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Memetic Search with Inter-Domain Learning: A

Realization between CVRP and CARP
Liang Feng, Yew-Soon Ong, Meng-Hiot Lim, and Ivor W. Tsang

Abstract—In recent decades, a plethora of dedicated evolu-
tionary algorithms (EAs) have been crafted to solve domain
specific complex problems more efficiently. Many advanced EAs
have relied on the incorporation of domain specific knowledge
as inductive biases that is deemed to fit the problem of interest
well. As such, the embedment of domain knowledge about the
underlying problem within the search algorithms is becoming an
established mode of enhancing evolutionary search performance.
In this paper, we present a study on evolutionary memetic
computing paradigm that is capable of learning and evolving
knowledge meme that traverses different but related problem
domains, for greater search efficiency. Focusing on combinatorial
optimization as the area of study, a realization of the proposed
approach is investigated on two NP-hard problem domains (i.e.,
capacitated vehicle routing problem (CVRP) and capacitated arc
routing problem (CARP)). Empirical studies on well established
routing problems and their respective state-of-the-art optimiza-
tion solvers are presented to study the potential benefits of
leveraging knowledge memes that are learned from different but
related problem domains on future evolutionary search.

Index Terms—Evolutionary Optimization, Memetic Comput-
ing, Cross Domain Memes, Knowledge Memes, Learning.

I. INTRODUCTION

EVOLUTIONARY algorithms (EAs) are adaptive search

approaches that take inspirations from the principles of

natural selection and genetics. They have been shown to be

suitable for solving nonlinear, multi-modal, and discrete NP-

hard problems effectively. Due to their flexibility and ease

of use, EA has been known as a universal problem solver

that enjoyed significant successes in obtaining optimal or

near-optimal solutions on a plethora of complex real-world

optimization problems [1], [2], [3], [4], [5], [6], [7]. However,

EA which involves the iterative process of reproduction, is

deemed to be slow and sometimes falls short in meeting with

today’s competitive need for high-quality solutions promptly.

In the recent decade, it is observed that many efficient

optimizations using modern advanced EAs have been achieved

via the incorporation of domain specific knowledge as in-

ductive biases that fit to the problem of interest well [8].

These dedicated EAs have been specially crafted with the
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embedment of human-expert domain specific knowledge about

the underlying problem so as to speed up search convergence.

In the recent special issues [9], [10] and journals [11] ded-

icated to EA research, several successes of evolutionary and

memetic algorithms [12], [13], [14] that incorporate human

expert knowledge have been reported on a plethora of complex

applications, including quadratic assignment problem [15],

feature selection [16], permutation flow shop scheduling [17],

and VLSI floorplanning [18], etc.

To reduce the high reliance on humans’ effort in de-

signing advanced evolutionary algorithms, some researchers

have considered a direct incorporation of solutions archived

from previous searches as an alternative1. Cunningham and

Smyth [19] explored a direct reuse of established high quality

schedules from past traveling salesman problems (TSP) to

bias the search on new TSPs. Louis et al. [20] proposed a

case-injected genetic algorithm that periodically injects high-

quality solutions obtained from previous searches on problem

instances of the same domain to speed up future search.

More recently, structured knowledge learned from archived

optimized solutions has also been used to generate high quality

solutions for evolutionary search on unseen problem instances

of the same domain [21].

From a survey of the literature, it is worth noting that in

spite of the efforts to automate the incorporation of domain

knowledge into future evolutionary search, the success has

been limited by several key factors. In particular, the earlier

works in [19]-[21] make a strong assumption on the type of

problems solved. [19] and [20] require the newly encountered

problem instances to share common tasks with previous solved

instances. [21] although does not require the tasks to be

common among problem instances, they however are restricted

to the representation used, which impedes the seamless reuse

of domain knowledge across problems. To summarize, the

greatest barrier to further progress can thus be attributed to the

unique representations and characteristics of different problem

domains. Hence, it is often the case that the information

captured from a problem domain cannot be directly used in

another. To date, little or no investigation has been conducted

to automate the learning and evolution of knowledge from

differing problem domains in the context of evolutionary

optimization.

Given the restricted theoretical knowledge available in this

area and the limited progress made, there is thus an appeal

for evolutionary search paradigms that can draw upon useful

1Note that this is in contrast to domain-specific human crafted EAs in
which domain knowledge is only captured and incorporated once as part of
the algorithm design and development process.
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knowledge learned from different problems previously solved.

Hence, the current work serves as a feasibility study on evo-

lutionary paradigm that learns and evolves knowledge nuggets

in the form of memes that traverse related problem domains.

This is in the spirit of intelligent evolutionary optimization and

enhanced search, where a meme is defined here as the basic

unit of cultural transmission [22]. Through the present study,

we hope to provide the following insights to the incorporation

of knowledge across problem domains.

- What is the representation of a knowledge meme?

- How to learn and mine knowledge memes from the

evolutionary search?

- How to evolve knowledge memes in the evolutionary

search across related problem domains?

- Can evolutionary optimization benefit from the knowl-

edge memes of related problem domains?

- How do the knowledge memes of different but related

problem domains influence the evolutionary search?

- What forms of knowledge meme can lead to enhanced

evolutionary search?

The current study thus present an attempt to emulate the

learning and evolution of knowledge memes attained from past

evolutionary optimization experiences that traverse problems

of different but related domains. The aspiration has been

to develop intelligent evolutionary search that functions and

adapts effectively across contexts, like the way humans are

capable of evolving its ability to handle related problems

intelligibly and competently.

The rest of this paper is organized as follows. An overview

of memetic computation and two different but related problem

domains, namely the capacitated vehicle routing problem

(CVRP) and the capacitated arc routing problem (CARP) are

presented in Section II. These two problems serve as the case

study for this paper. Section III introduces the concept of

relatedness between CVRP and CARP. A meme representation

common to the two independent problem domains is then pro-

posed. Section IV showcases a realization of knowledge meme

learning and evolution from CVRP to CARP and vice versa

(i.e., CARP to CVRP). Subsequently, Section V presents an

experimental study using well-established capacitated vehicle

routing and capacitated arc routing problems to investigate

the potential benefits of automating the learning and evolution

of knowledge memes across the evolutionary optimization of

related problem domains. A detailed analysis and discussion of

the empirical results obtained is also provided in the section.

Last but not least, the brief concluding remarks of this paper

and our future works are presented in Section VI.

II. PRELIMINARY

In this section, we first give a brief introduction of memetic

computation. Subsequently, the mathematical formulations of

the two combinatorial NP-hard optimization problems, namely

the capacitated vehicle routing problem (CVRP) and the

capacitated arc routing problem (CARP), are presented.

