
Memetic Algorithms for Continuous
Optimisation Based on Local Search Chains

Daniel Molina daniel.molina@uca.es
Department of Computer Engineering, University of Cadiz, Cadiz, 11003, Spain

Manuel Lozano lozano@decsai.ugr.es
Department of Computer Science and Artificial Intelligence, University of Granada,
18071, Granada, Spain

Carlos Garcı́a-Martı́nez cgarcia@uco.es
Department of Computing and Numerical Analysis, University of Córdoba, 14071,
Córdoba, Spain

Francisco Herrera herrera@decsai.ugr.es
Department of Computer Science and Artificial Intelligence, University of Granada,
18071, Granada, Spain

Abstract
Memetic algorithms with continuous local search methods have arisen as effective tools
to address the difficulty of obtaining reliable solutions of high precision for complex
continuous optimisation problems. There exists a group of continuous local search
algorithms that stand out as exceptional local search optimisers. However, on some
occasions, they may become very expensive, because of the way they exploit local
information to guide the search process. In this paper, they are called intensive con-
tinuous local search methods. Given the potential of this type of local optimisation
methods, it is interesting to build prospective memetic algorithm models with them.

This paper presents the concept of local search chain as a springboard to design
memetic algorithm approaches that can effectively use intense continuous local search
methods as local search operators. Local search chain concerns the idea that, at one
stage, the local search operator may continue the operation of a previous invocation,
starting from the final configuration (initial solution, strategy parameter values, inter-
nal variables, etc.) reached by this one. The proposed memetic algorithm favours the
formation of local search chains during the memetic algorithm run with the aim of con-
centrating local tuning in search regions showing promise. In order to study the perfor-
mance of the new memetic algorithm model, an instance is implemented with CMA-ES
as an intense local search method. The benefits of the proposal in comparison to other
kinds of memetic algorithms and evolutionary algorithms proposed in the literature to
deal with continuous optimisation problems are experimentally shown. Concretely, the
empirical study reveals a clear superiority when tackling high-dimensional problems.

Keywords
Continuous optimisation, memetic algorithms, continuous local search algorithms,
adaptive local search intensity, genetic algorithms.

1 Introduction

It is now well established that hybridisation of evolutionary algorithms (EAs) with
other techniques can greatly improve the efficiency of search (Davis, 1991; Goldberg

C© 2010 by the Massachusetts Institute of Technology Evolutionary Computation 18(1): 27–63

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

and Voessner, 1999). EAs that have been hybridised with local search techniques (LS) are
often called memetic algorithms (MAs; Moscato, 1989, 1999; Merz, 2000; Krasnogor and
Smith, 2005). One commonly used formulation of MAs applies LS to members of the
EA population after recombination and mutation, with the aim of exploiting the best
search regions gathered during the global sampling done by the EA. Thus, an important
aspect concerning MAs is the trade-off between the exploration abilities of the EA and
the exploitation abilities of the LS technique used (Krasnogor and Smith, 2001), that
is, MAs should combine their two ingredients following a hybridisation scheme that
allows them to work in a cooperative way, ensuring synergy among exploration and
exploitation.

Many real-world problems may be formulated as optimisation problems of param-
eters with variables in continuous domains (i.e., continuous optimisation problems).
Over the past few years, an increasing interest has arisen in solving this kind of prob-
lem using different EA models. They include real-coded genetic algorithms (Herrera
et al., 1998), evolution strategies (Beyer and Schwefel, 2002), evolutionary programming
(Lee and Yao, 2004), particle swarm optimisation (Kennedy and Eberhart, 1995), and
differential evolution (Storn and Price, 1997). A common characteristic of these EAs is
that they evolve chromosomes that are vectors of floating point numbers, directly rep-
resenting problem solutions (hence, they may be called real-coded EAs). Nevertheless,
for function optimisation problems in continuous search spaces, an important difficulty
must be addressed: solutions of high precision must be obtained by the solvers (Kita, 2001).
MAs comprising efficient local improvement processes on continuous domains (i.e.,
continuous LS methods) have been presented to deal with this problem (Hart, 1994;
Renders and Flasse, 1996). In this paper, they will be named MACOs (MAs for contin-
uous optimisation problems). Most MACO instances employ real-coded EAs as an EA
component (Lozano et al., 2004); however, some MACO researchers prefer traditional
binary-coded genetic algorithms (Ong and Keane, 2004; Ong et al., 2006).

Most well-known continuous LS algorithms make use of explicit strategy parame-
ters (e.g., step sizes) to guide the search. Generally, they adapt these parameters with the
purpose of increasing the likelihood of producing more effective solutions. Due to their
explicit parameter adaptation, these algorithms may require a substantial number of
evaluations (high LS intensity) to achieve adequate styles of traversal of solution space
to follow certain paths leading to precise final solutions. In this paper, we refer to this
kind of LS procedures as intense continuous LS algorithms.

The design of MACO models embedding intense continuous LS operators arises as
a profitable way to improve these algorithms, because, nowadays, there are powerful
modern metaheuristics available that may be catalogued as intense continuous LS
algorithms, which can make their integration into MACOs particularly interesting.
However, the incorporation of expensive continuous LS algorithm (potentially wasting
too many function evaluations in a MACO) should be made with great care, because the
relationship between exploration and exploitation in the MACO may get out of balance.

We are interested in the design of specific MACO models that try to make the most
of intense continuous LS operators (i.e., providing them with enough LS intensity)
without compromising the synergy between the EA and the proper continuous LS
algorithm.

In this paper, we propose a MACO approach that employs the concept of the LS
chain to adjust the LS intensity assigned to the intense continuous LS method. In our
approach, an individual resulting from an LS invocation may later become the initial
point of a subsequent LS application, which will adopt the final strategy parameter

28 Evolutionary Computation Volume 18, Number 1

Memetic Algorithms Based on Local Search Chains

values achieved by the former as its initial values. Although particular individuals are
subject to a limited amount of LS, the occurrence of this chaining process, throughout
MA evolution, allows the operation of the LS operator to be extended in certain search
zones. More concretely, our MACO proposal encourages the formation of concrete LS
chains with the aim of focusing the action of the continuous LS algorithm on promising
areas where it might obtain improvements. In this way, the continuous LS method may
adaptively fit its strategy parameters to the particular features of these zones. In our
study, we use CMA-ES (Hansen and Ostermeier, 2001) as our intense continuous LS
algorithm, which stands out as an excellent local searcher.

The paper is set up as follows. In Section 2, we review some important aspects of
MAs. In Section 3, we overview some contemporary research devoted to improving the
behaviour of the continuous LS operator in the MACO scheme. In addition, we outline
some relevant features of intense continuous LS algorithms and describe the CMA-
ES algorithm. In Section 4, we present the concept of LS chain and explain the way
they should be managed in order to obtain profitable integration of intense continuous
LS methods into MACOs. In Section 5, we design the experimental framework that
allows us to study the behaviour of the proposed MACO model. In particular, we
present an instance based on CMA-ES. In Section 6, we analyse experimentally the
behaviour of the instance and compare its results with other algorithms proposed in
the literature for continuous optimisation problems. Finally, in Section 7, we provide
the main conclusions of this work and examine future research lines. In Appendix
A, we explain the statistical tests that were used for the experimental study and, in
Appendix B, we include tables with the results of certain algorithms.

2 Fundamentals of Memetic Algorithms

Recently, hybrid heuristics have been a hot topic in the fields of both computer science
and operational research. It assumes that combining the features of different meth-
ods in a complementary fashion may result in more robust and effective optimisation
tools. MAs may be considered as the union of population-based global search and
local improvements that are inspired by Darwinian principles of natural evolution and
Dawkins’ notion of a meme, defined as a unit of cultural evolution that is capable of
local refinements (Krasnogor and Smith, 2005). In essence, an MA is a search strategy
in which a population of optimising agents synergistically cooperates and competes.
This behaviour can be accomplished by using LS strategies within a population based
search technique such as an EA, although it must be noted that the MA paradigm
does not simply reduce itself to this particular scheme. In fact, other hybrid paradigms
combining EAs with problem dependent heuristics, such as approximation algorithms,
truncated exact methods, and specialised recombination operators, belong to the MA
family. In diverse contexts, MAs have also been used under the name of hybrid EAs,
Baldwinian EAs, Lamarkian EAs, or genetic local search.

Many different instantiations of MAs have been reported across a wide variety of
application domains that range from scheduling and floor-planning problems, to pat-
tern recognition, vehicle routing, control systems, aircraft, and drug design, to name
but a few. This large body of evidence has revealed that MAs not only converge to
high-quality solutions, but also search vast, and sometimes noisy, solution spaces more
efficiently than their conventional counterparts. Thus, MAs are the preferred method-
ology for many real-world applications, and nowadays receive more attention (Ong
et al., 2007; Hart et al., 2004a,b). Among other reasons, MAs are preferred because:

Evolutionary Computation Volume 18, Number 1 29

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

• MAs can be designed adopting the divide and conquer strategy. Their two com-
ponents may be conceived and implemented independently from each other. In
this way, their development becomes easy and, in addition, their specific function-
ing may also be profitable (as compared with search algorithms that attempt to
combine by themselves both exploration and exploitation).

• MAs are intrinsically concerned with exploiting all available knowledge about the
problem under study (Bonissone et al., 2006). The inclusion of problem knowledge
is also supported by strong theoretical results; the No Free Lunch Theorem (Wolpert
and Macready, 1997) states that a search algorithm strictly performs in accordance
with the amount and quality of the problem knowledge it incorporates. This fact
clearly underpins the exploitation of problem knowledge intrinsic to MAs (Moscato
and Cotta, 2003).

• MAs have arisen as a promising approach for improving the convergence speed to
the Pareto front of EAs for multiobjective optimisation problems, which actually
concentrate increasing research efforts (Ishibuchi et al., 2003; Liu et al., 2007).

The aim of this section is to briefly overview the main characteristics of MAs. In
Section 2.1, we get more deeply into their components and, in Section 2.2, we discuss
the convenience of adaptively controlling different MA parameters.

2.1 MA Components

Exploration and exploitation are two major issues when designing a global search
method. Exploration is important for the search algorithm to achieve global optimality,
whereas exploitation searches around the neighbourhood of good solutions to produce
higher quality solutions. A search algorithm should strike a tactical balance between
the two sometimes-conflicting goals. MAs attempt to accomplish this compromise by
putting together two specialised components: an EA that may assume the task of
exploring the search space, and an LS algorithm that refines promising individuals
being evolved by the EA. The rationale behind MAs is to provide an effective and
efficient global optimisation method by compensating for the deficiency of EAs in local
exploitation and the inadequacy of LSs in global exploration.

MAs should combine their two ingredients following a hybridisation scheme that
allows them to work in a cooperative way, attaining a profitable synergy among their
associated exploration and exploitation features. For successful incorporation of an LS
algorithm in an EA, several issues must be resolved, as follows.

2.1.1 Election of the LS Algorithm
In recent years, it has been increasingly recognised that the particular choice of LS
operator will have a major impact on the efficacy of the MAs (Smith, 2007). With so many
LS algorithms available in the literature, it is almost impossible to know which is most
relevant to a problem when one has only limited knowledge of its cost surface before one
starts (Ong and Keane, 2004). Moreover, LS algorithms by themselves are known to work
very differently with different design problems, even among problems from the same
design domain. Depending on the complexity of a design problem, LS algorithms that
may have proven to be successful in the past might not work so well, or at all, on others.

30 Evolutionary Computation Volume 18, Number 1

Memetic Algorithms Based on Local Search Chains

2.1.2 Selection of the Individuals That Should Be Improved by LS
This election is very important because a wrong choice may mean that the MA might not
exploit, with adequate intensity, some promising regions of the search space. Normally,
the LS algorithm is invoked to refine the new chromosomes created from the application
of crossover and mutation. All these individuals may undergo LS, such as scatter search
(Laguna and Martı́, 2003) does. However, in this case, the additional fitness function
evaluations required for the LS search increment considerably the computational cost
of the MA, which may be prohibitive for many problems. Thus, a parameter, called
LS probability, pLS, was introduced (Hart, 1994), which determines the probability of
applying LS to every created chromosome. In Hart (1994), pLS = .0625 was considered
appropriate for many practical cases. Two alternative criteria have been considered
as well. In Chelouah and Siarry (2003), the LS algorithm is applied after the EA has
detected a new promising region, and in Liang and Suganthan (2005), the LS procedure
improves, periodically, the N best individuals in the population.

