruption

of multiple suppliers, when identifying bottleneck suppliers.

Thus, network centrality-based methods fail to provide an

accurate identification of bottleneck suppliers.

Based these previous works, this article proposes a

MALNS-based bottleneck supplier identification method.

Firstly, a supply network model based on multipartite net-

work is developed to describe product supply-demand rela-

tions between suppliers and manufacturers. Based on the

model, two metrics are proposed to measure the performance

decreasing of a supply network caused by supplier disrup-

tions. Then, a MALNS-based method is designed for bottle-

neck supplier identification. Finally, a case study based on

a real large-scale automobile supply network is presented.

The effectiveness of proposed performance metrics and bot-

tleneck supplier identification method are validated by com-

parative experiments.

The remainder of this article is listed as follows. The

related works are expounded in Section 2. Section 3 presents

multipartite supply network model and performance evalua-

tion. Section 4 shows the MALNS-based method for bottle-

neck supplier identification. Section 5 presents a case study

based on a real automobile supply network. Section 6 gives a

brief conclusion.

II. RELATED WORKS

A. SUPPLY NETWORK MODELS AND PERFORMANCE

METRICS BASED ON COMPLEX NETWORK

Complex network theory provides a powerful tool to concep-

tualize supply networks. Using the complex network mod-

eling methods, a supply network can be described as a set

of nodes and links connecting nodes to denote firms and

inter-firm relations respectively [17], [18]. Such configura-

tion facilitates the analysis of supply network performance

facing disruption.

Attempting to investigate the tolerance of supply networks

to hypothetical supplier disruptions, various complex

network-based supply network models and correspond-

ing performance metrics are also proposed [19]–[22]. Yet,

to facilitate the analysis, most of these studies describe supply

networks as unipartite networks. These studies assume that a

supply network is homogeneous. The different roles of firms

and various types of inter-firm relations are neglected, which

is extremely unrealistic and limits the analysis of supply

networks [23]. Due to the unipartite network modeling, these

studies have to adopt standard unipartite network topological

metrics to measure the performance of a supply network

facing disruptions, like average path length in the largest

connected component (LCC) or size of the largest connected

component (SLCC) [19], [20], [23]. A few researches con-

sider the different roles of firms when modeling supply

networks. Zhao et al. propose a supply network model

composed by two types of nodes, namely demanders and

suppliers [24]–[26]. Based on the model, they also propose

a performance metric, supply availability rate, namely the
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proportion of demanders having access to suppliers. How-

ever, Zhao’s studies merely consider the different roles of

demander and supplier, they still treat suppliers to be equiv-

alent. In a supply network, suppliers can be differentiated by

the products they supplying. Some suppliers supply general

products, which are provided by many suppliers. Some sup-

pliers provide rare products, which are supplied by a very few

suppliers. Compared with disruption of suppliers supplying

general products, disruption of suppliers supplying rare prod-

ucts may inflict greater damage to the system [21], [27]. The

model without differentiating the products that suppliers sup-

plying will not reflect the importance of suppliers supplying

rare products, although disruption of such suppliers would

halt the production of manufacturers.

In summary, these previous works proposed a lot of com-

plex network-based supply network models and correspond-

ing performance metrics. However, most studies are limited

to model supply networks as unipartite networks, others only

consider the different role of firms. These simplifications

limit the analysis of supply network. Thus, this study con-

tributes to propose a supply network model, which considers

the different roles of manufacturer and supplier and differen-

tiates the products suppliers supplying. Based on the model,

two performance metrics are also proposed to measure the

loss of whole supply network caused by supplier disruptions.

B. BOTTLENECK SUPPLIER IDENTIFICATION USING

NETWORK CENTRALITY METRICS

Recent supplier-caused supply network disruption events,

such as Thailand floods and Tohoko earthquake, bring to

the forefront the issue of detecting a type of hidden yet

critical suppliers that may exist deep in a supply network [28].

Unlike traditional strategic suppliers [29], such critical sup-

pliers may not provide any critical product or technology.

The operation of a supply network depends on such critical

suppliers because of their structural position in the network,

namely how they are linked with other firms by business

relations. Such critical suppliers gained a lot of attention in

the past decades. Mizgier et al. define such critical suppliers

as bottleneck suppliers [11]. While Yan et al. name such

critical suppliers as nexus suppliers [12], [13]. In this study,

we adopt the definition of bottleneck supplier proposed by

Mizgier et al..

To identify bottleneck suppliers, many researches have

been proposed [17], [28], [30]–[33]. Craighead et al. describe

a supply network as a set of nodes and edges connecting

nodes [14]. Based on the network model, they present the

proposition that the severity of a supplier disruption is pos-

itively related to the suppliers’ structural centrality, such as

degree centrality. That is to say, an unplanned event disrupting

one or more suppliers occupying central positions in a supply

network would cause greater loss than the disruption of less

central suppliers in the supply network. This proposition

attracts a lot of attentions from supply chain managers and

researchers. And some researchers also find that disruption

of suppliers occupying a more central position may not inflict

greater damage to a supply network. Mizgier et al. also

model a supply network using a weighted directed network,

where nodes present firms and edge weight denote purchas-

ing volumes [11]. Then, common used network centrality

measures, such as degree centrality and betweenness central-

ity are discussed in the context of supply networks. Based

on these centrality metrics, they propose a methodology

for identifying bottleneck suppliers, i.e., suppliers that can

induce high losses owing to disruptions in a supply network.