A. Memetic Computation

As with genes in genetics, a meme is synonymous to

memetics as being the building block of cultural know-how

that is transmissible and replicable. The term meme which can

be traced back to Dawkins in his book “The Selfish Gene”

[22], has inspired the new science of memetics that today

represents the mind universe analog to genetics in cultural

evolution, stretching across the fields of anthropology, biology,

cognition, psychology, sociology and socio-biology [23], [24],

[25].

In computer science and engineering, the meme-inspired

computing methodology or more concisely memetic compu-

tation has become an increasing focus of research in recent

years. Memetic computation has been defined as a paradigm

that uses the notion of meme(s) as units of information

encoded in computational representations for the purpose

of problem solving [24]. In the last decades, a meme has

been typically perceived as a form of individual learning

procedure or local search operator to enhance the capability

of population based search algorithm. This integration has

been established as an extension of the canonical evolutionary

algorithm, by the names of hybrid, adaptive hybrid or Memetic

Algorithm. Since the establishments of memetic computation

research, extensive studies on different realization of memetic

computation have been considered. For instance, Nguyen et al.

proposed a theoretic probabilistic memetic framework (PrMF)

that unifies the local search frequency, intensity and selection

of solutions undergoing local search under a single theme

[26]. Feng et al. proposed a memetic multi-agent system

(MeM) towards human-like social agents with memetic au-

tomaton [27]. Further, G. Iacca et al. [28] proposed a three

stage optimal memetic exploration algorithm based on the

philosophical concept of Ockham’s Razor, while F. Caraffini

et al. [29] investigated and proposed a simple but efficient

parallel memetic structure, which consists of one global search

operator and two local search operators with different search

directions. More recently, to automate the design of memetic

algorithms, F. Caraffini et al. [30] analyzed the separability of

continuous optimization problems.

In this paper, we contribute to memetic computation by

embarking a study on the feasibility of evolutionary searches

that make use of useful knowledge in the form of memes

learned from different but related problem domains previously

solved. In contrast to memetic algorithm and existing memetic

computation approaches, here meme is treated and defined as

the useful traits of a problem domain of interests, and can be

evolved across problem domains for enhanced evolutionary

search on new encountered problems. Further, it is also worth

noting here that, the current study is totally different from

hyper-heuristics in the literature, which encompass a set of

approaches with the goal of automating the design and turning

of heuristic methods to solve computational search problems

[31], [32]. In the present study, our core motivation is on

evolutionary searches that can make use of knowledge learned

from a different but related problem domain for enhance

performance. There is no tuning and coordination of the

heuristic methods.

B. Capacitated Vehicle Routing Problem

The capacitated vehicle routing problem (CVRP) was in-

troduced by Dantzig and Ramser in [33]. It is defined on
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a connected undirected graph G = (V,E), where vertex set

V = {vi}, i = 1 . . . n, n is the number of vertices, and edge

set E = {eij}, i, j = 1 . . . n denoting the arc between vertices

vi and vj . Vertices vd corresponds to the depot at which k
homogeneous vehicles are based, and the remaining vertices

denote the customers. Each edge eij is associated with a non-

negative weight cij , which represents the travel distance from

vi to vj . Consider a demand set D = {d(vi)|vi ∈ V }, where

d(vi) > 0 implies customer vi requires service(i.e., known as

task), the purpose of the CVRP is to design a set of least cost

vehicle routes R = {Ci}, i = 1 . . . k such that

- Each route Ci, i ∈ [1, k] must start and end at the depot

node vd ∈ V .

- The total load of each route must be no more than the

capacity W of each vehicle,
∑

∀vi∈C d(vi) ≤ W .

- ∀vi ∈ V and d(vi) > 0, there exists one and only one

route Ci ∈ R such that vi ∈ Ci.

The objective of the CVRP is thus to minimize the overall

distance cost(R) traveled by all k vehicles and is defined as:

cost(R) =

k∑

i=1

c(Ci) (1)

where c(Ci) is the summation of the distance traveled eij
contained in route Ci. An example of the CVRP and associated

optimized route is given in Fig. 1(a), where the vertices

represent the customers to service and dashed lines denotes

shortest distance between customers.

C. Capacitated Arc Routing Problem

The capacitated arc routing problem (CARP) was first

proposed by Golden and Wong [34] in 1981. Instead of

serving a set of customers (i.e., nodes, vertices) in CVRP,

CARP considers a set of streets or arcs (i.e., edges). It can

be formally stated as follows: Given a connected undirected

graph G = (V,E), where vertex set V = {vi}, i = 1 . . . n,

n is the number of vertices, arc set E = {ei}, i = 1 . . .m
with m denoting the number of arcs. Consider a demand

set D = {d(ei)|ei ∈ E}, where d(ei) > 0 implies arc ei
requires service (i.e., known as task), a travel cost vector

Ct = {ct(ei)|ei ∈ E} with ct(ei) representing the cost of

traveling on arc ei, a service cost vector Cs = {cs(ei)|ei ∈ E}
with cs(ei) representing the cost of servicing on arc ei.
A solution of CARP can be represented as a set of travel

circuits R = {Ci}, i = 1 . . . k which satisfies the following

constraints:

- Each travel circuit Ci, i ∈ [1, k] must start and end at

the depot node vd ∈ V .

- The total load of each travel circuit must be no more than

the capacity W of each vehicle,
∑

∀ei∈C d(ei) ≤ W .

- ∀ei ∈ E and d(ei) > 0, there exists one and only one

circuit Ci ∈ R such that ei ∈ Ci.

The cost of a travel circuit is then defined by the total service

cost for all arcs that need service together with the total travel

cost of the remaining arcs that formed the circuit:

cost(C) =
∑

ei∈Cs

cs(ei) +
∑

ei∈Ct

ct(ei) (2)

where Cs and Ct are arc sets that need service and those that

do not, respectively. The objective of CARP is then to find a

valid solution R that minimizes the total cost:

CR =
∑

∀Ci∈R

cost(Ci) (3)

An illustration of the CARP instance and associated opti-

mized route is depicted in Fig. 1(b), where full lines denote

the arcs need to be served and dashed lines gives the routes

traveled by vehicles for servicing the arcs. Each arc is repre-

sented by its head and tail vertices.
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Fig. 1. An illustration of CVRP and CARP instances and their respective
optimized solutions.

III. KNOWLEDGE MEME SHARED BY PROBLEM DOMAINS

- CVRP & CARP

CVRP and CARP have traditionally emerged as two in-

dependent research tracks in the literature. Nevertheless, since

both problem domains belong to the family of vehicle routing,

it makes one wonder whether the problem-solving experiences

learned on one domain could be useful to the other. Taking

this cue, we begin with a study on the relatedness between

problems of these two independent domains based on their

optimized solution routes, since it is what both target to attain.

