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ABSTRACT

Uncontrolled memory consumption is a kind of critical software

security weaknesses. It can also become a security-critical vulner-

ability when attackers can take control of the input to consume

a large amount of memory and launch a Denial-of-Service attack.

However, detecting such vulnerability is challenging, as the state-

of-the-art fuzzing techniques focus on the code coverage but not

memory consumption. To this end, we propose a memory usage

guided fuzzing technique, named MemLock, to generate the exces-

sive memory consumption inputs and trigger uncontrolled memory

consumption bugs. The fuzzing process is guided with memory

consumption information so that our approach is general and does

not require any domain knowledge. We perform a thorough evalu-

ation forMemLock on 14 widely-used real-world programs. Our

experiment results show that MemLock substantially outperforms

the state-of-the-art fuzzing techniques, including AFL, AFLfast,

PerfFuzz, FairFuzz, Angora and QSYM, in discovering memory

consumption bugs. During the experiments, we discovered many

previously unknown memory consumption bugs and received 15

new CVEs.
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1 INTRODUCTION

Time and space complexities are two main concerns in software

design and development. If they are not implemented well, unex-

pected behaviors and even troublesome security issues can happen.

In real-world programs, lots of such security vulnerabilities have

been found (e.g., [17–23, 74]). For example, if the termination con-

ditions of recursive functions are not implemented correctly, an

in�nite number of recursive function calls can occur and thus ren-

der the stack memory exhausted. The adversaries can exploit this

vulnerability to launch a Denial-of-Service (DoS) attack with some

well-crafted inputs [18, 21]. Recently, researchers have started to

pay attention to these issues. For example, SlowFuzz [58], Perf-

Fuzz [37] and ReScue [63] are developed to generate pathological

inputs to stress the time complexity issues (i.e., algorithmic com-

plexity vulnerabilities). However, it still leaves untouched for auto-

matically generating pathological inputs to stress space complexity

issues (namely memory consumption bugs) thus far.

Although a number of works (e.g., the popular fuzzing tech-

niques [11, 28, 45, 61, 84]) have devoted to detecting memory issues,

they mostly focus on memory corruption vulnerabilities such as

bu�er over�ow and use-after-free. Memory corruption occurs in a

programwhen the contents of thememory aremodi�ed due to some

unexpected program behavior that exceeds the original intention

of the program [65, 67, 72]. When the corrupted memory contents

are used later by the program, it may lead to unexpected behav-

iors (e.g., program crash). However, memory consumption bugs are

essentially di�erent from memory corruption vulnerabilities. As de-

�ned by CWE-400 [49], the software does not properly control the

allocation and maintenance of a limited resource thereby enabling

an actor to in�uence the amount of resources consumed, eventually

leading to the exhaustion of available resources. To make it explicit,

this paper focuses on three types of memory consumption bugs:

uncontrolled-recursion [52], uncontrolled-memory-allocation [51],

and memory leak [50]. Uncontrolled-recursion may exhaust stack

memory when the program does not properly control the amount of

recursion that takes place. Uncontrolled-memory-allocation refers

to the situation whereby the program allocates memory based on an

untrusted size value, but it does not validate or incorrectly validates
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1 struct demangle_component *

2 cplus_demangle_type (struct d_info *di) {

3

4 // "peek" is a single character extracted from the input directly

5 char peek = d_peek_char (di);

6

7 switch (peek){

8 ...

9 case 'P':

10 ret = d_make_comp (di,

11 DEMANGLE_COMPONENT_POINTER,

12 cplus_demangle_type (di), NULL);

13 break;

14 case 'C':

15 ...

16 }

17 ...

18 }

Figure 1: Code Snippet from cp-demangle.c in Binutils v2.31

1 class EXIV2API DataBuf {

2 public:

3 // Constructor with an initial buffer size

4 explicit DataBuf(long size): pData(new byte[size]), size(size) {}

5 ...

6 byte* pData; // Pointer to the buffer

7 size_t size; // The current size of the buffer

8 };

9

10 void Jp2Image::readMetadata() {

11 while (io_->read((byte*)&subBox, sizeof(subBox)) ==

sizeof(subBox) && subBox.length ) {→֒

12 subBox.length = getLong((byte*)&subBox.length, bigEndian);

13 DataBuf data(subBox.length); // Allocation without checking

14 ...

15 io_->seek(position - sizeof(box) + box.length, BasicIo::beg);

16 }

17 }

Figure 2: Code Snippet from jp2image.cpp in Exiv2 v0.26

the size, allowing arbitrary amounts of memory to be consumed.

Moreover, if the software does not track and release allocated mem-

ory after it has been used, it causes a memory leak.

Existing detection techniques for memory consumption bugs

usually use domain- or implementation-speci�c heuristics or rules

[15, 24, 46, 70, 79]. For example, Radmin [24] learns and executes

multiple probabilistic �nite automata, and then con�nes the re-

source usage of target programs to the learned automata and de-

tects resource usage anomalies at their early stages. Thus, their

e�ectiveness heavily depends on the completeness of heuristics

and rules. To create and maintain such rules requires substantial

manual e�orts and expertise. In this paper, we employ the grey-

box fuzzing [84] technique to develop an automated and general

technique to detect memory consumption bugs.