However, the effectiveness of their method is verified using

a simplistic and stylized supply network model which is

composed by only six nodes. Ledwoch et al. also introduce

network centrality metrics to identify risky suppliers [34].

For example, closeness centrality can be used to identify the

suppliers whose disruption will make the cascading failure

to progress the quickest. Betweenness centrality can be used

to identify the highest risk suppliers among intermediaries.

Yan et al. conceptualize the definition of nexus supplier [13].

According to the research of Yan et al., nexus suppliers

can affect the performance of a supply network because

they take central positions in the supply network. Although

Yan et al. introduce the concept of nexus supplier, their study

is mainly from theoretic point of view. Based on the research

of Yan et al., Shao et al. propose a data-analytics framework

for identifying nexus suppliers through a comprehensive use

of multiple centrality measures [12]. However, the issues of

how nexus suppliers may impact the performance of a supply

network is still not explored in their study. They fail to explore

questions like whether the identified nexus suppliers are more

vital to the performance of a supply network.

Indeed, these previous works contribute a lot to identify

bottleneck suppliers using standard network centrality met-

rics or a comprehension of these metrics. However, these net-

work centrality metrics can only provide an approximation on

how vital a supplier is to the performance of a supply network.

Besides, most of these studies are from theoretic point of view

or are limited by using simple and theoretical supply network

model to validate their methods. There lacks studies using

real industrial cases to validate the effectiveness of proposed

bottleneck supplier identification methods. In the meanwhile,

some scholars doubt whether these network centrality metrics

can effectively identify bottleneck suppliers [5], [33]. Thus,

this study proposes a novel method to identify bottleneck

suppliers. Unlike traditional network centrality-based meth-

ods, our method does not use metrics to approximate the

importance of suppliers. In the proposed method, a MALNS

is designed to identify bottleneck suppliers in a two-stage

supply network. In addition, based on an empirical automo-

bile supply network, the effectiveness of proposed bottleneck

suppliers identification method is validated.

III. MULTIPARTITE SUPPLY NETWORK MODEL AND

PERFORMANCE METRICS

A. MULTIPARTITE SUPPLY NETWORK MODEL

Fig. 1(a) presents a two-stage supply network, where man-

ufacturers purchase products from suppliers in order to
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FIGURE 1. Illustration of multipartite supply network modeling.
(a) Product supply-demand relations between manufacturers and
suppliers. (b) Multipartite supply network model.

produce their own products. This is a general topology con-

cerned inmany previous researches [27], [35]. To describe the

product supply-demand relations between manufacturers and

suppliers, multipartite network is used to model this supply

network. Multipartite network or multipartite graph is an

important part of complex networks, which is characterized

by the existing of different types of nodes and edges only exist

between different types of nodes [36].

As shown in Fig. 1(b), these product supply-demand rela-

tions between manufacturers and suppliers are modeled as

a directed multipartite network G = {M , P, S, EPM , ESP},

where theM , P and S are three disjoint and independent node

sets, EPM and ESP are edge sets, representing directed edges

between nodes in P andM and directed edges between nodes

in S and P respectively.

M = {m1,m2, . . . ,mNM} represents manufacturers, where

NM refers to the number of manufacturer nodes in the net-

work. P = P(m1)∪ P(m2) ∪ P(m3), . . . ,∪P(mNM ) denotes

products, where P(mj) = {p
i
j|i = 1, 2, . . . , |P(mj)|} repre-

sents products demanded bymanufacturermj, |P(mj)| denotes

the total number of products demand by manufacturer mj.

S = {s1, s2,. . . , sNS} represents suppliers, where NS is the

number of supplier nodes in the network.

EPM and ESP are edge sets. EPM = {(pij, mj)|i =

1, 2, . . . , |P(mj)|; j = 1, 2, . . . ,NM} represents the demand-

ing relations between products and manufacturers, where (pij,

mj) refers to a directed edge from pij to mj, representing that

manufacturer mj demands product pij. E
SP = {(sk , p

i
j)|k =

1, 2, . . . ,NS ; j = 1, 2, . . . ,NM ; i = 1, 2, . . . , |P(mj)|}

represents the supplying relations between products and sup-

pliers, where (sk , p
i
j) refers to a directed edge from sk to pij,

representing that supplier sk supplies product p
i
j to manufac-

turer mj. In this study, only product supply-demand relations

between manufacturers and suppliers are concerned. Thus,

edges only exist between nodes in M and P and between

nodes in P and S.

B. PERFORMANCE METRICS

Bottleneck supplier identification refers to identifying sup-

pliers whose disruption will cause the greatest loss of the

supply network performance. Thus, it is necessary to propose

proper supply network performance metrics for evaluating

the loss caused by supplier disruptions. In a supply network,

the performance metrics should be able to show whether

entities in the network can get necessary supplies to main-

tain normal operations. The inability to deliver products or

materials to those who need them is a failure, which will

decrease the performance of the supply network [37]. Based

on this consideration, Zhao et al. propose supply availability

rate which is the percentage of demanders that have access to

suppliers in the network [24]–[26]. The expression of supply

availability rate is presented as (1).