The common objective of both domains is to minimize

the distances traveled by the vehicles in serving the available

customers, which heavily depends on the specific assignments

of customers to each vehicle. In both CVRP and CARP

optimized solution routes, each vehicle can be treated as a

cluster. Thus the corresponding customers assignments are

actually inter-cluster and intra-cluster structure information,

which are determined by the distances of the cluster members.

The intra-cluster and inter-cluster distances indicate what kind

of distance is it between two customers, they should be served

by the same or different vehicle, respectively. Hence to study
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Fig. 2. Pairwise distance distributions obtained from optimized “A-n54-k7” and “B-n57-k7” CVRP instances. Fig. (a) denotes the pairwise distance distribution
of customers serviced by a common vehicle in “A-n54-k7”; Fig. (b) denotes the pairwise distance distribution of customers serviced by different vehicles
in “A-n54-k7”; Fig. (c) presents the pairwise distance distribution of customers serviced by a common vehicle in “B-n57-k7”; Fig. (d) presents the pairwise
distance distribution of customers serviced by different vehicles in “B-n57-k7”.
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Fig. 3. Pairwise distance distributions obtained from optimized “E1C” and “E2C” CARP instance. Fig. (a) denotes the pairwise distance distribution of
customers serviced by a common vehicle in “E1C”; Fig. (b) denotes the pairwise distance distribution of customers serviced by different vehicles in “E1C”;
Fig. (c) presents the pairwise distance distribution of customers serviced by a common vehicle in “E2C”; Fig. (d) presents the pairwise distance distribution
of customers serviced by different vehicles in “E2C”.

the relatedness between CVRP and CARP optimized solutions,

we consider the pairwise distance distributions of customers or

tasks that are serviced by the same (intra) and different (inter)

vehicles, which are given by the histograms of the following

two distance sets:

Ds = {d(ti, tj)|ti, tj ∈ Ts}

Dd = {d(tp, tq)|tp, tq ∈ Td}

where Ts and Td denote the set of customers or tasks serviced

by the same and different vehicles, respectively. The customer

service information is extracted from the optimized solution

of each problem domain independently. d(ti, tj) gives the

shortest distance between customers (i.e., vertex in CVRP and

arc in CARP) ti and tj .

Fig 2 and Fig. 3 summarize the pairwise distributions of

two CVR problem instances (e.g., labeled as “A-n54-k7” and

“B-n57-k7”) and two CAR problem instances (e.g., labeled as

“E1C” and “E2C”), respectively. The optimized solutions are

obtained using recently introduced state-of-the-art evolution-

ary solvers of the respective domains, i.e., [35] and [36]. In the

figures, X-axis reflects the normalized range of the distance

values, and Y-axis denotes the number of distances that fall

within the respective range, which is given by:

Yi =
nd∑

j=1

I(xj ∈ Bini) (4)

where nd is total number of distance values, I denotes the

indicator function. As depicted, similar trends in the pairwise

distance distributions can be observed for the CVRP and

CARP optimized solutions, see Fig. 2(a) versus Fig. 3(a) and

Fig. 2(c) versus Fig. 3(c). These similarities imply the exis-

tence of similar structure configurations between CVRP and

CARP optimized solutions. In another word, these CVRP and

CARP optimized solutions bare common or similar assignment

and service orders of customers, despite the differences in the

problem representations.

So it is straightforward to infer that common knowledge

exists in these two problem domains, and it would lead to

more efficient and effective problem solving when captured

from one problem domain and operate on the other. Inspired

by this interesting observation, in what follows, we explore

how to link these two independent routing problem domains,

i.e., CVRP and CARP, and derive the shared knowledge meme

in these two problem domains that can be learned and evolved

for enhanced problem-solving.

A. A Common Problem Representation for CVR and CAR

Problem

In this subsection, we propose to establish a common repre-

sentation for CVR and CAR problem, so that the relationship

between customers in these two independent domains can be

conducted which makes further knowledge meme evolution

across problem domain possible.

In CVRP, each customer of Fig. 1a(i) is represented as a

vertex, with given cartesian coordinates (v = {vx, vy}). On

the other hand, customers or tasks in the CARP, as depicted

in Fig. 1b(i), (i.e., Fig. 1), are the full line arcs (e = {vh,vt}),

where vh and vt denotes the head and tail vertex, respectively.

In CARP, the distances of connected vertices are provided to

describe the structure of the problem. No information on the

vertex coordinates are available. As can be observed, CVRP
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and CARP differ in the representation of customers in a

graph network. This impedes the direct incorporation of useful

knowledge from one domain to the other.

In general, there are three possible means to seek a common

representation involving two domains, A and B. The first

is to consider the representation of A, while transforming

all problem instances of domain B to A. The second is

nonetheless to maintain representation of B, and transform

all problem instance in A to the feature space of domain

B. Lastly, all problem instances in domain A and B can be

mapped to a new representation C, which is common to both.

Here, we consider options 1 and 2. In particular, we derive

the mapping from CARP to CVRP and use the latter as the

common representation.
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Fig. 4. Position approximation for CARP arcs via MDS and manifold
alignment.

To transform CARP to CVRP representation, we begin with

a calculation on the shortest distances among all the arcs that

need service using the Dijkstra’s algorithm [37]. Subsequently,

we approximate the position of each arc with the obtained

shortest distance matrix of arcs by means of multidimensional

scaling (MDS) [38], which is a well-established and popular

coordinates approximation method from distance matrix. As a

result, each arc is represented as a node with spatial features,

like the customers in CVRP. Further, we perform manifold

alignment [39] between CVRP customers and the MDS ap-

proximated CARP arc positions to derive the common feature

space of CVRP and CARP, while matching the local geometry

and preserving the neighborhood relationship within both

CVRP and CARP. This is based on the idea that customers

in CVRP and CARP who bear similar local geometry should

be closed to each other in the new common space. In this

way, a common problem representation between CVRP and

CARP problem can be established (see Fig. 4). The pseudo-

code of the proposed establishment of a common problem

representation for CVR and CAR is summarized in Alg. 1.

B. Knowledge Meme Shared by CVRP and CARP

Like genes that serve as “instructions for building proteins”,

memes are then “instructions for carrying out behavior, stored

in brains” [23], [40], [41], [24], [25]. In the present context,

a knowledge meme in evolutionary optimization serves as

an instruction to guide the search towards the near-optimal

solution. In practice, most problems (including optimization

problems) seldom exist in isolation [42]. For example, the

experiences on riding a bicycle can help one to drive a

Algorithm 1: Pseudo code of the proposed establishment

of common representation for CVRP and CARP

1 Begin:

2 for given CVRP instance Iv and CARP instance Ia do

3 Calculate the shortest distance matrix SD among all

the arcs of Ia by Dijkstra’s algorithm.

4 Approximate spatial features of arcs in Ia by means

of MDS with SD.

5 Perform manifold alignment between CVRP

customers and the MDS approximated CARP arc

positions to derive their common problem

representation.