2.1.3 Computational Cost Allocated for Every LS Algorithm Application
The number of fitness function evaluations required by the LS algorithm during their
operation determines its cost. In this paper, this number will be called LS intensity. It is
fundamental to identify a proper intensity for the LS, because an LS that is too short may
be unsuccessful at exploring the neighbourhood of the solution and therefore unsuc-
cessful at improving the search quality. On the other hand, too long an LS may backfire
by consuming additional fitness evaluations unnecessarily. However, we should point
out that the more commonly employed technique for choosing the LS intensity involves
the use of a single value for this parameter (typically that value producing the highest
accuracy of the LS procedure) and keeps it constant during the entire optimisation.

The local/global search ratio (L
G

ratio; Lozano et al., 2004) kept by an MA (defined
as the percentage of evaluations spent doing local search from the total assigned to the
algorithm’s run) is mainly governed by the LS intensity and the number of chromosomes
that undergo LS. This ratio determines the trade-off between the exploration abilities of
the EA, and the exploitation abilities of the LS algorithm, and then it has an important
influence on the final performance of the MA on a particular problem.

2.2 Adaptive MAs

Adaptation of parameters and operators has become a very promising research field in
MAs (Ong et al., 2006; Smith, 2007). Adaptive MAs were designed to address the three
issues detailed in the previous section:

2.2.1 Adaptive MAs with Multiple LS Operators
A number of authors have investigated and proposed mechanisms for choosing be-
tween a set of predefined LS operators that may be used during a particular MA run.
Essentially, all these approaches maintain a pool of LS operators, being available to be
used by the MA and, at each decision point, choose which one to apply. This form of
adaptive MAs promotes both cooperation and competition among various problem-
specific LS algorithms and favours neighbourhood structures containing high quality
solutions that may be achieved at low computational effort.

Ong et al. (2006) present an excellent recent review of work in this field. This
encompasses the works of Krasnogor on multimemetic algorithms (Krasnogor, 2002;

Evolutionary Computation Volume 18, Number 1 31

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

Krasnogor and Smith, 2000, 2001) and hyper-heuristics (Burke and Smith, 2000). In an in-
teresting extension to the use of a set of fixed strategies, Krasnogor and Gustafson have
recently proposed a grammar for self-generating MAs, which specifies, for instance,
when LS takes place (Krasnogor and Gustafson, 2004). In this research line, Smith
(2007) proposed the coevolving MA, a system within which the definitions of LS op-
erators applied within the MA may be changed during the course of optimisation. It
maintains two populations; one of genes encoding for candidate solutions and one of
memes encoding for LS operators to be used within the MA. The results showed that
the coevolving MA was able to discover and exploit certain forms of structure and
regularities within the problems.

2.2.2 Adaptive MAs That Control the L
G Ratio

Some adaptive MA approaches that were presented adjust the LS intensity or LS proba-
bility with the aim of determining an effective L

G
ratio. Simulated heating (Bambha et al.,

2004) is one of them. It is a dynamic mechanism that varies the LS intensity gradually
with the progress of the search. The idea behind simulated heating is to increase the
time allotted to each LS invocation during the optimisation process; thus generating low
accuracy of the LS algorithm at the beginning and high accuracy at the end. The goal is
to focus on the global search at the beginning and to find promising regions of the search
space first; for this phase, run with low accuracy, which in turn allows a greater number
of optimisation steps of the global search. Afterward, more time is spent in order to
improve the solutions found or to assess them more accurately. As a consequence, fewer
global search operations are possible during this phase of optimisation.

Hart (1994) proposed two different strategies for adaptively calculating the prob-
ability with which LS is applied to each new chromosome. The two strategies are
the fitness-based and the distribution-based strategies. Fitness-based adaptive methods
use the fitness information in the population to bias the LS toward individuals that have
better fitness. These methods assume that individuals with better fitness are more likely
to be in basins of attraction of good local optima. Distribution-based adaptive methods
use redundancy in the population to avoid performing unnecessary local searches. In
particular, selected solutions will be far away from each other, and ideally span as much
of the search space as the population itself. Lozano et al. (2004) introduced a fitness-
based adaptive mechanism that determines the probability with which every solution
should receive the application of a crossover-based LS algorithm. Authors concluded
that the mechanism allows the L

G
ratio to be adjusted according to the particularities

of the search space, allowing significant performance to be achieved for problems with
different difficulties.

3 Continuous LS Algorithms

Reaching accurate solutions becomes of great importance for function optimisation
problems in continuous search spaces. Different MACO models have been presented to
deal with this problem. The main idea is to use efficient local improvement processes
on continuous domains, for example, hill-climbers for nonlinear optimisation, such as
Quasi-Newton, conjugate gradient, SQP, random linkage, Solis and Wets’ algorithm,
and Nelder and Mead’s simplex method. Examples of MACOs may be found in Hart
(1994); Hart et al. (2000); Joines and Kay (2002); Houck et al. (1997); Mühlenbein et al.
(1991); Renders and Bersini (1994); Renders and Flasse (1996); Rosin et al. (1997); Zhang
and Shao (2001); and Wei and Zhao (2005).

32 Evolutionary Computation Volume 18, Number 1

Memetic Algorithms Based on Local Search Chains

In his pioneering work on MACOs, Hart (1994) demonstrated that the choice of
continuous LS algorithm affects the performance of MACOs significantly on a variety
of benchmark problems of diverse properties. Furthermore, in recent years, it has been
increasingly recognised that the influence of the continuous LS algorithm employed has
a major impact on the search performance of MACOs (Ong and Keane, 2004; Ong et al.,
2006; Smith, 2007). This is why most MACO research has been focused on analysing
possible ways to improve the operation of this component. Foremost investigations
were conducted to tackle two relevant problems related with classic continuous LS
operators, which are analysed below.

• A Particular Continuous LS Method May Be Effective for Some Class of Prob-
lems but Not for Others. Each continuous LS algorithm instance directs the
search toward a different zone in the neighbourhood of the solutions. The qual-
ity of the solutions that belong to the visited region depends on the particular
problem to be solved. This means that different continuous LS algorithms perform
differently with respect to different problems, even at the different stages of the
memetic process in the same problem. This problem motivated the design of adap-
tive MACOs with multiple continuous LS operators (Ong and Keane, 2004; Ong
et al., 2006; Caponio et al., 2007).

• Most Existing Continuous LS Algorithms May Require High LS Intensity Values
to Work Effectively. Most well-known continuous LS algorithms make use of
explicit strategy parameters (e.g., step sizes) to guide the search. Generally, they
adapt the parameters in such a way that the moves being made may be of varying
sizes, depending on the success of previous steps, with the purpose of increasing the
likelihood of producing more effective solutions. The rules for updating parameters
capture some lawful operation of the dynamics of the algorithm over a broad
range of problems. Due to their explicit parameter adaptation, these continuous LS
algorithms may require high LS intensity values to adapt their strategy parameters
to the local topography of the search areas being refined.

The incorporation of expensive continuous LS algorithms wasting too many func-
tion evaluations into a MACO should be made judiciously. On the one hand, more
time allotted to each continuous LS algorithm invocation implies more thorough local
optimisation at the expense of a smaller number of achievable function evaluations, for
example, smaller numbers of generations explored with the EA. On the other hand, the
MACO search may become too focused; the intense continuous LS algorithm may be
applied only to a small proportion of the chromosomes being attained by the MACO
(i.e., a small number of search regions received great attention). This means that certain
promising search regions that deserve attention may not be refined with enough interest
and fall into oblivion, which may be very detrimental for the complex problems. These
problems, derived from the use of intense continuous LS algorithms, may incapacitate
the MACO to obtain profitable synergetic effects between the EA and the continuous
LS algorithm. A direct reaction against this serious difficulty was the design of quick
continuous LS algorithms. These are alternative continuous LS techniques that allow
high quality solutions to be reached requiring low LS intensity values. One of the ap-
proaches that recently received attention concerns real-parameter crossover-based LS
(XLS) algorithms (Lozano et al., 2004; Noman and Iba, 2005, 2008). A different approach
to face up to this problem involves the approach presented in this paper: to adequately
couple intense continuous LS searchers in MACOs.

Evolutionary Computation Volume 18, Number 1 33

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

In Section 3.1, we detail some works on adaptive MACOs with multiple continuous
LS operators. In Section 3.2, we describe different XLS algorithms. Finally, in Section 3.3,
we provide a brief introduction to intense continuous LS algorithms, paying special
attention to the modern continuous LS method called covariance matrix adaptation
evolution strategy.

3.1 Meta-Lamarckian Learning in MACOs

Ong and Keane (2004) proposed meta-Lamarckian learning in MAs that adaptively
chooses among multiple continuous LS algorithms during the MACO search. The basic
idea is to use a pool of continuous LS algorithms and, as the search progresses, the effec-
tiveness of each continuous LS algorithm in dealing with the problem is learned. Then,
the continuous LS algorithms with higher fitness improvement measures are rewarded
with greater chances of being chosen for subsequent chromosome optimisations.

These authors presented in their work two adaptive strategies, MA-S1 and MA-S2,
which utilise the pool formed by a bit climbing algorithm, the complex method of M.J.
Box, the Davies, Swann, and Campey search with Gram-Schmidt orthogonalisation,
the Hooke and Jeeves direct search, the Fletcher’s method, the repeated Lagrangian
interpolation, the Simplex method, and two different implementations of the Powell’s
direct search method. An empirical study showed that the strategies presented are
effective in producing search performances that are close to the best traditional MACOs
with a continuous LS algorithm chosen to suit the problem in hand.

Ong et al. (2006) extended their investigations on adaptive MACOs with multiple
continuous LS operators. In particular, they presented an empirical study of a set of
representative models classified according to their type-level adaptations. Numerical
results obtained on a range of commonly used benchmark functions of diverse prop-
erties indicate that, in general, all the adaptive MACO were capable of selecting a
continuous LS method that matches the problem appropriately throughout the search,
thus producing search performances that are competitive or superior to the canonical
MAs on the benchmark problems.

3.2 Crossover-Based Continuous LS Algorithms

The crossover operator is a recombination operator that produces elements around the
parents. For that reason, it may be considered to be a move operator for an LS strategy
(Lozano et al., 2004). This is particularly attractive for real coding because there are some
real-parameter crossover operators that have a self-adaptive nature in that they can gen-
erate offspring adaptively according to the distribution of parents without any adaptive
parameter (Beyer and Deb, 2001; Kita, 2001). The aim is to exploit this self-adaptive ca-
pacity inside the XLS itself, turning it into a self-adaptive LS algorithm (without any
additional adaptive parameter) that may offer an efficient local tuning on the solutions.

One of the first XLS approaches based on self-adaptive real-parameter crossover
operators was proposed by Lozano et al. (2004). They presented an XLS model conceived
as a micro selecto-recombinative real-coded EA that employs the minimal population
size necessary to allow the crossover to be applicable, that is, a pair of chromosomes.
The XLS repeatedly performs a real-parameter crossover operator on the pair until
some number of offspring, noff, is reached. Then, the best offspring is selected and it
replaces the worst parent only if it is better. The process iterates nit times and returns
the two final current parents. An experimental study showed that the self-adaptive
behaviour of XLS works adequately on many cases (nevertheless some difficulties

34 Evolutionary Computation Volume 18, Number 1

Memetic Algorithms Based on Local Search Chains

1. Let us define Cb to be the best chromosome in the population.

2. Build the setSp composed of Cb and np − 1 random individuals from the
population.

3. Apply the simplex crossover considering the elements in Sp as parents (using
Cxls as the returned offspring).

4. If Cxls is better than Cb then

5. Cb = Cxls .

6. else

7. return Cb.

Figure 1: Pseudocode algorithm for the XLS of Noman and Iba (2008).

appeared on some of the more complex problems). In addition, this XLS achieved an
acceptable robustness with noff = 3 and nit = 3, which represents a low LS intensity
value (noff × nit = 9; this result indicates that the XLS model may really be considered
as a quick continuous LS method). In a later work, Noman and Iba (2005) proposed a
MACO instance that applies, in each generation, an XLS in the neighbourhood of the best
solution found by differential evolution (Storn and Price, 1997). The authors claimed
that their XLS scheme increases the convergence velocity of differential evolution for
high-dimensional optimisation of well-known benchmark functions.

The two aforementioned examples of XLS are fixed length XLS instances; they
generate a predetermined number of offspring to search the neighbourhood of the
parent individuals (they require looking for a good search length for the XLS operation).
Noman and Iba (2008) present an adaptive length XLS model that adaptively determines
the length of the search by taking feedback from the search, using a simple hill-climbing
heuristic. The XLS attempts to refine the best individual of the current generation by
applying the simplex real-parameter multi-parent crossover operator (Tsutsui et al.,
1999), which is very suitable for neighbourhood search, as suggested by Noman and Iba
(2008). The pseudocode algorithm for this XLS instance is depicted in Figure 1, where np
is the total number of individuals that take part in the crossover operation. These authors
suggested that the new XLS approach makes best use of the function evaluations and
thereby identifies the optimum at a higher velocity compared to the earlier XLS models.
In addition, the authors carried out a performance comparison of differential evolution,
integrating the XLS with some other MAs selected from the literature, which include
meta-Lamarckian MACOs (Section 3.1). They concluded that the overall performance
of their MACO was superior to or at least competitive with the other MACOs.