A =
|AM |

NM
(1)

AM = {sk ∈ S|∃mj : ∃pmj,sk} (2)

where AM represents the set of manufacturer nodes that have

access to supplier nodes in the network, where pmj,sk denotes

a path between nodes mj and sk . Consequently, the supply

availability for a supply network network is defined as the

ratio between the cardinalities of sets AM andM .

As shown in (1), supply availability rate treats all suppliers

to be equivalent, neglecting that suppliers can supply different

types of products. Such simplification is unrealistic. In many

real cases, the reasonwhymanufacturers halt their production

is the product supply shortage. For example, in 2011 Thai-

land flooding, the production of computer manufacturer was

halted due to supply shortage of hard disc. Using supply avail-

ability rate to measure the performance of supply networks

will not reflect such point. Thus, based on the definition of

supply availability rate, two performance metrics, average

product availability rate and manufacturer functioning rate

are proposed.

Firstly, the definition of product availability rate Rj is

introduced. In a supply network represented byG = {M ,P, S,

EPM , ESP}, manufacturers and suppliers play quite different

roles. A manufacturer cannot perform its production duty for

long without the supply of all necessary product from its

suppliers. Thus, the product availability rate Rj of a given

manufacturer mj is defined as the proportion of its necessary

products having access to suppliers, shown in (3).

Rj =

|P(mj)|
∑

i=1

ε(|ϕ(pij)|)

∣

∣P(mj)
∣

∣

(3)
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where |P(mj)| is the number of product nodes connected with

mj, representing the total number of necessary products for it.

pij is the ith product node connected to mj. |ϕ(p
i
j)| represents

the number of supplier nodes connected with pij. ε is unit

step function, when |ϕ(pij)| > 0, ε(|ϕ(pij)|) = 1, otherwise,

ε(|ϕ(pij)|) = 0.

Then, according to product availability rate Rj, the follow-

ing two performance metrics are introduced.

Average product availability rate RA. When some suppli-

ers are disrupted in a supply network, part manufacturers

will lose supplies of necessary products, others may not

be affected. To evaluate the damage to the entire network

caused by the supplier disruptions, it necessary to consider the

average level of manufacturers’ availability of their necessary

products. Thus, based on product availability rate Rj, average

product availability rate of network G is defined by (4).

RA(G) =
1

NM

NM
∑

j

Rj (4)

whereNM is the total number of manufacturers in the network

G, Rj is the product availability rate of manufacturer mj,.

Then, manufacturers functioning rate RF is also intro-

duced. The average product availability rate RA can reflect

the system performance, but it still has some limitations.

Fig. 2 describes two supplier disruption scenarios of the

same supply network. In Fig. 2(a), supplier s1 is disrupted.

In Fig. 2(b), supplier s2 is disrupted. In this study, the disrup-

tion of a supplier is considered to loss all production ability

and the recovery of it is neglected. Thus, the disruption of a

FIGURE 2. Performance evaluation of a multipartite supply network
facing supplier disruptions. (a) Supplier disruption scenario 1.
(b) Supplier disruption scenario 2.

supplier node is modeled as removing it from the network.

In addition, the adaptive behaviors of manufacturers, such

as purchasing product from alternative suppliers, are also

neglected. Such modeling method is used in many previous

studies [20], [24], [25]. As presented in Fig. 2(a) and (b),

the network after disrupting s1 and after disrupting s2 have

the same average product availability rate. However, the pro-

portions of manufacturers having access to all necessary

products to produce their own products are quite different.

In Fig. 2(a), the disruption of s1 only leads to manufacturer

m1 losing product supply. While in Fig. 2(b), the disruption

of s2 leads both m1 and m2 losing product supply. Thus,

compared with s1, disruption of supplier s2 inflicts greater

damage to the entire supply network. Because disruption

of s1 only affects one manufacturer, while disruption of s2
can affect two manufacturers. Only considering the average

product availability rate, such difference will not be reflected.

Therefore, to evaluate the supply network performance more

comprehensively, the definition of manufacturer functioning

rate is also proposed. Manufacturer functioning rate refers to

the proportion of manufacturers having access to all neces-

sary products to perform production duty in a supply network.

Thus, the manufacturer functioning rate of network G is

presented by (5).

RF (G) =
1

NM

NM
∑

j

δ(1− Rj) (5)

whereNM is the total number of manufacturers in the network

G, Rj is the product availability rate of manufacturer mj,δ(.)

is unit impulse function, when 1-Rj = 0, δ(1 − Rj) = 1,

otherwise, δ(1− Rj) = 0.

IV. MEMETIC ALGORITHM WITH LOCAL

NEIGHBORHOOD SEARCH FOR BOTTLENECK

SUPPLIER IDENTIFICATION

In this section, MALNS-based bottleneck supplier identifi-

cation method is presented. Firstly, the problem of bottle-

neck supplier identification is described. Then, MALNS is

proposed.