6 End

motorcycle more productively. Students are also able to apply

what have been learned in school subsequently in their work

life very successfully. Thus experiences or knowledge memes

learned from solving a problem can be deployed to enhance

the optimization on related problems.

With a common problem representation established between

CVRP and CARP, any knowledge meme learned from one

domain can be directly applied on the other. An illustration

example is depicted in Fig. 5. As can be observed, the shared

knowledge meme M of CVRP and CARP is a form of

instruction mined from the optimized solution route in the

common feature space. When this knowledge meme is further

operated on unseen routing problem across domain, it is able

to generate high quality solution routes immediately without

any search process.

In both CVRP and CARP, the search for optimal solution

involve first identifying suitable tasks (i.e., vertices or arcs

required to be serviced) assignment for each vehicle, and then

finding the optimal service orders of each vehicle for the

assigned tasks. Since knowledge meme is extracted from the

optimized solution routes, it contains the success of both tasks

assignment and tasks servicing ordering information inside. In

what follows, we will present a specific realization of the form

of knowledge meme and how it is learned and evolved between

CVR and CAR problem domains.

IV. LEARNING AND EVOLUTION OF KNOWLEDGE MEME

BETWEEN CVRP AND CARP

In this section, we present a realization of the knowledge

meme and its learning and evolution between CVRP and

CARP for enhanced evolutionary search.

For a given CVRP or CARP instance p and its optimal solu-

tion s∗, we derive the knowledge meme as a transformation M

on the problem instance p, which makes the transformed task

distribution align well with the optimal solution s∗. In such

a manner, the success of task assignment and task servicing

ordering in s∗ can be easily obtained via techniques such

as clustering, pairwise distance comparison, etc., operating

on the transformed tasks. As presented in Fig. 6, where

Fig. 6(a) denotes the original task distribution of a given
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Fig. 5. An illustration example of knowledge meme shared by CVRP and CARP.

CVRP or CARP instance and Fig. 6(b) represents the obtained

optimized solution. If the appropriate transformation M has

been captured from Fig. 6(b) and deployed on Fig. 6(a), the

resultant tasks distribution is depicted in Fig. 6(c). As can be

observed, the transformation has re-located tasks serviced by a

common vehicle to become closer to one another (as desired

by the optimized solution shown in Fig. 6(b)), while tasks

serviced by different vehicles to be kept further apart. Further,

to match the service orders of each vehicle to that of the

optimized solution, the task distribution is adapted according

to the sorted pairwise distances in ascending order (e.g., the

distance between v1 and v3 is the largest among v1, v2 and

v3, while the distance between v10 and v9 is smaller than

that of v10 and v8). Thus when conducting clustering on the

transformed tasks and pairwise distance comparison on the

tasks assigned in each cluster, the task assignment and task

service orders of Fig. 6(b) can be obtained as depicted in Fig.

6(d).
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via clustering and pairwise distance 

comparison

Fig. 6. An illustration example of how the success of task assignment and task
servicing ordering in the optimal solution s are archived by a transformation.

1) Learning of Knowledge Meme from CVRP or CARP

Search Experiences: In particular, for a given CVRP or CARP

problem instance and its optimized solution, denoted by (p,

s∗) in the constructed common feature space, the learning of

knowledge meme M has been formulated as a maximization of

the statistical dependency [43] between p and s∗ with distance

constraints as follows:

max
K

tr(HKHY) (5)

s.t. K = XT ∗M ∗X,K ≽ 0

Dij > Diq, ∀(i, j, q) ∈ N

where tr(·) denotes the trace operation of a matrix. X, Y are

the matrix representations of a CARP or CVRP instance p

and the corresponding problem solution s∗, respectively. In X,

each column gives the location information (e.g., coordinates)

of a task. Further, if task vi and task vj are served by the

same vehicle, Y(i, j) = 1, otherwise, Y(i, j) = −1. Further,

H = I − 1

n
11′ centers the data and the labels in the feature

space, I denotes the identity matrix, n equals to the number

of tasks. Dij > Diq is the constraint to impose that after task

i, task q should be served before task j by the same vehicle.

This order information can be readily obtained from optimized

solution s∗.

Let Tij denotes a n × n matrix that takes non-zeros

at Tii = Tjj = 1, Tij = Tji = −1. The distance

constraints Dij > Diq in Equation 5 is then reformulated

as tr(KTij) > tr(KTiq). Further, slack variables ξijq are

introduced to measure the violations of distance constraints

and penalize the corresponding square loss. Consequently, by

substituting the constraints into Equation 5, we arrive at:

min
M,ξ

−tr(XHYHXTM) +
C

2

∑
ξ2ijq (6)

s.t. M ≽ 0

tr(XTMXTij) > tr(XTMXTiq)− ξijq,

∀(i, j, q) ∈ N



1089-778X (c) 2013 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See

http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/TEVC.2014.2362558, IEEE Transactions on Evolutionary Computation

IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION 2014 7

where C balances between the two parts of the criterion.

The first constraint enforces the learned knowledge meme

denoted by matrix M to be positive semi-definite, while the

second constraint imposes the scaled distances among the

tasks to align well with the desired service orders of the

optimized solution s∗ (i.e., Y). By configuring C based on

cross-validation, Equation 6 can be solved as described in [44].

2) Evolution of Knowledge Meme Between CVRP and

CARP: The evolution of knowledge meme between CVRP and

CARP domains includes, the selection of knowledge meme

and the assimilation of the selected knowledge meme for

generating high quality routes for unseen problems.

Selection of Learned Knowledge Meme: Further, as more

knowledge memes have been learned, the question of which

knowledge meme should be selected for evolving across

problem domain arises. A simple way for this selection is

to choose the elite knowledge meme from the most similar

problems previously solved. However, due to the enormous

problem space of both domains, the sparsity of the problem

instances and the differences between problems in the do-

mains, the likelihood of a new unseen problem to bear 100%
similarity to previous problem solved is very low. Thus in

the current paper, we propose a generalization of multiple

memes using a weighted approach of multiple memes from

similar problems so as to positively bias the search towards

high quality solutions robustly. Particularly, suppose there

is a set of n unique M in the knowledge pool KP, i.e.,

KP = {M1,M2, . . . ,Mm}. The knowledge meme selection

process is formulated as to identify the weight µi of each

knowledge meme. A fitter knowledge meme should have

a higher weight and the summation of the weights of all

knowledge meme equates to 1 (i.e.,
∑m

i=1
µi = 1).