3.3 Intense Continuous LS Algorithms

Intense continuous LS algorithms may need high LS intensity values to tune their
associated strategy parameters to values that allow them to be profitable in the particular
search zone being refined. A clear example of intense continuous LS algorithm is the
classic Solis and Wets’ algorithm (Solis and Wets, 1981), which is a randomised hill-
climber with an adaptive step size. Each step starts at a current point x. A deviate d is
chosen from a normal distribution whose standard deviation is given by a parameter
ρ. If either x + d or x − d is better, a move is made to the better point and a success is
recorded. Otherwise, a failure is recorded. After several successes in a row, ρ is increased

Evolutionary Computation Volume 18, Number 1 35

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

to move quicker. After several failures in a row, ρ is decreased to focus the search. Note
that ρ is the strategy parameter of this continuous LS operator.

The integration of intense continuous LS algorithms into MACOs arises as a particu-
larly attractive research area because, nowadays, there are advanced intense continuous
LS algorithms that stand out as formidable local searchers. The covariance matrix adap-
tation evolution strategy (CMA-ES; Hansen and Ostermeier, 2001; Hansen et al., 2003) is
one of them. CMA-ES was originally introduced to improve the LS performance of evo-
lution strategies. Even though CMA-ES even reveals competitive global search perfor-
mances (Hansen and Kern, 2004), it has exhibited effective abilities for the local tuning of
solutions; in fact, it was used as a continuous LS algorithm of an instance of a multi-start
LS metaheuristic, which was called L-CMA-ES (Auger and Hansen, 2005b). At the 2005
Congress of Evolutionary Computation, L-CMA-ES was one of the winners of the real-
parameter optimisation competition (Suganthan et al., 2005; Hansen, 2005). Thus, inves-
tigating the behaviour of CMA-ES as an LS component for MACOs deserves attention.

In CMA-ES, not only is the step size of the mutation operator adjusted at each
generation, but so too is the step direction in the multidimensional problem space, that
is, not only is there a mutation strength per dimension, but their combined update is
controlled by a covariance matrix whose elements are updated as the search proceeds.
In this paper, we use the (μW, λ) CMA-ES model. For every generation, this algorithm
generates a population of λ offspring by sampling a multivariate normal distribution:

xi ∼ N (m,σ2C) = m + σNi(0, C) for i = 1, . . . , λ,

where the mean vector m represents the favourite solution at present, the so-called step-
size σ controls the step length, and the covariance matrix C determines the shape of
the distribution ellipsoid. Then, the μ best offspring are recombined into the new mean
value using a weighted intermediate recombination:

∑μ

i=1 wixi:λ, where the positive
weights sum to one. The covariance matrix and the step size are updated as well
following equations that may be found in Hansen and Ostermeier (2001) and Hansen
and Kern (2004). The default strategy parameters are given in Hansen and Kern (2004).
Only the initial m and σ parameters have to be set depending on the problem.

Hansen and Ostermeier (2001) interpret any evolution strategy that uses interme-
diate recombination as an LS strategy. CMA-ES employs intermediate recombination
to create a single parent based on the average position of the current population. The
next generation of offspring is based on a mutation distribution that surrounds this
single parent. Once the initial mutation distribution has decreased, this variation of
the traditional evolution strategy will behave much like an LS algorithm. Thus, since
CMA-ES is extremely good at detecting and exploiting local structure, it turns out to
be a particularly reliable and highly competitive EA for local optimisation (Auger and
Hansen, 2005b). In fact, in order to obtain an advanced continuous LS algorithm, the LS
characteristics of CMA-ES may be stressed by tuning some of its strategy parameters.
For example, Auger and Hansen (2005b) recommended using a 100 times smaller initial
step-size than is recommended as the default and sticking to the default population
size (between 10 and 15 for the search space dimensions). We have explored a different
approach to enhance the LS abilities of this algorithm, as described in Section 4.4.

Finally, we highlight that this evolution strategy model may be categorised, specifi-
cally, as an intense continuous LS algorithm, because, as noted by Auger and colleagues
(2004):

36 Evolutionary Computation Volume 18, Number 1

Memetic Algorithms Based on Local Search Chains

1. Select two parents from the population.

2. Create an offspring using crossover and mutation.

3. Evaluate the offspring with the fitness function.

4. Select an individual in the population that may be replaced by the offspring.

5. Decide if this individual will be replaced.

Figure 2: Pseudocode algorithm for the steady state GA model.

CMA-ES may require a substantial number of time steps for the adaptation of the covariance
matrix.

4 MACOs Based on LS Chains

Due to the potential of the intense continuous LS algorithms, it becomes interesting
to build MACO models with them. These MACOs should be specifically designed to
accomplish two essential aims:

• The intense continuous LS algorithm can be provided with sufficient LS intensity
to make their correct operation possible.

• The MACO should ensure that a profitable synergy between the continuous LS
algorithm and the EA is possible.

In this section, we propose a MACO approach conceived to attain these two ob-
jectives. A steady state MA model employs the concept of LS chain to adjust the LS
intensity assigned to the intense continuous LS method. In particular, our MACO han-
dles LS chains throughout the evolution, with the objective of allowing the continuous
LS algorithm to act more intensely in the most promising areas represented in the EA
population. In this way, the continuous LS method may adaptively fit its strategy pa-
rameters to the particular features of these zones. It is worth noting that similar ideas
have been exploited to build adaptive MAs, as mentioned in Section 2.2.

In Section 4.1, we introduce the foundations of steady state MAs. In Section 4.2,
we present the concept of the LS chain. In Section 4.3, we propose a MACO approach
that handles LS chains with the objective to make good use of intense continuous LS
methods as LS operators. Finally, in Section 4.4, we present an instance of our MACO
model that uses CMA-ES as a continuous LS operator.

4.1 Steady-State MAs

In steady state genetic algorithms (GAs; Sywerda, 1989; Whitley, 1989) usually only
one or two offspring are produced in each generation. Parents are selected to produce
offspring and then a decision is made as to which individuals in the population to
select for deletion in order to make room for the new offspring. Steady state GAs are
overlapping systems because parents and offspring compete for survival. The basic
algorithm step of the steady state GA is shown in Figure 2.

These steps are repeated until a termination condition is achieved. In Step 4, one
can choose the replacement strategy (e.g., replacement of the worst, the oldest, or a
randomly chosen individual). In step 5, one can choose the replacement condition (e.g.,

Evolutionary Computation Volume 18, Number 1 37

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

Figure 3: Example of LS chain. pi+1 is the final parameter value reached by the LS
algorithm when it started with a value of pi . p0 is the default value for the strategy
parameter.

either replacement if the new individual is better or unconditional replacement). A
widely used combination is to replace the worst individual only if the new individual
is better. We will call this strategy the standard replacement strategy. In Goldberg and
Deb (1991), it was suggested that the deletion of the worst individuals induced a high
selective pressure, even when the parents were selected randomly.

Although steady state GAs are less common than generational GAs, Land (1998)
recommended their use for the design of steady state MAs (steady state GAs plus LS)
because they may be more stable (as the best solutions do not get replaced until the
newly generated solutions become superior) and they allow the results of LS to be
maintained in the population. Steady state MAs integrate global and local search more
tightly than generational MAs (Land, 1998). This interleaving of the global and local
search phases allows the two to influence each other, for example, the steady state GA
chooses good starting points, and LS provides an accurate representation of that region
of the domain. Contrarily, generational MAs proceed in alternating stages of global
and local search. First, the generational GA produces a new population, and then LS
is performed. The specific state of LS is generally not kept from one generation to the
next, though LS results do influence the selection of individuals.

4.2 LS Chains

In steady state MAs, individuals resulting from the LS invocation may reside in the pop-
ulation for a long time. This circumstance allows these individuals to become starting
points of subsequent LS invocations. At this point, we propose to chain an LS algorithm
invocation and the next one as follows:

The final configuration reached by the former (strategy parameter values, internal variables, etc.)
is used as the initial configuration for the next application.

In this way, the LS algorithm may continue under the same conditions achieved
when the LS operation was previously halted, providing an uninterrupted connection
between successive LS invocations, which is to say, forming an LS chain. Figure 3 shows
an example of an LS chain formed by an LS algorithm with only one associated strategy
parameter, p.

38 Evolutionary Computation Volume 18, Number 1

http://www.mitpressjournals.org/action/showImage?doi=10.1162/evco.2010.18.1.18102&iName=master.img-000.jpg&w=357&h=126

Memetic Algorithms Based on Local Search Chains

Two important aspects that were taken into account for the management of LS
chains are:

1. Every time the LS algorithm is applied to refine a particular chromosome, a fixed
LS intensity should be considered for it, which will be called the LS intensity stretch
(Istr). In this way, an LS chain formed throughout napp LS applications and started
from solution s0 will return the same solution as the application of the continuous
LS algorithm to s0 employing napp × Istr fitness function evaluations.

2. After the LS operation, the parameters that define the current state of LS processing
are stored along with the final individual reached (in the steady state GA popu-
lation). When this individual is later selected to be improved, the initial values
for the parameters of the LS algorithm will be directly available. For example, if
we employ the Solis and Wets algorithm as our LS algorithm, the stored strategy
parameter may be the current value of the ρ parameter. For the more elaborate
CMA-ES (Section 3.3), the state of the LS operation may be defined by the covari-
ance matrix (C), the mean of the distribution (�m), the size (σ), and some additional
variables used to guide the adaptation of these parameters.

In this work, we argue that a promising approach to adapt the LS intensity assigned
to intense continuous LS algorithms involves the management of LS chains. A MACO
may allow LS chains to grow throughout the evolution depending on the quality of the
search regions being visited, with the aim of acting more intensely in the most promising
areas. As the MACO search progresses, LS chains will be created and extended, remain-
ing in a latent state until one of their links (chromosomes in the current population that
belong to chains) is never selected for refinement, or simply disappears from the pop-
ulation. In this fashion, the real LS intensity assigned to the continuous LS algorithm
may be adaptively determined throughout the run and depends on two crucial choices:

1. The way the solutions are selected to apply the LS operator to them.

2. The replacement scheme used by the steady state GA.

The designer of the steady state GA is responsible for the second election, whereas
the first one should be undertaken during the design of the MACO scheme. In the
next section, we take special care to explore this important choice, in order to build the
MACO approach that handles LS chains.

Finally, we should point out that the concept of sniffs introduced by Land (1998)
bears a slight resemblance to the LS chain concept. Individual solutions are subject to a
limited amount of local search (i.e., a sniff). Moreover, those solutions that were in the
proximity of a promising basin of attraction received (at a later stage) an extended CPU
budget. With that budget, further iterations of local search were performed.

4.3 A MACO Model That Handles LS Chains

In this section, we propose a MACO model (see Figure 4) with the following main
features:

1. It is a steady state MA model.

2. It ensures that a fixed and predetermined local/global search ratio (Section 2.1)
is always kept. With this policy, we easily stabilise this ratio, which has a strong

Evolutionary Computation Volume 18, Number 1 39

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

1. Generate the initial population.

2. Perform the steady state GA throughout n frec evaluations.

3. Build the set SLS with those individuals that potentially may be
refined by LS.

4. Pick the best individual in SLS (we set cLS to be this individual).

5. If cLS belongs to an existing LS chain then

6. Initialise the LS operator with the LS state stored together with cLS.

7. else

8. Initialise the LS operator with the default LS state.

9. Apply the LS algorithm to cLS with an LS intensity of Istr (we set crLS to be the
resulting individual).

10. Replace cLS by crLS in the steady state GA population.

11. Store the final LS state along with crLS .

12. If (not termination-condition) go to Step 2.

Figure 4: Pseudocode algorithm for the proposed MACO model.

influence on the final MACO behaviour. Without this strategy, the application
of intense continuous LS algorithms may induce the MACO to prefer super
exploitation.

3. It favours the enlargement of those LS chains that show promising fitness im-
provements in the best current search areas represented in the steady state GA
population. In addition, it encourages the activation of innovative LS chains with
the aim of refining unexploited zones, whenever the current best ones may not
offer profitability. The criterion to choose the individuals that should undergo LS
is specifically designed to manage the LS chains in this way (Steps 3 and 4).

The proposed MACO scheme defines the following relation between the steady
state GA and the intense continuous LS method (Step 2): every nfrec number of evalua-
tions of the steady state GA, apply the continuous LS algorithm to a selected chromo-
some, cLS, in the steady state GA population. Since we assume a fixed L

G
ratio, rL/G, nfrec

may be calculated using the following equation:

nfrec = Istr
1 − rL/G

rL/G

. (1)

where Istr is the LS intensity stretch (Section 4.2). We recall that rL/G is defined as the
percentage of evaluations spent doing LS from the total assigned to the algorithm’s run
(Section 2.1).