A. PROBLEM DESCRIPTION

Bottleneck supplier identification refers to finding a sin-

gle supplier or a group of suppliers whose disruption will

cause the maximum deterioration of the network perfor-

mances [11]. In this study, a multipartite network model G =

{M , P, S, EPM , ESP} is used to describe a two-stage supply

network. Based on the model, two performance metrics, aver-

age product availability rate RA andmanufacturer functioning

rate RF are proposed. Thus, bottleneck supplier identification

in the two-stage supply network presented in this study refers

to finding a limited subset of supplier nodes I whose dis-

ruption will decrease both RA and RF most greatly. This is a

typical optimization problem. In this study, the disruption of a

supplier is modeled as the removing of it. Thus, the bottleneck
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supplier identification problem is described as below:

maxI H (I ) (6)

s.t. |I | = K (7)

H (I ) = α[RA(G)− RA(G/I )]+ (1− α)[RF (G)

−RF (G/I )] (8)

where I ⊆ S represents any subset suppliers. |I | represents

the number of suppliers in I . K is a predefined integer.

Constrain (7) denotes the number of identified bottleneck

suppliers should be equal to the predefined integer K . G/I

refers to the residual part of G after removing supplier sub-

set I . RA(G/I ) represents the average product availability

rate of G/I .RF (G/I ) denotes manufacturer functioning rate

of G/I .α ∈ [0, 1] is a weighting parameter. If 0 ≤ α < 0.5,

the average product availability rate RA is treated to be more

important. If 0.5 < α ≤ 1, the manufacturer functioning rate

RF is treated to be more important. In this study, the two per-

formance metrics are treated to be equally important. Thus,

the value of α is set to be 0.5.

B. MEMETIC ALGORITHM WITH LOCAL

NEIGHBORHOOD SEARCH

Generally speaking, to solve the bottleneck supplier identi-

fication problem, these are two categories of methods: exact

algorithms and evolutionary algorithms. Theoretically, exact

algorithms can guarantee the optimality of solutions. How-

ever, the exact algorithm is time consuming, it may not

suitable for large-scale networks. Meanwhile, evolutionary

algorithms provide an alternative, since it can find approxi-

mate solutions of high-quality within a acceptable time. For

example, when identifyingK bottleneck suppliers in a supply

network composed by NS suppliers, there will be CKNS pos-

sible solutions. Modern supply networks can be large-scale,

which can contain thousands of suppliers. Thus, we adopt

evolutionary algorithm to solve the bottleneck identification

problem.

Memetic algorithm (MA) represents a type of evolu-

tionary algorithms, which is optimized using a neighbor-

hood search-based improvement procedure within a classical

genetic algorithm framework [38]–[41]. Considering the out

performance of MA in many other fields, this study proposes

a MA improved by a local neighborhood searching proce-

dure, which is named as MALNS, to identify the bottleneck

suppliers. The proposed MALNS is composed of five main

procedures: Initialization, parent individual selection, off-

spring individual generation, local neighborhood search and

population update. The flowchart of algorithm is presented

in Fig. 3.

1) INDIVIDUAL CODING AND EVALUATION

In the proposed MALNS, each possible bottleneck supplier

subset is represented by an individual. And a set of individuals

is defined as a population. The population is represented

by POP = {I1, I2, .., Ipop_size}, where Ii is the ith individ-

ual in POP and pop_size is the number of individuals in

FIGURE 3. Flowchart of the proposed MALNS.

the population. Classical individual coding methods include

binary and string coding et al.. This article adopts string

coding method. Thus, the ith individual in the population can

be presented by Ii = [Ii(1), Ii(2), . . ., Ii(K )], where Ii(j) is the

jth gene of individual Ii, representing the number of a supplier

node inG,K is the predefined number of identified bottleneck

suppliers. Fig. 4 illustrates the string-based individual coding

method.

In terms of bottleneck supplier identification, each individ-

ual represents a subset of bottleneck suppliers. Operations are

performed to search for the optimal bottleneck supplier subset

whose disruption will decrease both performance evaluation

metrics RA and RF most greatly. Thus, each individual will be

evaluated using a fitness value, those individuals with bigger

fitness values are considered to be better ones. The fitness

value of individual Ii is defined using (8).

2) INITIALIZATION

The initialization of a population is greatly significant, since

it will affect not only the accuracy but also the convergence

148832 VOLUME 8, 2020
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FIGURE 4. Illustration of string-based individual coding.

speed of algorithms. To start with a high-quality popula-

tion, a local neighborhood search-based individual generation

procedure is introduced. First, an individual is generated

randomly. Then, it is improved by the local neighborhood

search procedure described in Section 4.2.5. The improved

individual will be put into the population, if it is different from

individuals already existing in the population. Otherwise,

it will be modified by a random swapping procedure until

it is different from all existing individuals. Then, the mod-

ified individual will be inserted into the population. The

individual generation procedure will be repeated by pop_size

times to get the initial population. The procedure is shown

in Algorithm 1.

Algorithm 1 Population Initialization

Input: G = {M ,P, S,EPM ,ESP}, K, N_improvement and

pop_size

Output; POP = {I1, I2, . . . , IPOP_size}

POP = ∅;

while size (POP) < pop_size do

I = selecting K suppliers form S randomly;

// improve individual I using local neighborhood

search

I ← Local neighborhood search(I, G,

Nimprovement ,);

If I ∩ POP == ∅ do

POP = POP ∪ I ;

else

while I ∩ POP 6= ∅ do

Modify / by swapping u ∈ I with

v ∈ S/l randomly;

endwhile

POP = POP ∪ I ;

endif

endwhile

Return POP;

3) ROULETTE-BASED PARENT INDIVIDUAL SELECTION

Traditional parent individuals selection methods include ran-

dom selection method, tournament selection method, roulette

selection method and so on. To keep the good properties from

elite individuals, roulette selection method is adopted in this

study.