In particular, the weight vector µ is determined as:

max
µ

tr(HKHY)−
m∑

i=1

(µi)
2Disi (7)

s.t. Mt =
m∑

i=1

µiMi, µi ≥ 0,
m∑

i=1

µi = 1

K = XT ∗Mt ∗X,K ≽ 0

where Disi is the discrepancy measure between two given

problem instances. In the present context, Disi = β∗MMDi +
(1 − β)∗Dif i, where MMDi denotes the maximum mean

discrepancy [45], which is used to compare the distribution

similarity between two given instances by measuring the

distance between their corresponding means, that given as:

MMD(Ds, Dt) = ||
1

ns

s∑

i=1

φ(xs
i )−

1

nt

t∑

i=1

φ(xt
i)||

Dif i denotes the difference in vehicle capacity for two given

problem instances. β balances between the two parts (i.e.,

MMDi and Dif i) in Disi. Based on domain knowledge, the

tasks distribution has a higher weightage than vehicle capacity

information. This implies that β > 0.5. In this work, β
is configured empirically as 0.8 to favour task distribution

information over vehicle capacity information. In Equation 7,

the first term serves to maximize the statistical dependence

between input X and output label Y for clustering [46]. The

second term measures the similarity between the previous

problem instances solved and the given new problem of

interest.

Since two unknown variables exist (i.e., µ and Y) in

Equation 7, it can be solved by fixing one variable alternately.

When Y is fixed, Equation 7 becomes a quadric programming

problem of µ. Y can be obtained by clustering (e.g., K-Means)

on X if µ fixed. Further, as µ obtained via solving Equation

7, the selected Mt is then derived as:

Mt =
m∑

i=1

µiMi, (
m∑

i=1

µi = 1, µi ∈ [0, 1])

Assimilation of Knowledge Meme for Evolutionary

Search: Subsequently, the knowledge meme Mt generalized

from past experiences is then assimilated for enhancing evolu-

tionary search on another problem domain via the generation

of meme biased solutions. In particular, the tasks distribution

of the original data Xnew is first transformed or remapped to a

new tasks distribution X
′

new (i.e., from Fig. 6(a) to Fig. 6(c))

by:

X
′

new = LTXnew (8)

where L is derived by SVD of Mt. Further, the tasks assign-

ment of vehicles and task service ordering of the meme biased

solution are obtained by clustering on the transformed tasks

and pairwise distance sorting among tasks assigned in the same

cluster (Fig. 6(d)), respectively. In summary, the enhancement

of evolutionary search with knowledge meme learned across

problem domains is realized by injecting knowledge meme

biased solutions into the population of the evolutionary search.

The overview on the workflow of knowledge meme evo-

lution between CVRP and CARP is depicted in Fig. 7.

If the solved cross domain problems Psolved are available,

each problem in Psolved will undergo learning process (i.e.,

Equation 6) to capture the respective knowledge memes (the

number of memes equals to the number of instances in

Psolved), which are then stored in the knowledge meme pool

SoM. For a new across domain routing problem instance

punseen posed to the evolutionary solver, the selection and

assimilation process kick in to generate knowledge meme

biased routing solutions, which will be subsequently injected

into the initial population of the evolutionary search to guide

the search process. However, if the cross domain past solved

problems are not available, the evolutionary search on the new

encountered problem shall operate as routine.

V. EMPIRICAL STUDY

To investigate the feasibility of learning and evolution

of knowledge memes across problem domains for enhanced

evolutionary search, empirical studies conducted between the

challenging NP-hard CVRP and CARP domains are presented

in this section. In particular, 10 commonly used CVRP

benchmark instances and 10 well-known CARP benchmark

instances of diverse properties in terms of vertices size, graph

topologies, etc., are considered here. The detailed properties

of the CVRP and CARP instances are described in Table I
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TABLE I
PROPERTIES OF THE CVRP INSTANCES.

Data 1. A-n54-k7 2. A-n69-k9 3. B-n57-k7 4. B-n78-k10 5. P-n50-k7 6. E-n76-k8 7. E-n101-k8 8. c75 9. c100b 10. c199

V 53 68 57 77 49 75 100 75 100 199
Cv 100 100 100 100 100 180 200 140 200 200
Vn 7 9 7 10 7 8 8 N/A N/A N/A

TABLE II
PROPERTIES OF THE CARP INSTANCES.

Data 1. E1C 2. E2C 3. E3C 4. E4B 5. E4C 6. S1C 7. S2C 8. S3C 9. S4B 10. S4C

V 77 77 77 77 77 140 140 140 140 140
Cv 160 140 135 180 130 103 120 120 160 120
Vn 10 14 17 14 19 14 27 29 27 35
Er 51 72 87 98 98 75 147 159 190 190
E 98 98 98 98 98 190 190 190 190 190
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Fig. 7. An overview on the workflow of knowledge meme evolution between
CVRP and CARP.

and Table II, respectively. In Table I, V denotes the number

of vertices that need to be served, Cv gives the capacity of

the vehicle in each problem instance, and Vn denotes the

number of vehicle available2. In Table II, “V ”, “Cv”, “Vn”,

“ER” and “E” denote the number of vertices, capacity of

vehicle, number of vehicles, number of tasks and total number

of edges, of each CARP problem instance, respectively.

Further, two recent state-of-the-art evolutionary algorithms

for solving CVRP and CARP, labeled in their respective

published works as CAMA [35] and ILMA [36], are consid-

ered as the baseline conventional evolutionary solvers for the

respective domains in the present study. In CAMA, the initial

population is configured according to [35], as a fusion of solu-

tions generated by Backward Sweep [47], Saving [48], Forward

2The value N/A means it would be any number for the purpose of
minimizing the total travel cost.

Sweep [47] and random initialization approaches, while in

ILMA, the initial population is a fusion of chromosomes gener-

ated from Augment Merge [34], Path Scanning [49], Ulusoy’s

Heuristic [50] and the simple random initialization procedures.

For the setup of evolutionary search with knowledge meme

derived from different problem domains, the best solutions

of the CARP and CVRP instances are used as the search

experiences in each problem domain. CAMA-K and ILMA-

K denotes the baseline solver with prior knowledge meme

derived from CARP domain and CVRP domain, respectively.

In particular, their initial populations are generated based on

the evolved knowledge meme as discussed in section IV-2.

Last but not the least, the operator and parameter settings of

CAMA-K and ILMA-K are kept the same as that of [35] and

[36] for the purpose of fair comparison. In what follows, the

empirical studies are presented to answer the three questions

on knowledge meme transmission across problem domains for

evolutionary optimization.

- Can evolutionary optimization benefit from knowledge

meme across problem domains?

- How do different knowledge memes across problem

domains influence the evolutionary search?

- What knowledge meme across problem domains would

lead to enhanced evolutionary search?

A. Can Evolutionary Search Benefit from Different Problem

Domains?

Here we assume that the optimized solutions for the CARP

instances are available and use them as available problem

solving experiences in the CAR problem domain to deal

with unsolved CVRPs. Incidentally, when solving CARPs, the

optimized solutions of the CVRPs are used as existing search

experiences.