The following mechanism is performed to select cLS (Steps 3 and 4):

1. Build the set of individuals from the steady state GA population, SLS that fulfils:

a. They have never been optimised by the intense continuous LS algorithm, or
b. They previously underwent LS, obtaining a fitness function improvement greater

than δmin
LS (a parameter of our algorithm).

40 Evolutionary Computation Volume 18, Number 1

Memetic Algorithms Based on Local Search Chains

2. If |SLS| �= 0, then apply the continuous LS algorithm to the best individual in this
set. If this condition is not accomplished, the LS operator is applied to the best
individual in the steady state GA population.

With this mechanism, when the steady state GA finds a new best so far individual,
it will be refined immediately. In addition, the best performing individual in the steady
state GA population will always undergo LS whenever the fitness improvement ob-
tained by a previous LS application to this individual is greater than the δmin

LS threshold.
The last condition is very important in order to avoid the overexploitation of search
zones where the LS method may not make substantial progress any more. We should
point out that other adaptive MA models employ other measures of improvement
obtained by LS methods. In particular, in the meta-Lamarckian MA (Section 3.1), the
continuous LS methods with higher fitness improvement measures are rewarded with
a greater chance of being chosen for subsequent chromosome optimisations.

4.4 MA-LSCh-CMA

In this section, we build an instance of the proposed MACO model (Figure 4), which
applies CMA-ES (Section 3.3) as an intense continuous LS algorithm. It will be called
MA-LSCh-CMA. The design decisions for MA-LSCh-CMA were made with the aim of
allowing it to be very competitive with the state of the art on EAs for continuous opti-
misation. With this aspiration, along with the decision of applying CMA-ES following
the approach proposed in this paper, we have carefully chosen the configuration of the
steady state GA as well, which should attempt to induce reliability in the search process
by ensuring that different promising search zones are the focus of the LS procedure
throughout the run.

Next, we list the main features of MA-LSCh-CMA:

4.4.1 Steady-State GA
MA-LSCh-CMA is a real-coded steady state GA (Herrera et al., 1998) specifically de-
signed to promote high population diversity levels by means of the combination of
the BLX-α crossover operator with a high value for its associated parameter (α =
0.5) and the negative assortative mating strategy (Fernandes and Rosa, 2001). Diver-
sity is favoured as well by means of the BGA mutation operator (Mühlenbein and
Schlierkamp-Voosen, 1993). In the MA literature, keeping population diversity while
using LS together with an EA is always an issue to be addressed, either implicitly or
explicitly (Krasnogor, 2002; Lozano et al., 2004; Tang et al., 2007). In particular, the ap-
plication of these three diversification techniques has proved effective for allowing EAs
to suitably collaborate with continuous LS methods in MACOs (Lozano et al., 2004).
Next, we describe the features of these components.

4.4.2 BLX-α
Let us assume that C1 = (c1

1 . . . c1
n) and C2 = (c2

1 . . . c2
n) (c1

i , c
2
i ∈ [ai, bi] ⊂ �, i = 1 . . . n) are

two real-coded chromosomes that have been selected to apply the crossover operator to
them. BLX-α (Eshelman and Schaffer, 1993) generates an offspring, Z = (z1 . . . zn), where
zi is a randomly (uniformly) chosen number from the interval [mini − I × α,maxi + I ×
α], where maxi = max{c1

i , c
2
i }, mini = min{c1

i , c
2
i }, and I = maxi − mini . Figure 5 shows

the operation of BLX-α.

Evolutionary Computation Volume 18, Number 1 41

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

Figure 5: BLX-α.

Nomura and Shimohara (2001) provide a formalisation of this operator to analyse
the relationship between the chromosome probability density functions before and
after its application, assuming an infinite population. They state that BLX-α spreads the
distribution of the chromosomes when α >

√
3−1
2 or otherwise reduces the distribution.

This property was verified through simulations. In particular, the authors observed that
BLX-0.0 makes the variances of the distribution of the chromosomes decrease, reducing
the distribution, whereas BLX-0.5 makes the variances of the distribution increase,
spreading the distribution.

4.4.3 Negative Assortative Mating
The mating selection mechanism determines the way the chromosomes are mated
by applying the crossover to them (Step 1 in Figure 2). Mates can be selected so as
to favour population diversity (Fernandes and Rosa, 2001). A way to do this is the
negative assortative mating mechanism. Assortative mating is the natural occurrence
of mating between individuals of similar genotype more or less often than expected by
chance. Mating between individuals with similar genotype more often is called positive
assortative mating and less often is called negative assortative mating.

Fernandes and Rosa (2001) assume these ideas in order to implement a parent se-
lection mechanism for the crossover operator. A first parent is selected by the roulette
wheel method and nass chromosomes are selected with the same method (in our ex-
periments all the parents are selected at random). Then, the similarity between each of
these chromosomes and the first parent is computed (similarity between two real-coded
chromosomes is defined as the Euclidean distance between them). If assortative mating
is negative, then the one with less similarity is chosen. If it is positive, the genome that
is most similar to the first parent is chosen to be the second parent. Clearly, the negative
assortative mating mechanism increases genetic diversity in the population by mating
dissimilar genomes with higher probability.

4.4.4 BGA Mutation Operator
In MACOs, the operator responsible for the local tuning of the solutions is the continu-
ous LS operator. Hence, we require a mutation operator providing acceptable levels of
diversity continuously. One of the mutation operators that behaves in this manner is the
BGA mutation operator (Mühlenbein and Schlierkamp-Voosen, 1993). Let us suppose
C = (c1, . . . , ci, . . . , cn) is a chromosome and ci ∈ [ai, bi] is a gene to be mutated. The
gene, c′

i , resulting from the application of this operator is:

c′
i = ci ± rangi ·

15∑
k=0

αk2-k,

where rangi defines the mutation range and it is normally set to 0.1 × (bi − ai). The
+ or − sign is chosen with a probability of 0.5 and αi ∈ {0, 1} is randomly generated

42 Evolutionary Computation Volume 18, Number 1

http://www.mitpressjournals.org/action/showImage?doi=10.1162/evco.2010.18.1.18102&iName=master.img-001.jpg&w=156&h=40

Memetic Algorithms Based on Local Search Chains

with p(αi = 1) = 1
16 . Values in the interval [ci − rangi , ci + rangi] are generated using

this operator, with the probability of generating a neighbourhood of ci being very high.
The minimum possible proximity is produced with a precision of rangi × 2-15.

4.4.5 Replacement Strategy
The steady state GA combines the negative assortative mating (that favours high popu-
lation diversity levels) with the standard replacement strategy (that induces high selective
pressure, as mentioned in Section 4.1). In this way, many dissimilar solutions are pro-
duced during the run and only the best ones are conserved in the population, allowing
diverse and promising solutions to be maintained. Other authors have suggested the fil-
tering of high diversity by means of high selective pressure as a GA strategy to provide
effective search. For example, in Shimodaira (1996), an algorithm is proposed employ-
ing large mutation rates and population-elitist selection, and in Eshelman (1991), a
GA is proposed which combines a disruptive crossover operator with a conservative
selection strategy.

4.4.6 CMA-ES as Continuous LS Algorithm
MA-LSCh-CMA follows the MACO approach, presented in Section 4.3, to handle LS
chains, with the objective of tuning the intensity of CMA-ES, which is employed as an
intense continuous LS algorithm (Section 3.3). The application of CMA-ES for refining
an individual, Ci , is carried out following the next guidelines:

• Ci becomes the initial mean of distribution (�m).

• The initial σ value is half the distance of Ci to its nearest individual in the steady
state GA population (this value allows an effective exploration around Ci).

CMA-ES will work as local searcher consuming Istr fitness function evaluations.
Then, the resulting solution will be introduced in the steady state GA population along
with the current value of the covariance matrix, the mean of the distribution, the step
size, and the variables used to guide the adaptation of these parameters (B, BD, D, pc

and pσ). Later, when CMA-ES is applied to this inserted solution, these values will be
recovered to proceed with a new CMA-ES application. When CMAE-ES is performed
on solutions that do not belong to existing chains, default values, given in Hansen and
Kern (2004), are assumed for the remaining strategy parameters.

4.4.7 Parameter Setting
For the experiments, MA-LSCh-CMA applies BLX-α with α = 0.5. The population size
is 60 individuals and the probability of updating a chromosome by mutation is .125.
The nass parameter associated with the negative assortative mating is set to 3. The value
of the L

G
ratio, rL/G, was set to 0.5, which represents an equilibrated choice. Finally, a

value of 10-8 was assigned to the δmin
LS threshold.

5 Experimental Framework

We have carried out different experiments to assess the performance of MA-LSCh-CMA
(Section 4.4). In order to do this, in this section, we detail the test functions (Section 5.1)
and the experimental setup and statistical methods (Section 5.2) that were used for this
experimental study.

Evolutionary Computation Volume 18, Number 1 43

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

5.1 Test Functions

The test suite that we have used for different experiments consists of 20 benchmark
functions chosen from the set designed for the Special Session on Real Parameter Opti-
misation Organised in the 2005 IEEE Congress on Evolutionary Computation (CEC2005;
Suganthan et al., 2005). See Suganthan et al. (2005) for the complete description of the
functions; furthermore, the link to the source code is included in the reference. The set
of test functions is composed of the seven basic multimodal functions (F6–F12); two
expanded functions (F13 and F14); and 11 hybrid functions (F15–F25). The seven basic
multimodal functions are as follows.

1. Shifted Rosenbrock’s function.

2. Griewank’s function displaced and rotated without frontiers.

3. Ackley’s function displaced and rotated with the global optimum in the frontier.

4. Rastrigin’s function displaced.

5. Rastrigin’s function displaced and rotated.

6. Weierstrass’ function displaced and rotated.

7. Schwefel’s problem 2.13.

Note that each of the 11 hybrid functions has been defined through compositions
of 10 out of the first 14 functions presented by Suganthan et al. (2005) (different in each
case).

All functions have been displaced in order to ensure that their optima can never be
found in the centre of the search space. In two functions, in addition, the optima cannot
be found within the initialisation range, and the domain of search is not limited (the
optimum is out of the range of initialisation).

This set of functions may be divided into two subgroups, according to the sug-
gestion given by Hansen (2005) about their degrees of difficulty. The first group is
composed of the functions from F6 to F14, in which the existence of an algorithm that
achieved the optimum is known. The second group contains the remaining functions,
from the function F15 to F25. In these functions, the optimum has been never achieved
and they may be categorised as very difficult functions.

We have not considered the unimodal functions (F1–F5) from the CEC2005 test suite,
because we are particularly interested in comparing the performance of the algorithms
when they tackle complicated test functions. This allows us to analyse their behaviour
as global optimisers and determine the effectiveness of the paradigm they follow to face
the conflict between accuracy and reliability.

5.2 Experimental Setup and Statistical Analysis

The experiments have been done following the instructions indicated in the document
associated with the competition. The main characteristics are:

• Each algorithm is run 25 times for each test function, and the average of error
of the best individual of the population is computed. The function error value for
a solution x is defined as [f (x) − f (x∗)], where x∗ is the global optimum of the
function.

44 Evolutionary Computation Volume 18, Number 1

Memetic Algorithms Based on Local Search Chains

• The study has been made with dimensions D = 10, D = 30, and D = 50.

• The maximum number of fitness evaluations that we allowed for each algorithm
to minimise the error was 10,000 × D, where D is the dimension of the problem.

• Each run stops either when the error obtained is less than 10-8, or when the maximal
number of evaluations is achieved.

We have carried out the experimental study of MA-LSCh-CMA following these
guidelines in order to make possible its comparison with the results of all the other
algorithms involved in the competition (their results are available in the Proceedings of
the Congress).

Nonparametric tests can be used for comparing the results of different search algo-
rithms (Garcı́a et al., 2009). Given that the nonparametric tests do not require explicit
conditions to be conducted, it is recommended that the sample of results would be
obtained following the same criterion, which is, to compute the same aggregation (av-
erage, mode, etc.) over the same number of runs for each algorithm and problem.

We have chosen this type of statistical test because in our experiments we carry
out many comparisons with algorithms presented in the CEC2005 Special Session on
Real Parameter Optimisation (Suganthan et al., 2005), and precisely, the average results
achieved by them (for the functions listed in the previous section) are directly available,
since they were published in the Proceedings of the Congress.