4) BACKBONE CROSSOVER-BASED OFFSPRING

INDIVIDUAL GENERATION

Crossover is a critically important procedure, it defines the

way that parent individuals transmit properties to the off-

spring individuals. An effective crossover operation should be

capable to transmit good properties from parent individuals to

offspring individuals. Thus, to preserve the good properties of

parent individuals, the backbone crossover is adopted in this

study to generate high-quality offspring individuals [42]. The

procedure is shown is Fig. 5.

FIGURE 5. Backbone crossover-based offspring individual generation.

Assuming Father and Mother are two parent individuals

selected from the populationPOP, the generation of offspring

individual I0 is listed as below:

Firstly, a partial individual I0’ is generated by inheriting all

common genes of Father andMother, I ′0 = Father ∪Mother .

The size of I0’ is defined as |I0’|.

Then, randomly select K - |I0’| genes form the set

(Father∪Mother) \ (Father∩Mother), and add these

selected genes into the I0’ to generate an offspring individ-

ual I0.

5) LOCAL NEIGHBORHOOD SEARCH

Neighborhood search is an operation to improve the quality

of an offspring individual by modifying part of it. To ensure

a fast and effective improvement of an offspring individual,

a local neighborhood search is proposed. The local neighbor-

hood search is presented in Algorithm 2, which contains two

parts: vulnerability-based local neighborhood determination

and a two-stage exchanging procedure. Fig. 6 presents an

example to illustrate the proposed local neighborhood search.

a: VULNERABILITY-BASED LOCAL NEIGHBORHOOD

DETERMINATION

When a product node losing all supply links, themanufacturer

connected with it will not be able to perform its production

duty and product availability rate of it will also decrease.

So it is reasonable to assume product nodes with less supply

links are more vulnerable and the disruption of supplier nodes

intensively connected with vulnerable product nodes may
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Algorithm 2 Local Neighborhood Search

Input; G = {M ,P, S,EPM ,ESP}, I0 and N_improvement

Output: I0
for i = 0, 1, 2, 3 . . . ,N_improvement do

//Vulnerability-based local neighborhood

determination

Determine the vulnerable product nodes in G/I0;

Search for the supplier node S_add ;

// two-stage exchanging procedure

I∗0 ← I0 ∪ {S_add };

S_remove← argminw∈I0{f (I
∗
0 )− f (I

∗
0 \{w})};

I0← I∗0 \{S_remove};

endfor

Return I0;

FIGURE 6. Illustration of local neighbor search-based offspring individual
improvement. (a) Vulnerability-based local neighborhood determination.
(b) Two phase nodes exchange method.

inflict a larger damage. Thus, when exchanging a supplier

node u ∈ I0 with a supplier node v ∈ S\ I0 to improve the

quality of I0, it is preferable to select v having more connec-

tions with vulnerable product nodes, namely less connected

product nodes. Based on this consideration, a vulnerability-

based local neighborhood determination method is designed.

(a) Calculate the in-degree of all product nodes in G(S/I0),

namely the number of supply connections. Then, determine

the vulnerability threshold of product nodes using roulette

selection. The procedures are listed as below: Firstly, sum-

marize all possible values of the in-degree of product nodes

and remove 0 value to get all possible value of vulnerability

threshold. Second, since the product nodes with a smaller

value of in-degree tend to be vulnerable, the priority weight of

these possible value is defined as the reciprocal of it. Based on

the priority weight, a roulette selection is used to determine

the vulnerability threshold L.

(b) Search for product nodes in G(S/I0) of which the

in-degrees are smaller than vulnerability threshold L but big-

ger than 0 as vulnerable product nodes.

(c) Determine the supplier node having most connections

with the vulnerable product nodes in G(S/I0) to be the candi-

date supplier node s_add .

b: TWO PHASE NODES EXCHANGE METHOD

(a) Add the candidate supplier node s_add into I0 to generate

I0∗.

(b) Search for the supplier node s_remove, of which the

removing that causes the minimum decrease of fitness.

6) RANKING-BASED POPULATION UPDATE

After the local neighborhood search-based offspring indi-

vidual improvement, a population updating strategy will be

performed. As shown in Algorithm 3, firstly, the improved

offspring individual I0 is added into the population POP to

generate POP∗. Then, evaluate all the individuals in POP∗

according to the scoring function and identify the worst indi-

vidual. Finally, the worst individual is removed from POP∗

to generate the updated population. The scoring function is

presented using (9).

Score(i) = γ ∗ScoreF (i)+ (1− γ )∗ScoreD(i) (9)

ScoreF (i) =
fitness(i)

pop_size
∑

j=0

fitness(j)

(10)

ScoreD(i) =
diversity(i)

pop_size
∑

j=0

diversity(j)

(11)

diversity(i) =
∑

j∈POP∗,j 6=i

1−

∣

∣Ii ∩ Ij
∣

∣

∣

∣Ii ∪ Ij
∣

∣

(12)

Algorithm 3 Ranking-Based Population Update

Input: POP, I0
Output: POP

POP∗ = POP ∪ {I0};

for i = 0, 1, 2, . . . , pop_size do

Evaluate individual according to the score function;

endfor

Identifying Iw with the lowest score in POP∗ ;

POP = POP∗\{Iw};

Return POP;
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where ScoreF (i) and ScoreD(i) represent the fitness score

and the diversity score of individual Ii in population POP∗

respectively. ScoreF (i) refers to the comparative quality of Ii
in POP, while ScoreD(i) refers to the comparative diversity

contribution of it. γ ∈ [0, 1] is the weighting coefficient

between fitness score and diversity score, which is empir-

ically set to 0.7. fitness(i) is the fitness value of individ-

ual Ii, denoting the quality of Ii. diversity(i) represents the

diversity contribution of Ii to POP
∗, which is measured by

the dissimilarity between it and the remaining individuals

in POP∗.