1) Solving CVRP with Knowledge Memes from CARP Do-

main: All results obtained on the CVRP instances by CAMA

solver over 30 independent runs are summarized in Table

III. B.Cost, Ave.Cost and Std.Dev denote the best solution

with minimum cost, averaged cost of best solution obtained in

each run and the standard deviation of the optimized solutions

across 30 independent runs, respectively. B.Gap measures the
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TABLE III
STATISTICAL RESULTS OF CAMA-K AND CAMA ON CVRP BENCHMARKS.(“≈”, “+” AND “−” DENOTE CAMA-K STATISTICALLY SIGNIFICANT SIMILAR,

BETTER, AND WORSE THAN CAMA, RESPECTIVELY).

CVRP CAMA CAMA−K
Instances B.Cost Ave.Cost Std.Dev B.Gap Ave.Gap B.Cost Ave.Cost Std.Dev B.Gap Ave.Gap
1. A-n54-k7 1167.00 1168.13 2.58 0 1.13 1167.00 1167.00+ 0.00 0 0

2. A-n69-k9 1159.00 1162.87 2.81 0 3.87 1159.00 1162.00 ≈ 2.39 0 3.00
3. B-n57-k7 1140.00 1140.00 0.00 0 0 1140.00 1140.00 ≈ 0.00 0 0
4. B-n78-k10 1221.00 1222.70 0.95 0 1.70 1221.00 1222.60 ≈ 0.44 0 1.60
5. P-n50-k7 554.00 556.00 2.03 0 2.00 554.00 554.67 ≈ 1.52 0 0.67
6. E-n76-k8 735.00 738.30 2.42 0 3.30 735.00 736.70 ≈ 1.95 0 1.70
7. E-n101-k8 815.00 819.37 3.51 0 4.37 817.00 819.07 ≈ 2.03 2.00 4.07
8. c75 835.26 840.45 2.79 0 5.19 835.26 839.83 ≈ 3.75 0 4.57
9. c100b 819.56 819.56 0.00 0 0 819.56 819.56 ≈ 0.00 0 0
10. c199 1305.61 1318.71 7.67 14.16 27.26 1301.00 1315.07+ 7.93 9.55 23.62

TABLE IV
COMPUTATIONAL COST SAVING ATTAINED BY CAMA-K OVER CAMA IN TERMS OF FITNESS EVALUATION (FE).

Data A-n54-k7 A-n69-k9 B-n57-k7 B-n78-k10 P-n50-k7 E-n76-k8 E-n101-k8 c75 c100b c199

FEsaved (%) 39.08% 50.01% 49.79% 68.07% 13.43% 46.18% 43.79% 49.96% 59.87% 76.23%

0 500 1000 1500 2000
1100

1200

1300

1400

1500

1600

1700

1800

1900

Number of Fitness Evaluation

T
ra

ve
l C

os
t

CAMA−K
CAMA

0 500 1000 1500
1000

1200

1400

1600

1800

2000

2200

2400

Number of Fitness Evaluation

T
ra

ve
l C

os
t

CAMA−K
CAMA

0 500 1000 1500 2000 2500
1200

1400

1600

1800

2000

2200

2400

Number of Fitness Evaluation

T
ra

ve
l C

os
t

CAMA−K
CAMA

(a) A-n54-k7 (b) A-n69-k9 (c) B-n78-k10

0 500 1000 1500
550

600

650

700

750

800

850

900

950

1000

1050

Number of Fitness Evaluation

T
ra

ve
l C

os
t

CAMA−K
CAMA

0 500 1000 1500 2000 2500
800

900

1000

1100

1200

1300

1400

1500

1600

1700

Number of Fitness Evaluation

T
ra

ve
l C

os
t

CAMA−K
CAMA

0 1000 2000 3000 4000 5000 6000 7000
1000

1500

2000

2500

3000

3500

Number of Fitness Evaluation

T
ra

ve
l C

os
t

CAMA−K
CAMA

(d) P-n50-k7 (e) c75 (f) c199

Fig. 8. Averaged search convergence graphs of CAMA and CAMA-K on representative CVRP benchmark instances. Y-axis: Travel Cost, X-axis: Number of
Fitness Evaluation. (The dashed line at the bottom of each figure denotes the lower bound or best known solution of the respective benchmark reported in
the literature.)

difference between the best-found value and the lower bound

value of a benchmark instance, while Ave.Gap gives the

difference between the Ave.Cost value and the lower bound

value of each instance. Superior performance are highlighted

in bold font. Further, in order to obtain the statistically

comparison, Wilcoxon rank sum test with 95% confidence

level has been conducted on the experimental results.

It can be observed from the results in Table III that overall,

CAMA-K achieved competitive or improved solution quality

over CAMA in terms of Ave.Cost on all of the CVRP

instances. In particular, with prior knowledge from the domain

of CARP, CAMA-K obtained better Ave.Cost value on 8 out

of the 10 instances. Further, on instance “A-n54-k7”, CAMA-K

consistently converged to the optimal solution over all the 30
independent runs (i.e., the corresponding “Std.Dev” is “0”.).

Subsequently, to access the efficiency of our proposed

approach, the average convergence graphs on the CVRP

benchmark instances are depicted in Fig. 83. In the figure,

the dashed line at the bottom of each figure denotes the

lower bound or best known solution of the corresponding

3Due to page limit constraints, only representatives of each series have been
shown.
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TABLE V
STATISTICAL RESULTS OF ILMA-K AND ILMA ON CARP BENCHMARKS.(“≈”, “+” AND “−” DENOTE ILMA-K STATISTICALLY SIGNIFICANT SIMILAR,

BETTER, AND WORSE THAN ILMA, RESPECTIVELY).

CARP ILMA ILMA−K
Instances B.Cost Ave.Cost Std.Dev B.Gap Ave.Gap B.Cost Ave.Cost Std.Dev B.Gap Ave.Gap
1. E1C 5595.00 5600.13 8.10 29.00 34.13 5595.00 5598.40 ≈ 6.56 29.00 32.40
2. E2C 8335.00 8356.00 37.52 92.00 113.00 8335.00 8349.20+ 26.49 92.00 106.20
3. E3C 10292.00 10326.77 42.65 129 163.77 10292.00 10314.50+ 28.86 129 151.50
4. E4B 8998.00 9051.67 57.96 114 167.67 8998.00 9053.17 ≈ 49.04 114 169.17
5. E4C 11570.00 11703.73 71.50 143 276.73 11602.00 11704.93 ≈ 81.81 175 277.93
6. S1C 8518.00 8573.33 35.04 25 80.33 8518.00 8567.07 ≈ 36.91 25 74.07
7. S2C 16504.00 16630.63 61.45 151 277.63 16466.00 16608.20+ 67.39 113 255.20
8. S3C 17257.00 17391.07 75.34 157 291.07 17258.00 17368.10+ 69.08 158 268.10
9. S4B 16424.00 16516.13 64.77 331 423.13 16397.00 16509.10 ≈ 63.58 304 416.10
10. S4C 20666.00 20809.87 72.40 291 434.87 20624.00 20793.63 ≈ 80.38 249 418.63

TABLE VI
COMPUTATIONAL COST SAVING ATTAINED BY ILMA-K OVER ILMA IN TERMS OF FITNESS EVALUATION (FE).