In particular, we have considered two alternative methods based on nonparametric
tests to analyse the experimental results:

1. The first method is the application of the Iman and Davenport test and the Holm
method as a post hoc procedure. The first test may be used to see whether there are
significant statistical differences among the algorithms on a certain group of test
algorithms. If differences are detected, then Holm’s test is employed to compare
the best algorithm (control algorithm) against the remaining ones.

2. The second method is the utilisation of the Wilcoxon matched-pairs signed-ranks
test. With this test, the results of two algorithms may be directly compared.

We explain these statistical tests with detail in Appendix A.

6 Analysis of the Results

In this section, we analyse the results obtained from different experimental studies
carried out with MA-LSCh-CMA. In particular, our aims are: (1) to investigate its sensi-
tivity to certain parameter choices (Section 6.1); (2) to understand the way this algorithm
behaves (Section 6.2); and (3) to ascertain whether the innovative design is suitable to
outperform other MACOs (Section 6.3) and EAs for continuous optimisation (Sections
6.4 and 6.5).

6.1 Influence of the LS Intensity Stretch

In our first empirical study, we investigate the influence of Istr on the performance
of MA-LSCh-CMA. In particular, we analyse the behaviour of this algorithm when
different values for this parameter are considered (Istr = 100, 500, and 1000).

Evolutionary Computation Volume 18, Number 1 45

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

Figure 6: Rankings obtained by MA-LSCh-CMA instances with different Istr values.

Table 1: Results of the Iman-Davenport test.

Iman-Davenport Critical Significant
D value value differences?

10 3.90 2.77 Yes
30 1.17 2.77 No
50 0.33 2.77 No

Figure 6 shows the average rankings (computed by the Friedman’s test) obtained
by the MA-LSCh-CMA instances with different Istr values on the test functions with
dimensions D = 10, D = 30, and D = 50. Each column represents the average ranking
obtained by an algorithm; that is, if a certain algorithm achieves rankings 1, 3, 1, 4 and 2,
on five test functions, the average ranking is 1+3+1+4+2

5 = 11
5 . The height of each column

is proportional to the ranking. Therefore, the lower a column is, the better its associated
algorithm is. In order to study these results, we have introduced Table 1, which outlines
the Iman-Davenport statistics (see Appendix A) and their critical values at the 5% level
when comparing these average rankings.

A visual inspection of Table 1 allows one to conclude that:

• For D = 30 and D = 50, there are not significant differences among the MA-LSCh-
CMA instances (the statistical values are not greater than the critical values). Thus,
for these two cases, MA-LSCh-CMA is rather insensitive to the LS intensity stretch.
These results indicate that, independent of the value for this parameter, the pro-
posed MACO model may relapse into the refinement of particular search zones
(by means of LS chaining) with the aim of achieving a real LS intensity being the
most profitable result possible for those areas.

• For D = 10, we observe the existence of significant differences among the rank-
ings (the statistical value is greater than the critical value, 2.77). With regard to
this result, we compare the best ranked instance, Istr = 100 (see Figure 6) with the
other instances, by means of Holm’s test (a post hoc statistical analysis), where the
instance with Istr = 100 is the control algorithm. Table 2 contains all the compu-
tations associated with Holm’s procedure (z, p value, and α/i) with p = .05. The
last column indicates whether the corresponding algorithm performs statistically

46 Evolutionary Computation Volume 18, Number 1

http://www.mitpressjournals.org/action/showImage?doi=10.1162/evco.2010.18.1.18102&iName=master.img-002.jpg&w=260&h=134

Memetic Algorithms Based on Local Search Chains

Table 2: Comparison, using Holm’s test, of the instance with Istr = 100 with the
remaining ones (D = 10).

Significant
Istr z p value α/i differences?

1000 2.609 .0090 0.0250 Yes
500 1.185 .2356 0.0500 No

equivalent to the control algorithm (i.e., the equality hypothesis is accepted) or the
control algorithm performs significantly better than the corresponding algorithm
(i.e., the equality hypothesis is rejected).

In Table 2, we see that only Istr = 1000 causes performance detrimental with regard
to Istr = 100. With this high intensity stretch value, the process for creating LS chains may
consume, frequently, too many evaluations. Given the reduced number of evaluations
adjudicated to MA-LSCh-CMA for D = 10 (100,000), this circumstance may imply that
MA-LSCh-CMA does not have enough computation time to adequately refine diverse
search zones.

We extract an important conclusion from this study: MA-LSCh-CMA exhibits a low
sensitivity degree to the value selected for Istr. We have chosen a particular value for
Istr, in order to allow the incoming study of our proposal and the comparison with other
EA models to be easily understandable. Observing Figure 6, we note that Istr = 500 is
the best choice, because it obtains the lower rankings for D = 30 and D = 50, and in
addition, this setting is able to achieve similar results as the best Istr value for D = 10
(see Table 2). (See Appendix B, Table 11, for the results of our algorithm with this setting
for all test functions).

6.2 Studying the Behaviour of the Proposed MACO Model

In this section, we cover two types of experiments we performed in order to investigate
the behaviour of the proposed MACO model.

• In our first experiment, we attempted to show the superiority of MA-LSCh-CMA
against an MACO that applies CMA-ES as LS method, following a standard hy-
bridisation strategy (Section 6.2.1). Our aim was to determine whether the proposed
MACO may really profit from the use of the intense continuous LS methods as LS
operators for MACOs.

• In our second experiment, we compared MA-LSCh-CMA with another kind of
continuous optimisation algorithm proposed in the literature that invokes CMA-
ES for refining single solutions during the search process (Section 6.2.2). We are
interested in investigating the way our MACO approach may take more advantage
of the potentiality of this algorithm as the local optimiser.

• Finally, we investigate whether MA-LSCh-CMA adaptively tunes the LS intensity
for CMA-ES throughout the evolution depending on the particular problem to be
solved, allowing a robust operation to be achieved (Section 6.2.3).

6.2.1 Comparison with a Standard MACO
This section presents a performance comparison between the proposed algorithm and
a standard MACO, which will be denoted as S-MACO. The basic difference between

Evolutionary Computation Volume 18, Number 1 47

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

Table 3: Results of the Iman-Davenport test.

Iman-Davenport Critical Significant
D value value differences?

10 1.37 2.77 No
30 13.03 2.77 Yes
50 8.54 2.77 Yes

Table 4: Comparison (Holm’s test) of S-MACO with ILS = 1000 with the remaining
values when D = 30 and D = 50.

Significant
D ILS z p value α/i differences?

30 100 4.032 5.53E005 0.025 Yes
30 500 1.897 0.05778 0.050 No

50 100 3.478 0.0050 0.025 Yes
50 500 2.214 0.02685 0.050 Yes

S-MACO and MA-LSCh-CMA is that the former applies the LS method following the
MACO approach proposed by Hart (1994): every new chromosome generated by BLX-
α and BGA mutation undergoes the CMA-ES LS procedure with a probability pLS.
In each invocation, CMA-ES starts from default values for its strategy parameters and
consumes ILS evaluations. Three different values for ILS were investigated: 100, 500, and
1000. For each ILS value, a suitable pLS value was calculated with the aim of fitting the
L
G

ratio kept by S-MACO to 0.5, such as MA-LSCh-CMA does (in particular, pLS = .01,
.002, and .001, respectively).

S-MACO represents a simple way to hybridize CMA-ES with the steady state GA
employed in MA-LSCh-CMA. Using the same GA scheme and changing the type of
hybridization mechanism, we may determine whether the approach to manage LS
chains is really able to provide a better operation of CMA-ES as an intense continuous
LS operator with regard to a standard MACO that does not handle LS chains.

Firstly, we have attempted to find the value for ILS that performs the best for the
different dimensions. For D = 10, we see in Table 3 that the Iman-Davenport test did
not detect significant differences among the results obtained using the three ILS values.
For the case of D = 30 and D = 50, this test found significant differences, and then, we
compared the best ranked value for these two dimensions, ILS = 1000, with the other
two values calculated by means of the Holm test (Table 4). This test indicates that, in
general, ILS = 1000 outperforms the results of the other values. Then, we conclude that
ILS = 1000 becomes a convenient value for S-MACO. (See Appendix B, Table 12, for the
results of this algorithm for all test functions.)

Now we can compare S-MACO with ILS = 1000 and MA-LSCh-CMA (Istr = 500)
using Wilcoxon’s test. Table 5 summarizes the results of this procedure, where the values
of R+ (associated to MA-LSCh-CMA) and R− of the test are specified (the highest ones,
which correspond with the best results, are noted in boldface type), together with the
critical values.

We note that MA-LSCh-CMA obtains better results than S-MACO for all dimensions
(the R− values are lower than the R+ ones). But in addition, the statistical test indicates
that these improvements are statistically significant for D = 30 and D = 50 (because
these R− values are lower than the critical values).

48 Evolutionary Computation Volume 18, Number 1

Memetic Algorithms Based on Local Search Chains

Table 5: S-MACO versus MA-LSCh-CMA using Wilcoxon’s test (p value = .05); best
results are in boldface type.

R+ R− Critical Significant
D (MA-LSCh-CMA) (S-MACO) value differences?

10 131.5 78.5 52 No
30 193 17 52 Yes
50 164.5 45.5 52 Yes

Table 6: L-CMA-ES versus MA-LSCh-CMA (Wilcoxon’s test with p value = .05).

R+ R− Critical Significant
D (MA-LSCh-CMA) (L-CMA-ES) value differences?

10 109.5 100.5 52 No
30 165 45 52 Yes
50 165 45 52 Yes

These initial experiments suggest that our specific MACO design may really en-
hance the operation of CMA-ES as an LS operator for these algorithms. Thus, it is a
promising candidate for exploiting the abilities of an intense continuous LS method as
an LS operator for MACOs.

6.2.2 Comparison with a Restart Local Search Algorithm
Being fascinated by the potential of CMA-ES as local optimiser, Auger and Hansen
(2005b) proposed a restart LS algorithm (referred to as L-CMA-ES in the following)
that performs a version of CMA-ES with small population size and small initial step
size to stress its LS characteristics. Independent restarts are conducted until the tar-
get function value is reached or the maximum number of function evaluations is
exceeded.

In this section, we carry out the comparison of MA-LSCh-CMA with L-CMA-ES,
which seems natural, because both algorithms invoke CMA-ES instances that specifi-
cally emphasise the local refinement abilities of this algorithm. Table 6 has the results
of the comparison of these two algorithms, by means of the Wilcoxon test.

MA-LSCh-CMA exhibits overall better performance than L-CMA-ES for D = 30
and D = 50 (the R− values are lower than both the R+ ones and the critical values). For
D = 10, there are no differences between them. This unbiased comparison with regard
to the LS operator has allowed us to know that our memetic framework shows promise
as a global search approach based on CMA-ES. Particularly significant improvements
are obtained at higher dimensionality, where the work of the proposed hybridisation
method outperforms the pure restart local search strategy.

6.2.3 Study of the Adaptation of the LS Intensity
In this section, we are interested in determining whether MA-LSCh-CMA adjusts the
length of the LS chains (i.e., the LS intensity levels assigned to CMA-ES) according
to the particularities of the problem to be solved, allowing performance improvement
to be achieved. In order to do this, we have introduced Figures 7, 8, and 9, which
display the percentage in which LS chains with different lengths (number of links) were
found throughout the first run of our algorithm on three well-known test functions, the
Generalized Rosenbrock’s function (F6), Griewangk’s function (F7), and the Generalized

Evolutionary Computation Volume 18, Number 1 49

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

Figure 7: Percentages of LS chains with different lengths (D = 10).

Figure 8: Percentages of LS chains with different lengths (D = 30).

Rastringin’s function (F9), and two additional functions, F21 and F24, which belong to
the group of hybrid functions, which are extremely complex, as was mentioned in
Section 5.1.

We note the following two observations.

1. Traditionally, Rosenbrock’s function (F6) was claimed to be unimodal. However,
Deb and colleagues (2002) noticed that for D > 3, this function has more than one
minima (and for 20 variables, they identified three minima). The global optimum
of this function is located in a steep parabolic valley with a flat bottom. This
feature will probably cause slow progress in any optimisation algorithm, because
it must continually change search direction to reach the optimum. We observe
that for D = 10 and D = 30, long LS chains were formed during the evolution
of MA-LSCh-CMA when tackling F6 (Figures 7 and 8). By assigning high LS
intensity to CMA-ES, our algorithm qualifies it to adapt its search process to the
complicated access to the global optimum. This option becomes suitable, as well,
for this problem with few local optima, because it allows high accuracy to be
achieved with an inconsiderable risk of losing reliability.

50 Evolutionary Computation Volume 18, Number 1

Memetic Algorithms Based on Local Search Chains

Figure 9: Percentages of LS chains with different lengths (D = 50).