V. CASE STUDY

To illustrate the applicability and effectiveness of the pro-

posed bottleneck supplier identification method, a case study

is presented in this section. Firstly, a large-size of data is

collected to construct an empirical automobile multipartite

supply network. Then, based on the empirical network, exper-

iments are conducted to evaluate the proposed supply net-

work performance metrics and MALNS-based bottleneck

supplier identification method. All of the simulations were

taken on a PC equipped with an Intel core i7 processor with

3.2 GHz and 16 GB RAM based on Matlab 2014a.

A. EMPIRICAL MULTIPARTITE SUPPLY NETWORK

The online automobile supplier database provided by one

of the biggest automobile product e-commerce procurement

platforms in China, Gasgoo (www.gasgoo.com), is used as

the data source. This database provides information of more

than 20000 automobile suppliers in China, such as company

names, the lists of supplied products and clients. The database

allows users to search for suppliers by client names and

supplied products. Based on the database, supply-demand

information of 27 types of automobile products between

5574 suppliers and 47 manufacturers in China was collected.

An empirical automobile multipartite supply network is

modeled with the collected data. The 47 automobile man-

ufacturers are abstracted as 47 manufacturer nodes. Each

manufacturer node is connected with 27 product nodes, repre-

senting the 27 types of automobile products demanded by it.

Then, according to the supplying relations between products

and suppliers, links are also built between product nodes and

supplier nodes. In summary, the network contains 6890 nodes

and 28705 edges. Nodes contain 47 manufacturer nodes,

1269 product nodes and 5574 supplier nodes. Edges include

27576 supply edges from supplier nodes to product nodes

and 1269 demand edges from product nodes to manufacturer

nodes.

To explore structural character of the empirical network,

degree distributions of the network are investigated, including

the out-degree of supplier nodes and the in-degree of product

nodes. According to previousworks, it has been found that the

degree distributions of most real-life networks can be approx-

imated by five distributions: power law, truncated-power law,

exponential, stretched exponential and log-normal distribu-

tions [43]. Thus, the degree distributions are fitted using the

FIGURE 7. Degree distributions of the empirical multipartite automobile
supply network. (a) Out-degree of supplier nodes. (b) In-degree of
product nodes.

five distributions and good of fitnessR2 is used for evaluation.

It is found the most approximate of both degree distributions

is the stretched exponential distribution. The observed degree

distributions and the best fitting curves are presented in Fig. 7.

This indicates that the automobile supply network is neither

a random network nor a scale-free network, but between

them [44].

B. EVALUATION OF PROPOSED PERFORMANCE METRICS

To evaluate the proposed supply network performance met-

rics, comparison between the proposed performance metrics

and a common used supply network performance metric,

SLCC [22] are made. According to the research of Kim et al.,

performance metrics of supply networks should be able to

distinguish the robustness of different supply networks facing

supplier disruptions [5]. Thus, performance metrics variation

of both the original empirical multipartite supply network

and the structurally modified ones facing random supplier

disruption are compared. Adding edges is a commonly used

robustness enhancing method. Thus, low-degree edge addi-

tion strategy [45] is used to add edges between product nodes

and supplier nodes for network structural modification.

As presented in Fig. 8(a), (b) and (c), performance met-

rics comparison between the original network and structural

modified ones are presented. As shown in Fig. 8(a), the three

curves of SLCC almost overlap with each others. It is evi-

dent that SLCC can not distinguish the robustness of differ-

ent supply networks clearly. As shown in Fig. 8(b) and (c),
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FIGURE 8. Comparison of supply network performance metrics. (a) SLCC.
(b) Average product availability rate. (c) Manufacturer functioning rate.

compared with SLCC, average product availability rate and

manufacturer functioning rate can reflect the difference

between original network and network after adding edges

more evidently. It is also found that structural modification

using low-degree edge addition strategy can increase supply

network robustness. In both Fig. 8(a), (b) and (c), with the

number of added edge increasing, curves of performancemet-

rics decline slower. That is to say, with the number of added

edge increasing, supply network presents stronger tolerance

of supplier disruptions.

C. EVALUATION OF MALNS-BASED BOTTLENECK

SUPPLIER IDENTIFICATION

Based on the empirical multipartite supply network,

experiments are also performed to evaluate the perfor-

mance of proposed MALNS-based bottleneck supplier

identification method. Firstly, a preparation experiment

is performed to set parameters. Then, to verify the

effectiveness of the proposed MALNS-based bottleneck sup-

plier identification method, comparative experiment is also

conducted.