Data E1C E2C E3C E4B E4C S1C S2C S3C S4B S4C

FEsaved (%) 34.66% 52.72% 49.39% −10.58% −11.92% 25.88% 32.83% 19.85% 10.86% 7.55%
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Fig. 9. Averaged search convergence graphs of ILMA and ILMA-K on representative CARP benchmark instances. Y-axis: log(Travel Cost), X-axis: Number
of Fitness Evaluation. (The dashed line at the bottom of each figure denotes the lower bound or best known solution of the respective benchmark reported in
the literature.)

benchmark instance reported in the literature [35]. As can

be observed, on all the CVRP instances, CAMA-K achieved

superior performance over its counterpart CAMA. In particular,

the initial start points of CAMA-K on “B-n78-k10”, “c75” are

already very close to the respective lower bound solutions, and

CAMA-K takes only about 1000 fitness evaluations to arrive at

the solution obtained by CAMA over 2000 number of fitness

evaluations. Further, on the larger size instance “c199”, more

significant number of fitness evaluations have been obtained

by CAMA-K when compared to CAMA.

Further, to provide more intuitional insight on the resultant

efficiency of search speed, we investigate how much fitness

evaluation (FE) have been saved by CAMA-K to arrive at the

converged solution obtained by its counterparts on each CVRP

benchmark instance. The saving is defined as:

FEsaved =
Ncs(A)−Ncs(A-K)

Ncs(A)
× 100% (9)

where Ncs(·) denotes the number of fitness evaluations used

by the investigating algorithm to arrive at a given solution cs.

Symbol A stands for the investigating algorithm (i.e., CAMA
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here). If algorithm A-K obtained poor average convergence

solution, cs is then set as the average convergence solution of

A-K. Otherwise, cs is configured as the average convergence

solution of algorithm A. It is worth noting that a positive

FEsaved value means the search of A-K is more efficient than

A, and on the other hand, a negative FEsaved value denotes A-

K’s search is slower than its counterpart A. A higher FEsaved

value denotes more fitness evaluation are saved by A-K to

arrive at the solution quality level obtained by A.

The investigation results of FEsaved on all the CVRP

benchmark instances considered are presented in Table IV.

With prior knowledge meme derived from CARP domain,

CAMA-K has brought about up to 76% saving in terms of

fitness evaluations over CAMA (i.e., “c199”).

2) Solving CARP with Knowledge Memes from CVRP Do-

main: On the other hand, all the results obtained on the CARP

instances by ILMA over 30 independent runs are presented in

this section. In particular, Table V gives the solution quality

comparison between ILMA-K and ILMA. In order to obtain

the statistically comparison, Wilcoxon rank sum test with

95% confidence level has been conducted on the experimental

results. Fig. 9 presents the respective average convergence

graphs of ILMA-K and ILMA to access the efficiency of the

proposed approach4. The dashed line at the bottom of each

figure denotes the lower bound or best known solution of the

corresponding benchmark instance reported in the literature

[36]. Further, the fitness evaluation savings obtained by ILMA-

K over ILMA are summarized in Table VI.

As can be observed, with prior knowledge meme from

CVRP domain, superior or competitive performance of ILMA-

K can be observed from Table V over ILMA, on most of the

considered CARP instances in terms of “Ave.Cost”. Further,

enhanced evolutionary search can be observed on ILMA-K

over its counterpart ILMA in Fig. 9. In particular, ILMA-K

brings about up to 52% fitness evaluation savings over ILMA

and obtained more superior search performance on 8 out of 10
instances. Since the only difference between ILAM and ILMA-

K, lies in the prior knowledge introduced in the population

initialization phase of the latter, the superior performance of

ILMA-K can clearly be attributed to the effectiveness of the

knowledge meme transmission across problem domains. In

summary, the achieved enhanced performance of ILMA-K and

CAMA-K confirmed that evolutionary search can benefit from

different but related problem domains.

B. How do the Knowledge Memes of Related Problem Domain

Affect the Evolutionary Search?

To gain a better understanding of knowledge meme trans-

mission across problem domains for enhanced evolutionary

optimization, we further analyze and compare the proposed

approach with knowledge meme transmission where the meme

is from the most and least similar problem instance across

domains. In particular, the maximum mean discrepancy in

Equation 7 is used here to measure the similarity between

problem instances. Let A-BM and A-WM denote the baseline

4Due to page limit constraints, only representatives of each series have been
shown.

evolutionary solver A with initial population generated by the

knowledge meme derived from the most and least similar

problem instance across domains, respectively. In the present

context, A stands for CAMA for solving CVRP, and denotes

ILMA for solving CARP.

The average convergence graphes on representative CVRP

and CARP instances are depicted in Fig. 10 and Fig. 11,

respectively. As can be observed, in Fig. 10, with knowledge

meme transmitted from CARP problem domain, CAMA-BM,

CAMA-WM and CAMA-K achieved efficient search perfor-

mance than the baseline CAMA. Further, among CAMA-BM,

CAMA-WM and CAMA-K, CAMA-WM did not perform as

competitive to the other two counterparts on all the CVRP

instances due to the incorporation of low similarity knowledge

meme. In contrast, the proposed approach CAMA-K is ob-

served to showcase superior performances, which is achieved

through a generalization of the multiple highly similar memes

in positively biasing the search towards high quality solutions.

For CARP, in Fig. 11, negative effects of ILMA-WM have

been observed on all the CARP instances when compared

to the baseline ILMA. However, with knowledge meme from

most similar CVRP instance, ILMA-BM achieved superior

performance than baseline ILMA. Overall, with the proposed

knowledge meme transmission, ILMA-K attained better per-

formance than the others.

In summary, different knowledge memes will introduce

unique biases into the evolutionary search, while inappro-

priately chosen knowledge memes can lead to negative im-

pairments of the evolutionary search process. Further, the

comparisons conducted in this section also confirmed the

effectiveness of the proposed selection scheme for enhanced

search.

C. What forms of Knowledge Memes from Related Problem

Domains Benefit Evolutionary Optimization?

In the empirical studies presented above, we observed

positive as well as negative effected evolutionary search caused

by knowledge meme transmission across problem domains.

Here, we further study the possible reasons behind the various

performances obtained, and find out what knowledge meme

across problem domains would enhance the evolutionary

search.

In particular, we first depict the discrepancies obtained

by each CVRP instance against all CARPs and each CARP

against all CVRPs obtained by Equation 7 (i.e., maximum

mean discrepancy) in the established common feature space.