2. Griewangk’s function (F7) and Rastringin’s function (F9) are multimodal functions
with many local optima. We may see that when D = 10 (Figure 7), the higher
percentage for these two functions corresponds to one-length LS chains. This
means that CMA-ES often refined individuals that did not belong to previously
created chains, that is, it operated with minimal LS intensity. This strategy may be
fruitful for high multimodal and complex functions, because, in this fashion, the
LS procedure exploits diverse search zones being sampled by the steady state GA,
without taking a long time over a particular zone.

The complexity of Rastringin’s function increases for D = 30. Our algorithm reacted
to this circumstance by forming uniquely mono-length LS chains (Figure 8). Interest-
ingly, it has favoured, as well, the proliferation of these LS chains when dealing with
the complex hybrid functions F21 and F24, for every dimensionality and, in general,
with all functions for D = 50 (most functions turn into very hard problems with this
dimensionality). Nevertheless, the behaviour of MA-LSCh-CMA on Griewangk’s func-
tion with D = 30 (Figure 8) is clearly different; it managed LS chains from 11 to 20 of
length. This function becomes easier when the dimension exceeds 15 (Whitley et al.,
1996; Yang and Kao, 2000). Our algorithm was able to adapt its conduct to this situation
by inducing the formation of longer LS chains (high LS intensification is well-suited for
noncomplex problems).

To sum up, this study shows that the adaptation ability of MA-LSCh-CMA allows
the LS intensity for CMA-ES to be adjusted according to the particularities of the
search space, allowing an adequate operation to be attained for problems with different
difficulties.

6.3 Comparison with State of the Art MACOs

In a recent publication, Noman and Iba (2008) present a MACO model, called DEahcSPX,
which combines differential evolution with a quick continuous LS method that consists
of an XLS algorithm based on the simplex real-parameter multi-parent crossover op-
erator (see Section 3.2). The authors compared DEahcSPX with other MACO instances
reported in the literature, which include meta-Lamarckian MACOs (see Section 3.1)
and differential evolution with the XLS strategy proposed by Lozano et al. (2004).

Evolutionary Computation Volume 18, Number 1 51

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

Table 7: DEahcSPX versus MA-LSCh-CMA (Wilcoxon’s test with p value = .05). Best
values are shown in boldface type.

R+ R− Critical Significant
D (MA-LSCh-CMA) (DEahcSPX) value differences?

10 135 75 52 No
30 169.5 40.5 52 Yes
50 176.5 33.5 52 Yes

They found that their proposal was superior to, or at least comparable to, these other
instances. Thus, we assume that DEahcSPX is, up to now, the most outstanding repre-
sentative of the state of the art MACOs.

In this section, we undertake comparative analysis among DEahcSPX and MA-
LSCh-CMA using Wilcoxon’s test. Table 7 contains the results of this statistical test.
(Table 13, in Appendix B, has the results of this algorithm on the test suite.)

The results of MA-LSCh-CMA show higher quality than the ones of DEahcSPX
on the three dimensions studied (all the R− values are lower than the R+ ones). In
addition, the superiority is statistically significant for D = 30 and D = 50. Thus, as we
expected, the design of a specific MACO model making the application of CMA-ES
profitable as an intense continuous LS operator may really enhance the performance of
this type of hybrid EA. In fact, our proposal has turned out to be very competitive with
state of the art MACOs.

6.4 Comparison with the Winner of the CEC2005 Competition: G-CMA-ES

The winner of the Real-Parameter Optimization competition was G-CMA-ES (as recog-
nised by Langdon and Poli, 2008), an algorithm initially proposed by Hansen and Kern
(2004) that was investigated in Auger and Hansen (2005a) for optimising the test suite of
the CEC2005 competition. In fact, nowadays, it is recognised as a formidable algorithm
for continuous optimisation problems (Lunacek et al., 2005; Lunacek and Whitley, 2006;
Langdon and Poli, 2008).

G-CMA-ES is a restart CMA-ES variation that detects premature convergence and
launches a restart strategy that doubles the population size on each restart. By increasing
the population size, the search characteristic becomes more global after each restart,
which empowers the operation of the CMA-ES on multimodal functions (Hansen and
Kern, 2004).

Next, we attempt to determine the quality of MA-LSCh-CMA as continuous op-
timiser confronting it with the current best algorithm for continuous optimisation,
G-CMA-ES. In order to detect the differences among these algorithms, we have applied
Wilcoxon’s test. Table 8 contains the results for p = .05 and .1.

The results presented in Table 8 reveal the following.

• For D = 30 and D = 50, our newly proposed MACO outperformed G-CMA-ES
(for these two cases, the R− values are lower than the R+ values associated with
MA-LSCh-CMA).

• Particularly, meaningful advantage is achieved at the highest dimensionality, D =
50 (considering p = .1).

• G-CMA-ES clearly beats our algorithm only for the lowest dimension, D = 10.

52 Evolutionary Computation Volume 18, Number 1

Memetic Algorithms Based on Local Search Chains

Table 8: G-CMA-ES versus MA-LSCh-CMA (Wilcoxon’s test with p value = .05 and
p value = .1). Best values are shown in boldface type.

Critical Significant Significant
R+ R− value differences? differences?

D (MA-LSCh-CMA) (G-CMA-ES) (p = .05/p = .1) (p = .05) (p = .1)

10 32.5 177.5 52/60 Yes Yes
30 139 71 52/60 No No
50 154 56 52/60 No Yes

We note that MA-LSCh-CMA arises as one of the most prominent algorithms for
global optimisation over continuous spaces; especially as dimensionality starts posing
real challenges for any continuous function optimisation program. To affront high com-
plexity, MA-LSCh-CMA simultaneously puts into effect two important search processes.

1. The steady state GA induces a scattered search by means of the application of
techniques promoting population diversity: BLX-α, negative assortative mating,
and BGA mutation (see Section 4.4). This is essential to provide reliability for
multimodal and complex problems.

2. The proliferation of long LS chains in the best regions becomes suitable to obtain
adequate accuracy levels, but also, the activation of LS chains in alternative re-
gions (supplied by the steady state GA) ensures effective refinement of diverse
prospective areas of the search space.

To sum up, the way MA-LSCh-CMA faces the conflict between accuracy and re-
liability allows this algorithm to be specifically well-suited to deal with complicated
search spaces, even outperforming G-CMA-ES in these cases.

6.5 Comparison with the Other CEC2005 Competitors

The main aim of this section is to compare our MACO model with the CEC2005 com-
petitors (L-CMA-ES and G-CMA-ES have not been considered because they were com-
pared in previous sections). For D = 10, the results of nine algorithms listed below are
available.

• Three GA instances for continuous optimisation: K-PCX (Sinha et al., 2005), SPC-
PNX (Ballester et al., 2005), and CoEvo (Posik, 2005).

• One hybrid EA: BLX-GL50 (Garcı́a-Martı́nez and Lozano, 2005).

• One MACO instance: BLX-MA (Molina et al., 2005).

• One particle swarm optimiser: DMS-L-PSO (Liang and Suganthan, 2005).

• Two differential evolution algorithms: DE (Ronkkonen et al., 2005) and L-SADE
(Qin and Suganthan, 2005).

• One instance of estimation distribution algorithm: EDA (Yuan and Gallagher, 2005).

For D = 30, the results of only six out of the previous nine algorithms were reported.
Finally, we should point out that none of these algorithms was studied for D = 50. The

Evolutionary Computation Volume 18, Number 1 53

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

Table 9: Comparison of MA-LSCh-CMA with CEC2005 competitors for D = 10
(Wilcoxon’s test with p value = .05). Best results are in boldface type.

R+ R− Critical Significant
Algorithm (MA-LSCh-CMA) (CEC2005) value differences?

BLX-GL50 92.5 117.5 52 No
BLX-MA 79 131 52 No
CoEvo 157 53 52 No
DE 122 88 52 No
DMS-L-PSO 54.5 155.5 52 No
EDA 98 112 52 No
K-PCX 128 82 52 No
L-SaDE 48.5 161.5 52 Yes
SPC-PNX 95 115 52 No

Table 10: Comparison of MA-LSCh-CMA with CEC2005 competitors for D = 30
(Wilcoxon’s test with p value = .05). Best results are in boldface type.

R+ R− Critical Significant
Algorithm (MA-LSCh-CMA) (CEC2005) value differences?

BLX-GL50 166 44.5 52 Yes
BLX-MA 198 11.5 52 Yes
CoEvo 210 0 52 Yes
DE 199.5 10.5 52 Yes
K-PCX 174 36 52 Yes
SPC-PNX 169.5 40.6 52 Yes

performance comparison among MA-LSCh-CMA and each one of the algorithms was
carried out by means of Wilcoxon’s test. Tables 9 and 10 have the results for D = 10 and
D = 30, respectively.

We note the following observations concerning Tables 9 and 10.

• Table 9 points out that six algorithms exhibited superior performance compared
to MA-LSCh-CMA for D = 10 (their associated R− values are higher than the
corresponding R+ values for our algorithm). Nevertheless, only L-SaDE might
achieve statistically significant improvements.

• The most significant remark from Table 10 is that MA-LSCh-CMA achieves better
performance than all these CEC2005 competitors for D = 30. Again, as complexity
increases, our proposal reveals satisfactory potential as a search algorithm for
continuous optimisation problems.

These results, along with the remarks from Section 6.4, allow us to conclude that
MA-LSCh-CMA is very competitive, as well, with the state of the art on EAs for con-
tinuous optimisation.

7 Conclusions

This paper presented the concept of the LS chain as a means to build a new MACO
model that can effectively apply intense continuous LS methods as LS operators. One of

54 Evolutionary Computation Volume 18, Number 1

Memetic Algorithms Based on Local Search Chains

the most outstanding features of this model is that it forces the continuous LS algorithm
to act more intensely in the visited search zones that show higher quality.

An instance of this MACO model was implemented, called MA-LSCh-CMA, which
employs a local optimiser devised by enhancing LS aptitudes of CMA-ES.

An experimental study carried out following guidelines recommended for the CEC
2005 Special Session on Real-Parameter Optimisation, has shown that it is very com-
petitive with the state of the art on both MACOs and EAs for continuous optimisation.
Particularly significant improvements were obtained for high-dimensional optimisa-
tion problems, where it might outperform G-CMA-ES, which, nowadays, has arisen as
a reference point in the literature. In addition, we have confirmed empirically that MA-
LSCh-CMA may really make good use of CMA-ES, and therefore, the presented MACO
model is a good candidate for exploiting the introduction of the intense continuous LS
method into MACOs.

Acknowledgments

The authors thank Nasimul Noman and Hitoshi Iba for letting us use their DEahcSPX
code, and N. Hansen for kindly providing his implementation of CMA-ES in Matlab.

References

Abramowitz, M. (1974). Handbook of mathematical functions, with formulas, graphs, and mathematical
tables. Dover Publications.

Auger, A., and Hansen, N. (2005a). A restart CMA evolution strategy with increasing population
size. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, pp. 1769–1776.

Auger, A., and Hansen, N. (2005b). Performance evaluation of an advanced local search evo-
lutionary algorithm. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation,
pp. 1777–1784.

Auger, A., Schoenauer, M., and Vanhaecke, N. (2004). LS-CMAES: A second-order algorithm for
covariance matrix adaptation. In Proceedings of the Parallel Problem Solving for Nature - PPSN
VIII, Birmingham, AL.

Ballester, P. J., Stephenson, J., Carter, J., and Gallager, K. (2005). Real-parameter optimization
performance study on the CEC-2005 benchmark with SPC-PNX. In Proceedings of the 2005
IEEE Congress on Evolutionary Computation, pp. 498–505.

Bambha, N. K., Bhattacharyya, S. S., Teich, J., and Zitzler, E. (2004). Systematic integration of
parameterized local search into evolutionary algorithms. IEEE Transactions on Evolutionary
Computation, 8(2):137–155.

Beyer, H. G., and Deb, K. (2001). On self-adaptive features in real-parameter evolutionary algo-
rithms. IEEE Transactions on Evolutionary Computation, 5(3):250–270.

Beyer, H. G., and Schwefel, H. P. (2002). Evolution strategies. Natural Computing, 1:3–52.

Bonissone, P. P., Subbu, R., Eklund, N., and Kiehl, T. R. (2006). Evolutionary algorithms + do-
main knowledge = real-world evolutionary computation. IEEE Transactions on Evolutionary
Computation, 10(3):256–280.

Burke, E., and Smith, A. (2000). Hybrid evolutionary techniques for the maintenance scheduling
problem. IEEE Transactions on Power Systems, 15(1):122–128.

Caponio, A., Cascella. G. L., Neri, F., Salvatore, N., and Sumner, M. (2007). A fast adaptive
memetic algorithm for online and offline control design of PMSM drives. IEEE Transactions
on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(1):28–41.