1) PARAMETER SETTING

Like most evolutionary algorithms, the proposed MALNS

also has to set parameters and the value of parameters

may affect the performance of algorithm. As presented in

Section 4.2, the parameters of the proposedMALNS includes

population size pop_size and times of offspring individual

local improvement N_improvement . The pop_size is set to 20

according to previous works [39]. Then, performance of the

proposed MALNS-based bottleneck supplier identification

method under different value of N_improvement is analyzed

to define a proper value of it. Firstly, K is settled to be

10, namely use 10 bottleneck supplier identification as an

instance for parameter setting. Then, the termination con-

dition is defined to be 100 generation. Quality of optimal

individuals Ioptimal and running time are analyzed under

different N_improvement (0.1
∗K , 0.2∗K , . . . , 0.5∗K ). The opti-

mal individual represents the identified bottleneck suppliers.

Thus, the quality of optimal individual is measured using

RA(G/Ioptimal) and RF (G/Ioptimal), which represents the net-

work performance after disrupting the identified bottleneck

suppliers. Each simulation is repeated 10 times.

The experiment result is presented in Fig. 9. As shown in

Fig. 9(a), the running time increases linearly as the increasing

of N_improvement . As presented in Fig. 9(b) and (c), both

RA(G/Ioptimal) andRF (G/Ioptimal) decrease with the increasing

of N_improvement . It also has been noticed that decrement

of both RA(G/Ioptimal) and RF (G/Ioptimal) is most obvious

between 0.1∗K and 0.2∗K . To get a balance of time efficiency

and solution quality,N_improvement is settled to be 0.2
∗K in the

following works.

2) COMPARATIVE EXPERIMENT

To evaluate the performance of the proposed MALNS-based

bottleneck supplier identification method, experiment is also

made to compare it with other methods. Comparison with tra-

ditional network centrality-based approach including degree

centrality-based (DC) [14] and betweenness centrality-based

(BC) [11] bottleneck supplier identification method is made.

In these approaches, supplier nodes with the largest value of

centrality in the network are selected as bottleneck suppli-

ers. Besides, comparison with evolutionary algorithm-based

method is also made. Two universal critical nodes identifi-

cation methods, GA [46] and Greedy2 [47], are also used

to identify the bottleneck suppliers in the supply network.

To make a fair comparison, GA-based bottleneck supplier

identification method and the proposed MALNS-based bot-

tleneck supplier identification method were running on our

platform with the same time limit Tmax = 16000 sec-

onds [48]. Except for Tmax , the default parameter values of

GA settled in the work of Boginski and Commander are

adopted [46]. In addition, we also use random selection-based

method (RAND) to validate the effectiveness of bottleneck

supplier identification methods mentioned above.

Performance comparison of the six bottleneck supplier

identification methods is presented by Fig. 10 and Table 1.
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FIGURE 9. The performance of MALNS-based bottleneck supplier
identification under different value of N_improvement . (a) Running time.
(b) RA(G/Ioptimal ). (c) RF (G/Ioptimal ).

Fig. 10(a) and (b) present the curves of the average prod-

uct availability rate RA(G/IK ) and manufacturer functioning

rate RF (G/IK ) of the empirical mutipartite supply network

after disrupting K bottleneck supplier nodes respectively.

To quantify the comparison, average value of RA(G/IK )

and RF (G/IK ) are also presented in Table 1. In Table 1,

Mean(RA(G/IK )) andMean(RF (G/IK )) represent the average

value of RA(G/IK ) and RF (G/IK ) respectively. The smaller

average values of Mean(RA(G/IK )) and Mean(RF (G/IK ))

refer to greater damage to the network by disrupting the iden-

tified bottleneck supplier nodes, namely better performance

of the bottleneck supplier identification method.

In Fig. 10(a), along with increasing of disrupted bot-

tleneck suppliers, all the average product availability rate

curves decrease evidently except for RAND-based method.

By comparing RAND-based bottleneck supplier identifi-

cation method with other methods, it is found that both

centrality-based and evolutionary algorithm-based methods

perform much better than RAND-based method. Such results

validates the rationality of centralitymetrics and the effective-

ness of evolutionary algorithms. In addition, DC-based and

FIGURE 10. Performance comparison between MALNS-based bottleneck
supplier identification method and other methods. (a) Average product
availability rate after disrupting K bottleneck suppliers. (b) Manufacturer
functioning rate after disrupting K bottleneck suppliers.

TABLE 1. Average value comparison for RA (G/IK ) and RF (G/IK ).

BC-based bottleneck supplier identification methods perform

far more worse than other three evolutionary algorithm-based

methods. Such result indicates that traditional network cen-

trality metrics fail to identify bottleneck suppliers accurately.

Besides, when the number of disrupted bottleneck suppliers

is smaller than 40, greedy2-based bottleneck supplier identi-

fication method performs slightly better than MALNS-based

method. When the number of disrupted bottleneck suppliers

is bigger than 40, MALNS-based bottleneck supplier iden-

tification method performs much better than greedy2-based

method. Fig. 10(b) shows a similar trend shown in Fig. 10(a).

In the Table. 1, MALNS-based bottleneck supplier identi-

fication method obtains the minimal average value of both
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RA(G/IK ) and RF (G/IK ). Overall, MALNS-based bottleneck

supplier identification method achieves the best performance

to minimize both performance metrics. Such results prove

that the proposed MALNS-based bottleneck supplier identi-

fication method can detect bottleneck suppliers effectively.