As can be observed, in Fig. 12, from CVRP instance “1” (i.e.,

“A-n54-k7”) to “4” (i.e., “B-n78-k10”), there is a decreasing

trend on the corresponding discrepancies. Referring to the

computational cost saving for CAMA-K over CAMA in Table

IV, an increasing trend of reduced computational cost can be

observed from “A-n54-k7” to “B-n78-k10” in general. Further,

on CVRP instance “5” (i.e., “P-n50-k7”), its discrepancies go

up, while the corresponding fitness evaluation (FE) saving

drops to below 20%. Subsequently, when the discrepancy

between CVRP instance and CARPs drops from instance 6
(i.e., “E-n76-k8”) to 10 (i.e., “c199”), the respective FE saved

by CAMA-K over CAMA increases again.
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Fig. 10. Averaged search convergence graphs of CAMA, CAMA-WM, CAMA-BM and CAMA-K on representative CVRP benchmark instances. Y-axis: Travel
Cost, X-axis: Number of Fitness Evaluation. (The dashed line at the bottom of each figure denotes the lower bound or best known solution of the respective
benchmark reported in the literature.)
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Fig. 11. Averaged search convergence graphs of ILMA, ILMA-WM, ILMA-BM and ILMA-K on representative CARP benchmark instances. Y-axis: log(Travel
Cost), X-axis: Number of Fitness Evaluation. (The dashed line at the bottom of each figure denotes the lower bound or best known solution of the respective
benchmark reported in the literature.)
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denotes a discrepancy obtained between the CVRP instance and a CARP
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instances. The name (e.g., “E1C”) specified along each ⊕ denotes the CARP
instance, on which the respective CVRP instance achieves the minimum
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Fig. 13. Discrepancies of each CARP instances against all CVRPs. “+”
denotes a discrepancy obtained between the CARP instance and a CVRP
instance, and “⊕” is the minimum discrepancy obtained by each CARP
instances. The name (e.g., “c199”) specified along each ⊕ denotes the CVRP
instance, on which the respective CARP instance achieves the minimum
discrepancy.

On the other hand, for CARP in Fig. 13, the discrepancies

drop first from CARP instance “1” (i.e., “E1C”) to “2”

(i.e., “E2C”), and increase subsequently on the later CARP

instances. Coupled with the computational cost saving for

ILMA-K over ILMA in Table VI, we can see that the FE

saved by ILMA-K goes up from 34.66% to 52.72% from

“E1C” to “E2C” and drops to −11.92% at CARP instance “5”

(i.e., “E4C”) when the corresponding discrepancies increased.

Further, the FE saving by ILMA-K goes up again at CARP

instance “6” (i.e., “S1C”), although most of the discrepan-

cies are increased. However, it is worth noting that from

CARP instance “6” (i.e., “S1C”) to “10” (i.e., “S4C”), lower

minimum discrepancy can be observed compared to that of

CARP instance “4” (i.e., “E4B”) and “5” (i.e., “E4C”). Here,

the minimum discrepancy of each CVRP instance against all

the CARPs and each CARP against all the CVRPs in the

established common feature space (i.e., Section III-A) is given

by:

Dvp = mini={1,...,t}MMD(vp, api) (10)

Dap = mini={1,...,t}MMD(ap, vpi) (11)

where vp and ap denote a CVRP and CARP instance, respec-

tively. t is the number of CARP instance or CVRP instances.

In the present context, t equals to 10. MMD(·) is the maximum

mean discrepancy used in Equation 7. In Fig. 12 and Fig. 13,

“⊕” denotes the respective minimum discrepancy. The name

specified along each ⊕ denotes the instance across problem

domain, on which the current problem instance achieves

the minimum discrepancy. As most of the discrepancies are

increasing from CARP instance “6” to “10”, the FE savings

obtained on these instances indicate that knowledge meme

from the CVRP instance with minimum discrepancy would

play a dominant role via its selection weight (i.e., µ in Eq. 7)

to bias the search for solving CARP.

In what follows, we further investigate the computation cost

savings in terms of fitness evaluation achieved by CAMA-

K and ILMA-K with respect to the minimum discrepancy

obtained by each problem instance across domain. As depicted

in Fig. 14 and Fig. 15, the small circles denote the particular

FE saving attained by CAMA-K or ILMA-K with a minimum

discrepancy obtained cross problem domain. The straight line

is a linear regression of the depicted small circles. In general,

an inversely-proportional relationship can be observed between

FE savings and the corresponding minimum discrepancy in

both CVRP and CARP problem domain.
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Fig. 14. FE saving attained by CAMA-K over CAMA with respect to the
minimum discrepancies obtained by the CVRP instances against all CARPs.

In summary, from the observed relationship between FE

savings and discrepancies between instances across problem

domains, we can infer that enhanced evolutionary search

would be obtained with knowledge meme transmission across

domains when low discrepancy existed between the respective

problem instances. If the problem instance of interest is very

different from existing solved problems, the corresponding

knowledge transmission would not be helpful for evolutionary

search, but may even lead to negative impairments on the

search process. To ensure an enhanced evolutionary search

by knowledge meme transmission across problem domain, the

discrepancy measure, i.e., Equation 10 and Equation 11, in the
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Fig. 15. FE saving attained by ILMA-K over ILMA with respect to the
minimum discrepancies obtained by the CARP instances against all CVRPs.

common feature space would be used as a criterion to evaluate

whether low discrepancy existed between problem domains.

VI. CONCLUSION

In this paper, we have presented a study on the feasibility

of evolutionary paradigm capable of learning and evolving

knowledge meme across different but related problem domains

for the purpose of enhanced search. Based on two NP-hard

combinatorial optimization problems, i.e., CVRP and CARP,

we derived their common problem representation, identified

their useful knowledge meme representation, and proposed

how to capture and transmit the knowledge meme between

CVRP and CARP evolutionary search. Empirical results show

that evolutionary optimization can benefit from different but

related problem domain. However, the appropriately choice of

knowledge meme is crucial for enhancing the evolutionary

search process. Further, by studying the performances of

meme biased evolutionary search and the discrepancies be-

tween problems in different domains, we found that enhanced

evolutionary optimization would be obtained from knowledge

meme transmission when low discrepancy existed between the

respective problems in the established common feature space.

It would be desirable that future works investigate realiza-

tions of the knowledge meme learning and evolution on more

combinatorial optimization problem domains to confirm the

effectiveness of the methodology and discover the relations as

well as useful traits of evolutionary searches in different prob-

lem domains. Furthermore, since the discrepancy presented

in the empirical study has already demonstrated a relation

to positive or negative knowledge meme transmission across

problem domains, greater in-depth study on the discrepancy

between problems for enhanced evolutionary search would be

beneficial.
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