Evolutionary Computation Volume 18, Number 1 55

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

Chelouah, R., and Siarry, P. (2003). Genetic and Nelder-Mead algorithms hybridized for a more
accurate global optimization of continuous multiminima functions. European Journal of Op-
erational Research, 148(2):335–348.

Davis, L. (1991). Handbook of genetic algorithms. New York: Van Nostrand Reinhold.

Deb, K., Anand, A., and Joshi, D. (2002). A computationally efficient evolutionary algorithm for
real-parameter evolution. Evolutionary Computation Journal, 10(4):371–395.

Eshelman, L. J. (1991). The CHC adaptive search algorithm: How to have safe search when
engaging in nontraditional genetic recombination. In G. J. E. Rawlin (Ed.), Foundations of
Genetic Algorithms 1 (pp. 265–283). San Mateo, CA: Morgan Kaufmann.

Eshelman, L. J., and Schaffer, J. D. (1993). Real-coded genetic algorithms and interval-schemata.
In L. D. Whitley (Ed.), Foundations of Genetic Algorithms 2 (pp. 187–202). San Mateo, CA:
Morgan Kaufmann.

Fernandes, C., and Rosa, A. (2001). A study on non-random mating and varying population
size in genetic algorithms using a royal road function. In Proceedings of the 2001 Congress on
Evolutionary Computation (pp. 60–66). Piscataway, NJ: IEEE Press.

Garcı́a, S., Molina, D., Lozano, M., and Herrera, F. (2009). A study on the use of non-parametric
tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC’2005
special session on real parameter optimization. Journal of Heuristics, 15:617–644.

Garcı́a-Martı́nez, C., and Lozano, M. (2005). Hybrid real-coded genetic algorithms with female
and male differentiation. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation,
pp. 896–903.

Goldberg, D. E., and Deb, K. (1991). A comparative analysis of selection schemes used in genetic
algorithms. In G. J. E. Rawlins (Ed.), Foundations of genetic algorithms (pp. 69–93). San Mateo,
CA: Morgan Kaufmann.

Goldberg, D. E., and Voessner, S. (1999). Optimizing global-local search hybrids. In W. Banzhaf
et al. (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference’99 (pp. 220–
228). San Mateo, CA: Morgan Kaufmann.

Hansen, N. (2005). Compilation of results on the CEC benchmark function set. Technical Report.
Institute of Computational Science, ETH Zurich, Switerland. Retrieved from http://www
.ntu.edu.sg/home/epnsugan/index files/CEC-05/compareresults.pdf.

Hansen, N., and Kern, S. (2004). Evaluating the CMA evolution strategy on multimodal test
functions. In Xin Yao et al. (Eds.), Proceedings of the Parallel Problem Solving for Nature, PPSN
VIII, LNCS 3242, pp. 282–291. Berlin: Springer.

Hansen, N., Müller, S. D., and Koumoutsakos, P. (2003). Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary
Computation, 11(1):1–18.

Hansen, N., and Ostermeier, A. (2001). Completely derandomized self-adaptation in evolution
strategies. Evolutionary Computation 9(2):159–195.

Hart, W. E. (1994). Adaptive global optimization with local search. Ph.D. Thesis, University of
California, San Diego.

Hart, W. E., Krasnogor, N., and Smith, J. E. (Eds.). (2004a). Recent advances in memetic algorithms.
Studies in Fuzzyness and Soft Computing Series, Vol. 166. Berlin: Springer. New York:
Heidelberg.

Hart, W. E., Krasnogor, N., and Smith, J. E. (2004b). Editorial introduction special issue on
memetic algorithms. Evolutionary Computation, 12(3):v–vi.

56 Evolutionary Computation Volume 18, Number 1

Memetic Algorithms Based on Local Search Chains

Hart, W. E., Rosin, C. R., Belew, R. K., and Morris, G. M. (2000). Improved evolutionary hybrids
for flexible ligand docking in autodock. In Proceedings of the International Conference on
Optimization in Computational Chemistry and Molecular Biology, pp. 209–230.

Herrera, F., Lozano, M., and Verdegay, J. L. (1998). Tackling real-coded genetic algorithms:
Operators and tools for the behavioral analysis. Artificial Intelligence Review, 12(4):265–319.

Houck, C. R., Joines, J. A., Kay, M. G., and Wilson, J. R. (1997). Empirical investigation of the
benefits of partial Lamarckianism. Evolutionary Computation, 5(1):31–60.

Iman, R. L., and Davenport, J. M. (1980). Approximations of the critical region of the Friedman
statistic. Communications in Statistics, 18:571–595.

Ishibuchi, H., Yoshida, T., and Murata, T. (2003). Balance between genetic search and local
search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE
Transactions on Evolutionary Computation, 7(2):204–223.

Joines, J. A., and Kay, G. M. (2002). Hybrid genetic algorithms and random linkage. In Proceedings
of the 2002 Congress of Evolutionary Computation, pp. 1733–1738. Piscataway, NJ: IEEE Press.

Kennedy, J., and Eberhart, R. C. (1995). Particle swarm optimization. In Proceedings of the IEEE
International Conference of Neural Networks, pp. 1942–1948.

Kita, H. (2001). A comparison study of self-adaptation in evolution strategies and real-coded
genetic algorithms. Evolutionary Computation, 9(2):223–241.

Krasnogor, N. (2002). Studies on the theory and design space of memetic algorithms. Ph.D.
Thesis, University of the West of England, Bristol, United Kingdom.

Krasnogor, N., and Gustafson, S. (2004). A study on the use of self-generation in memetic
algorithms. Natural Computing, 3(1):53–76.

Krasnogor, N., and Smith, J. (2000). A memetic algorithm with self-adapting local search: TSP
as a case study. In Proceedings of the 2000 International Conference on Genetic and Evolutionary
Computation, pp. 987–994. San Mateo, CA: Morgan Kaufmann.

Krasnogor, N., and Smith J. E. (2001). Emergence of profitable search strategies based on a simple
inheritance mechanism. In Proceedings of the 2001 International Conference on Genetic and
Evolutionary Computation, pp. 432–439. San Mateo, CA: Morgan Kaufmann.

Krasnogor, N., and Smith, J. E. (2005). A tutorial for competent memetic algorithms: Model,
taxonomy, and design issue. IEEE Transactions on Evolutionary Computation, 9(5):474–
488.

Laguna, M., and Martı́, R. (2003). Scatter search. Methodology and implementation in C. Dordrecht,
The Netherlands: Kluwer Academic Publishers.

Land, M. W. S. (1998). Evolutionary algorithms with local search for combinatorial optimization.
Ph.D. Thesis, University of California, San Diego.

Langdon, W. B., and Poli, R. (2008). Evolving problems to learn about particle swarm optimizers
and other search algorithms. IEEE Transactions on Evolutionary Computation, 11(5):561–578.

Lee, C.-Y., and Yao, X. (2004). Evolutionary programming using mutations based on the Levy
probability distribution. IEEE Transactions on Evolutionary Computation, 8(1):1–13.

Liang, J. J., and Suganthan, P. N. (2005). Dynamic multi-swarm particle swarm optimizer with
local search. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, pp. 522–528.

Liu., D., Tan, K. C., Goh, C. K., and Ho, W. K. (2007). A multiobjective memetic algorithm based
on particle swarm optimization. IEEE Transactions on Systems, Man, and Cybernetics Part B:
Cybernetics, 37(1):42–50.

Evolutionary Computation Volume 18, Number 1 57

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

Lozano, M., Herrera, F., Krasnogor, N., and Molina, D. (2004). Real-coded memetic algorithms
with crossover hill-climbing. Evolutionary Computation, 12(3):273–302.

Lunacek, M., and Whitley, D. (2006). The dispersion metric and the CMA evolution strategy. In
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2006), pp. 477–484.

Lunacek, M., Whitley, D., and Knight, J. N. (2005). Measuring mobility and the performance of
global search algorithms. In Proceedings of the Genetic and Evolutionary Computation Conference
(GECCO 2005), pp. 1209–1216.

Merz, P. (2000). Memetic algorithms for combinatorial optimization problems: Fitness landscapes
and effective search strategies. Ph.D. Thesis, University of Siegen, Germany.

Molina, D., Herrera, F., and Lozano, M. (2005). Adaptive local search parameters for real-coded
memetic algorithms. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation,
pp. 888–895.

Moscato, P. A. (1989). On evolution, search, optimization, genetic algorithms and martial arts:
Towards memetic algorithms. Technical Report. Caltech Concurrent Computation Program
Report 826, Caltech, Pasadena, CA.

Moscato, P. A. (1999). Memetic algorithms: A short introduction. In D. Corne, M. Dorigo, and
F. Glower (Eds.), New ideas in optimization (pp. 219–234). New York: McGraw-Hill.

Moscato, P. A., and Cotta, C. (2003). A gentle introduction to memetic algorithms. In F. Glover
and G. Kochenberger (Eds.), Handbook of metaheuristics (pp. 105–144). Dordrecht, The
Netherlands: Kluwer Academic Publishers.

Mühlenbein, H., and Schlierkamp-Voosen, D. (1993). Predictive models for the breeder genetic
algorithm in continuous parameter optimization. Evolutionary Computation, 1:25–49.

Mühlenbein, H., Schomisch, M., and Born, J. (1991). The parallel genetic algorithm as function
optimizer. In R. Belew and L. B. Booker (Eds.), Fourth International Conference on Genetic
Algorithms (pp. 271–278). San Mateo, CA: Morgan Kaufmann.

Noman, N., and Iba, H. (2005). Enhancing differential evolution performance with local search
for high dimensional function optimization. In Proceedings of the 2005 Conference on Genetic
and Evolutionary Computation (GECCO 2005), pp. 967–974.

Noman, N., and Iba, H. (2008). Accelerating differential evolution using an adaptive local search.
IEEE Transactions on Evolutionary Computation, 12(1):107–125.

Nomura, T., and Shimohara, K. (2001). An analysis of two-parent recombinations for real-valued
chromosomes in an infinite population. Evolutionary Computation, 9(3):283–308.

Ong, Y. S., and Keane, A. J. (2004). Meta-Lamarckian learning in memetic algorithms. IEEE
Transactions on Evolutionary Computation, 4(2):99–110.

Ong, Y. S., Krasnogor, N., and Ishibuchi, H. (2007). Guest editorial: Special issue on memetic
algorithms. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 37(1):2–5.

Ong, Y. S., Lim, M.-H., Zhu, N., and Wong, K. W. (2006). Classification of adaptive memetic
algorithms: A comparative study. IEEE Transactions on Systems, Man, and Cybernetics,
36(1):141–152.

Posik, P. (2005). Real parameter optimisation using mutation step co-evolution. In Proceedings of
the 2005 IEEE Congress on Evolutionary Computation, pp. 872–879.

Qin, A .K., and Suganthan, P. N. (2005). Self-adaptive differential evolution algorithm for
numerical optimization. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation,
pp. 1785–1791.

58 Evolutionary Computation Volume 18, Number 1

Memetic Algorithms Based on Local Search Chains

Renders, J. M., and Bersini, H. (1994). Hybridizing genetic algorithms with hill-climbing methods
for global optimization: Two possible ways. In Proceedings of the First IEEE Conference on
Evolutionary Computation, pp. 312–317. Piscataway, NJ: IEEE Press.

Renders, J. M., and Flasse, S. P. (1996). Hybrid methods using genetic algorithms for global
optimization. IEEE Transactions on Systems, Man, and Cybernetics, 26(2):243–258.

Ronkkonen, J., Kukkonen, S., and Price, K. V. (2005). Real-parameter optimization with differential
evolution. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation, pp. 506–513.

Rosin, C. D., Halliday, R. S., Hart, W. E., and Belew, R. K. (1997). A comparison of global and local
search methods in drug docking. In T. Bäck (Ed.), Proceedings of the Seventh International
Conference on Genetic Algorithms, pp. 221–228. San Mateo, CA: Morgan Kaufmann.

Sheskin, D. J. (2003). Handbook of parametric and nonparametric statistical procedures. Boca Raton,
FL: CRC Press.

Shimodaira, H. (1996). A new genetic algorithm using large mutation rates and population-elitist
selection (GALME). In Proceedings of the International Conference on Tools with Artificial
Intelligence, pp. 25–32.

Sinha, A., Tiwari, S., and Deb., K. (2005). A population-based, steady-state procedure for real-
parameter optimization. In 2005 IEEE Congress on Evolutionary Computation, pp. 514–521.

Smith, J. E. (2007). Coevolving memetic algorithms: A review and progress report. IEEE
Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 37(1):6–17.

Solis, F. J., and Wets, R. J.-B. (1981). Minimization by random search techniques. Mathematical
Operations Research, 6:19–30.

Storn, R., and Price, K. V. (1997). Differential evolution—A simple and efficient heuristic for
global optimization over continuous spaces. Journal of Global Optimization, 11(4):341–359.

Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y. P., Auger, A., and Tiwari, S.
(2005). Problem definitions and evaluation criteria for the CEC 2005 special session
on real parameter optimization. Technical Report. Nanyang Technological University.
Retrieved from http://www.ntu.edu.sg/home/epnsugan/index files/CEC-05/Tech
-Report-May-30-05.pdf.

Sywerda, G. (1989). Uniform crossover in genetic algorithms. In Proceedings of the International
Conference on Genetic Algorithms, pp. 2–9. San Mateo, CA: Morgan Kaufmann.

Tang, J., Lim, M. H., and Ong, Y. S. (2007). Diversity-adaptive parallel memetic algorithm for
solving large scale combinatorial optimization problems. Soft Computing, 11(9):873–888.

Tsutsui, S., Yamamura, M., and Higuchi, T. (1999). Multi-parent recombination with simplex
crossover in real-coded genetic algorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-99), pp. 657–664. San Mateo, CA: Morgan Kaufmann.

Wei, L., and Zhao, M. (2005). A niche hybrid genetic algorithm for global optimization of
continuous multimodal functions. Applied Mathematics and Computation, 160(3):649–661.

Whitley, D. (1989). The GENITOR algorithm and selection pressure: Why rank-based allocation of
reproductive trials is best. In Proceedings of the International Conference on Genetic Algorithms,
pp. 116–121. San Mateo, CA: Morgan Kaufmann.

Whitley, D., Rana, S., Dzubera, J., and Mathias, E. (1996). Evaluating evolutionary algorithms.
Artificial Intelligence, 85:245–276.

Wolpert, D. H., and Macready, W. G. (1997). No free lunch theorems for optimization. IEEE
Transactions on Evolutionary Computation, 1(1):67–82.

Evolutionary Computation Volume 18, Number 1 59

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

Yang, J.-M., and Kao, C.-Y. (2000). Integrating adaptive mutations and family competition into
genetic algorithms as function optimiser. Soft Computing, 4:89–102.

Yuan, B., and Gallagher, M. (2005). Experimental results for the special session on real-parameter
optimization at CEC 2005: A simple, continuous EDA. In Proceedings of the 2005 IEEE
Congress on Evolutionary Computation, pp. 1792–1799.

Zar, J. H. (1999). Biostatistical analysis. Englewood, NJ: Prentice Hall.

Zhang, C.-K., and Shao, H. H. (2001). A hybrid strategy: Real-coded genetic algorithm and
chaotic search. In Proceedings of the IEEE International Conference on Systems, Man, and
Cybernetics 2001, pp. 2361–2364.

A Statistical Tests

In this paper, we considered two alternative methods based on nonparametric tests
to analyse the experimental results: (1) Application of Iman and Davenport’s test and
Holm’s method as a post hoc procedure (Section A.1); and (2) Utilization of the Wilcoxon
matched-pairs signed-ranks test (Section A.2).

A.1 Iman-Davenport’s Test and Holm’s Method as a Post Hoc Procedure

In order to detail Iman-Davenport’s test, we first describe Friedman’s test. This test is
used for answering this question: In a set of k samples (where k ≥ 2), do at least two of
the samples represent populations with different median values? Friedman’s test is a non-
parametric procedure employed in a hypothesis testing situation involving a design
with two or more samples. It is the analogue of the repeated-measures ANOVA for
nonparametrical statistical procedures; therefore, it is a multiple comparison test that
aims to detect significant differences between the behaviour of two or more algorithms.

The null hypothesis for Friedman’s test is H0 : θ1 = θ2 = · · · = θk ; the median of the
population i represents the median of the population j , i �= j, 1 ≤ i ≤ k, 1 ≤ j ≤ k. The
alternative hypothesis is H1 : Not H0, so it is nondirectional.

In the following, we describe the tests’ computations. It computes the ranking of
the observed results for the algorithm (rj for algorithm j with k algorithms) for each
function, assigning to the best of them the ranking 1, and to the worst the ranking k.
Under the null hypothesis, formed from supposing that the results of the algorithms
are equivalent and, therefore, their rankings are also similar, Friedman’s statistic

χ2
F = 12N

k(k + 1)

⎡
⎣∑

j

R2
j − k(k + 1)2

4

⎤
⎦ ,

is distributed according to χ2
F with k − 1 degrees of freedom, where Rj = 1

N

∑
i r

j

i , and
N is the number of functions. The critical values for the Friedman’s statistic coincide
with the ones determined by the χ2 distribution when N > 10 and k > 5. In a contrary
case, the exact values can be seen in Sheskin (2003) and Zar (1999).

Iman and Davenport (1980) proposed a derivation from Friedman’s statistic given
that this last metric produces a conservative undesirable effect. The proposed statistic is

FF = (N − 1)χ2
F

N (k − 1) − χ2
F

,

60 Evolutionary Computation Volume 18, Number 1

Memetic Algorithms Based on Local Search Chains

and it is distributed according to an F distribution with k − 1 and (k − 1)(N − 1) degrees
of freedom.

Computation of the p values given a χ2 or FF statistic can be done by using the
algorithms in Abramowitz (1974). Also, most of the statistical software packages include
it.

The rejection of the null hypothesis in both tests described above does not involve
the detection of the existing differences among the algorithms compared. They only
inform us about the presence of differences among all samples of results compared. In
order to conduct pairwise comparisons within the framework of multiple comparisons,
we can proceed with a post hoc procedure. In this case, a control algorithm (perhaps
a proposal to be compared) is usually chosen. Then, the post hoc procedures compare
the control algorithm with the remaining k − 1 algorithms.

The Holm method is one of these procedures. It sequentially checks the hypothe-
ses ordered according to their significance. We will denote the p values ordered by
p1, p2, . . . , in the way that p1 ≤ p2 ≤ · · · ≤ pk-1. Holm’s method compares each pi with
α/(k − i) starting from the most significant p value. If p1 is below α/(k − 1), the cor-
responding hypothesis is rejected and it leaves us to compare p2 with α/(k − 2). If the
second hypothesis is rejected, we continue with the process. As soon as a certain hy-
pothesis cannot be rejected, all the remaining hypotheses are maintained as supported.
The statistic for comparing the ith algorithm with the j th algorithm is:

z = (Ri − Rj)

/√
k(k + 1)

6N
.

The value of z is used for finding the corresponding probability from the table of the
normal distribution (p value), which is compared with the corresponding value of α.

A.2 The Wilcoxon Matched-Pairs Signed-Ranks Test

Wilcoxon’s test is used for answering this question: do two samples represent two different
populations? It is a nonparametric procedure employed in a hypothesis testing situation
involving a design with two samples. It is the analogue of the paired t test in non-
parametrical statistical procedures; therefore, it is a pairwise test that aims to detect
significant differences between the behavior of two algorithms.

The null hypothesis for Wilcoxon’s test is H0 : θD = 0; in the underlying populations
represented by the two samples of results, the median of the difference scores equals
zero. The alternative hypothesis is H1 : θD �= 0, but another alternative can also be used,
H1 : θD > 0 or H1 : θD < 0 as a directional hypothesis.

In the following, we describe the test computations. Let di be the difference between
the performance scores of the two algorithms on ith out of N functions. The differences
are ranked according to their absolute values; average ranks are assigned in case of
ties. Let R+ be the sum of ranks for the functions on which the second algorithm
outperformed the first, and R− the sum of ranks for the opposite. Ranks of di = 0 are
split evenly among the sums; if there is an odd number of them, one is ignored:

R+ =
∑
di>0

rank(di) + 1
2

∑
di=0

rank(di) and R- =
∑
di<0

rank(di) + 1
2

∑
di=0

rank(di)

Evolutionary Computation Volume 18, Number 1 61

D. Molina, M. Lozano, C. Garcı́a-Martı́nez, and F. Herrera

Let T be the smallest of the sums, T = min(R+, R-). If T is less than or equal to the
value of the distribution of the Wilcoxon for N degrees of freedom (Table B.12 in Zar,
1999), then the null hypothesis of equality of means is rejected.

The obtaining of the p value associated with a comparison is performed by means
of the normal approximation for the Wilcoxon T statistic (Section VI, Test 18 in Sheskin,
2003). Furthermore, the computation of the p value for this test is usually included in
well-known statistical software packages (SPSS, SAS, R, etc.).

B Results of the Experiments

Table 11: Average of the errors achieved by MA-LSCh-CMA.

Test Function Dimension 10 Dimension 30 Dimension 50

F6 7.919168e–9 1.191003e+1 6.571714e+1
F7 1.576340e–2 8.871392e–4 2.365166e–3
F8 2.025390e+1 2.027016e+1 2.048963e+1
F9 7.955018e–9 7.827714e–9 6.904902e–9
F10 2.547095e+0 1.838684e+1 3.745090e+1
F11 4.996535e–1 4.350834e+0 1.081456e+1
F12 1.830865e+2 7.690185e+2 2.762453e+3
F13 5.483822e–1 2.344814e+0 3.510274e+0
F14 2.184448e+0 1.268192e+1 2.229458e+1
F15 2.437411e+2 3.080000e+2 2.880000e+2
F16 9.273844e+1 1.363134e+2 6.402193e+1
F17 9.299357e+1 1.345630e+2 8.318522e+1
F18 8.335419e+2 8.156512e+2 8.454191e+2
F19 8.436303e+2 8.163714e+2 8.454539e+2
F20 8.091376e+2 8.157765e+2 8.414372e+2
F21 7.756537e+2 5.120000e+2 5.449624e+2
F22 7.376647e+2 5.258481e+2 5.000145e+2
F23 9.242833e+2 5.341643e+2 5.809396e+2
F24 2.643189e+2 2.000000e+2 2.000000e+2
F25 4.234632e+2 2.108472e+2 5.809396e+2

62 Evolutionary Computation Volume 18, Number 1

Memetic Algorithms Based on Local Search Chains

Table 12: Average of the errors achieved by S-MACO.

Test Function Dimension 10 Dimension 30 Dimension 50

F6 2.559080e+0 6.827221e+1 3.321231e+0
F7 4.228532e–3 3.350353e–3 3.946206e–10
F8 2.032996e+1 2.079407e+1 4.985846e+0
F9 7.493495e–9 7.717354e–9 7.181764e–9
F10 3.803494e+0 3.235029e+1 8.973962e+1
F11 1.104567e+0 1.828145e+1 4.429612e+1
F12 1.596333e+2 3.281777e+3 1.299585e+4
F13 5.035934e–1 4.374800e+0 1.274590e+1
F14 2.947613e+0 1.306008e+1 2.276375e+1
F15 2.572330e+2 3.080000e+2 3.240408e+2
F16 9.466710e+1 1.864778e+2 1.602585e+2
F17 9.837184e+1 2.226743e+2 1.610696e+2
F18 8.145547e+2 8.441590e+2 8.768230e+2
F19 8.741588e+2 8.424100e+2 8.693493e+2
F20 8.276920e+2 8.402913e+2 8.780883e+2
F21 7.687822e+2 5.000000e+2 5.388100e+2
F22 7.223773e+2 5.454707e+2 5.189131e+2
F23 1.008124e+3 5.592260e+2 5.391635e+2
F24 2.202741e+2 2.000000e+2 2.000000e+2
F25 5.112336e+2 2.107127e+2 2.161979e+2

Table 13: Average of the errors achieved by DEahcSPX.

Test Function Dimension 10 Dimension 30 Dimension 50

F6 7.973158e–1 1.000000e–9 7.359388e–1
F7 1.604629e–1 1.163264e–3 9.542600e–2
F8 2.054373e+1 2.094711e+1 2.113583e+1
F9 1.144203e+0 1.000000e–9 1.000000e–9
F10 1.567427e+1 9.449920e+1 2.342322e+2
F11 4.487526e+0 2.921885e+1 5.699720e+1
F12 2.304905e+2 2.956616e+4 1.718276e+5
F13 4.191988e–1 2.365826e+0 5.566580e+0
F14 3.482625e+0 1.279216e+1 2.253116e+1
F15 2.522842e+2 3.506300e+2 2.860367e+2
F16 1.227970e+2 1.294508e+2 1.799057e+2
F17 1.461102e+2 2.048724e+2 2.743071e+2
F18 7.908927e+2 9.060900e+2 9.306997e+2
F19 7.175312e+2 9.061617e+2 9.316814e+2
F20 7.273535e+2 9.065054e+2 9.313493e+2
F21 7.596139e+2 5.000000e+2 6.901346e+2
F22 8.083156e+2 9.120960e+2 9.684325e+2
F23 9.428651e+2 5.341641e+2 7.904251e+2
F24 3.128550e+2 2.000000e+2 2.000000e+2
F25 4.086841e+2 2.105413e+2 2.484206e+2

Evolutionary Computation Volume 18, Number 1 63