3) EVALUATION OF PROPOSED LOCAL

NEIGHBORHOOD SEARCH

To further explore the effectiveness of proposed local neigh-

borhood search procedure, a comparative experiment is also

performed to compare the proposed MALNS with an alter-

native version MARES where the local neighborhood search

procedure is replaced by the conventional random exchange

strategy [49]. That is to say, at each neighborhood search

iteration of MARES, a random supplier node u ∈ I0 is

exchanged by a random supplier node v ∈ S \I0 to gener-

ated a new individual. If the new individual is better than

I0, the original individual I0 will be replaced by the new

individual. Otherwise, it will not be accepted.

The experimental results are shown in Fig. 11. Fig. 11(a)

and (b) present the fitness curves of MALNS and MARES

under K = 10 and K = 30 respectively. It can be observed

that MALNS can find better individuals in a shorter time in

the both two instances. Thus, the proposed local neighbor-

hood search procedure can effectively increase the perfor-

mance of MA, suggesting that MALNS is a suitable method

for detecting bottleneck suppliers.

D. EXPERIMENTAL RESULTS DISCUSSION

The structural character of empirical automobile supply

network is analyzed. As a result, it is found that degree

distribution of automobile supply network exhibits stretched

exponential distribution. Such finding indicates the automo-

bile supply network is not homogeneous. A few hub firms

occupy major market.

The comparison between proposed supply network per-

formance metrics and the standard network metric SLCC is

made. It is found that SLCC does not reliably distinguish

among different supply networks on robustness. Therefore,

researchers need to define performance metrics carefully

when evaluating supply network performance facing supplier

disruptions. In addition, it is also found that low degree-based

edge addition strategy can improve the robustness of supply

network. Such findings can also provide some insights for

supply network risk mitigation.

The effectiveness of proposed MALNS-based bottle-

neck supplier identification method is validated using

comparative experiments. First, comparing with random

selection-based bottleneck supplier identification method

with centrality-based and evolutionary algorithm-based

methods, it is verified the rationality of centrality metrics and

the effectiveness of evolutionary algorithms. By comparing

evolutionary algorithm-based with network centrality-based

bottleneck supplier identification methods, it is also found

that network centrality-basedmethods fail to provide an accu-

rate detection of bottleneck suppliers. Such result presents the

FIGURE 11. Fitness curve comparison between MALNS and MARES.
(a) K = 10.(b) K = 30.

difficulty to identify bottleneck suppliers. The main reason

behind this is that these centrality metrics can only reflect the

local importance of a supplier. However, from a network per-

spective, bottleneck supplier identification needs considering

the overall network structure. Besides, it is also observed that

the empirical automobile supply network is vulnerable. In a

supply network including more than 5000 suppliers, disrup-

tion of 10 bottleneck suppliers can lead 20% manufacturers

fail to obtain all necessary products to continue their produc-

tion. By disrupting less than 100 bottleneck suppliers, nearly

half manufacturers will not achieve all necessary products to

perform their production duties. Thus, identification of these

bottleneck suppliers is highly important, since the disruption

of them will induce extremely high loss.

VI. CONCLUSION

Recent supplier-caused supply network disruption events

bring to the forefront the issue of detecting bottleneck sup-

pliers, namely suppliers whose disruption will induce high

loss to the entire supply network. Identification of bottleneck

supplier is significantly important for supply network risk

management. Thus, this article proposes a MALNS-based

method to identify bottleneck suppliers. This article can be

concluded as below:

Firstly, a multipartite supply network model has been

developed to reflect the fact that nodes play heterogeneous

roles in a supply network, which is not the case for many
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other networks. Based on the network model, two perfor-

mance metrics describing the product availability of manu-

facturers are proposed: average product availability rate and

manufacturer functioning rate. Compared with conventional

network metric SLCC, the proposed performance metrics can

distinguish the robustness of different supply networks more

effectively.

Secondly, a MALNS-based bottleneck supplier method is

proposed. Instead of using metrics to approximate how vital

a supplier is to the performance of a supply network, the pro-

posed method uses a MA improved by a local neighborhood

search procedure, namely MALNS, to identify bottleneck

suppliers.

Third, this study also has implications for empirical

researches. A large size of data was collected to construct

an empirical automobile supply network. Structural character

of the empirical network is analyzed. It is found that sup-

ply networks in real life are neither scale-free nor random

networks, but between them. Such finding implies that the

real supply networks are not homogeneous. A few hub firms

occupy major market.

Finally, based on the empirical network, the effectiveness

of proposed MALNS-based bottleneck supplier identifica-

tion method is validated. Therefore, the proposed method

provides supply network managers and researchers with an

effective tool to quantify the losses of a supply network

due to disruptions from single or multiple suppliers. Using

the bottleneck identification method proposed in this study,

supply network managers and researchers can easily discover

which suppliers are most critical for supply network perfor-

mance and pose the greatest threat. They can both identify

the bottleneck suppliers and estimate the potential impact of

disruptions.

However, this study still has some limitations. The pro-

posed model in this study only considers a two-stage supply

network. Besides, the purchasing volume of each product

between suppliers and manufacturers is also neglected. Thus,

the work presented in this article will be extended into a

context of multistage supply networks and will take the pur-

chasing volume into consideration in the future.
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