Grey-box fuzzing is one of the most e�ective techniques to �nd

vulnerabilities [39, 41], which typically adopts the coverage infor-

mation as guidance to explore di�erent program paths. However,

existing grey-box fuzzing techniques are not designed for detecting

memory consumption bugs, because such bugs often depend not

only on the program path but also on some interesting program

states in that path (i.e., amount of memory consumption). For ex-

ample, the real-world program in Figure 2 allocates the memory at

Line 4, however, this memory allocation may fail if no additional

memory can be allocated for use. To detect this bug, the grey-box

fuzzer needs to execute a program path that touches Line 4, as

well as a large value for variable size to exceed the available heap

memory. Existing coverage-based fuzzing techniques can easily

cover Line 4, but it may be di�cult to produce test cases that have

a large value for variable size.

To address the aforementioned challenges, we presentMemLock

to enhance grey-box fuzzing to �nd memory consumption bugs.

MemLockworks in two steps. Firstly,MemLock performs the static

analysis, which identi�es the statements and operations relevant

to memory consumption. We would qualitatively analyze the call

graph, which determines the stack memory usage, and quantita-

tively analyzememory usage operations, which determines the heap

memory usage. Besides, we also analyze the control �ow graph of

the program, which provides branch coverage for guiding to explore

di�erent program paths. With the memory consumption analyzed,

MemLock then employs branch coverage as well as memory con-

sumption information to guide the fuzzing process. The branch

coverage information guides to explore di�erent program paths,

and the memory consumption information guides the program

path to consume more and more memory. If an input covers new

branch compared to previous inputs, it is considered as interesting

and added into the seed queue. Besides, although an input has no

new branch coverage, if it leads to more memory consumption, we

also retain it as an interesting input through a novel seed updat-

ing scheme. This input can be further mutated so that the newly

generated input leads to more memory consumption. After some

mutations,MemLock is expected to generate an input whereby the

memory consumption exceeds the available memory.

We have evaluatedMemLock’s e�ectiveness using a set of real-

world open source programs. The experiment results show that

MemLock substantially outperforms six state-of-the-art tools (i.e.,

AFL [84], AFLfast [8], PerfFuzz [37], FairFuzz [38], Angora [12] and

QSYM [83]), in discovering the memory consumption vulnerabil-

ities.MemLock �nds 40.5% more unique crashes and 17.9% more

vulnerabilities, than the second best counterpart. In particular,Mem-

Lock can discover a certain memory consumption vulnerability at

least 2.07 times faster than the other baseline fuzzers. Besides, the

generated test cases inMemLock usually lead to 150 times memory

consumption compared to the other state-of-the-art tools. In addi-

tion, we have responsibly disclosed several previously unknown

memory consumption bugs, and received 15 new CVE1 for them,

demonstrating MemLock’s e�ectiveness in practice.

In summary, this paper makes the following contributions:

• We present MemLock, the �rst, to the best of our knowledge,

dedicated fuzzing technique to automatically discover memory

consumption bugs without requiring any domain knowledge.

• We design a new dimension of guidance engine to deeply exploit

the memory consumption in a program path, which is comple-

mentary to the coverage guidance.

• Wehave implemented and evaluatedMemLock on variouswidely-

used real-world programs. The experimental results have shown

that MemLock substantially outperforms �ve state-of-the-art

fuzzing techniques in discovering memory consumption bugs.

1The Common Vulnerabilities and Exposures (CVE) system provides a reference for
tracking publicly known information-security vulnerabilities and exposures.
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• We have discovered 15 security-critical memory consumption

vulnerabilities in widely-used real-world programs, and most of

these vulnerabilities have been patched by the developers.

2 OVERVIEW

2.1 Motivating Examples

We �rst illustrate the limitations of existing coverage-based grey-

box fuzzing techniques for detecting memory consumption bugs

with two examples summarized from real-world vulnerabilities. We

use the vulnerability CVE-2018-17985 [18] in Figure 1 to demon-

strate an uncontrolled-recursion bug and CVE-2018-4868 [19] in

Figure 2 to demonstrate an uncontrolled-memory-allocation bug.

In Figure 1, the function cplus_demangle_type recursively calls

itself in line 12 when the input contains the character ‘P’. The depth

of recursion depends on the number of character ‘P’s in the input.

With a su�ciently large recursive depth, the execution would run

out of stack memory, causing stack over�ow. To trigger a stack

over�ow, the fuzzer would need to generate inputs containing a

large number of character ‘P’s.

However, existing coverage-based grey-box fuzzers do not have

enough awareness about the change in recursive depth and solely

use coverage information to retain interesting inputs. Take AFL as

an example, it is aware of repeatedly executed CFG edges [71] but

only in a coarse manner. To be speci�c, AFL adopts the concept

of “loop bucket” to retain interesting inputs (see Section 3.1). The

loop bucket cannot tell the �ne-grained change in recursive depth.

Specially, it does not di�erentiate the change when the recursive

depth is greater than 255. Nevertheless, this number is still very

far from causing stack exhaustion, which normally requires tens of

thousands of recursive depth.

Therefore, to expose uncontrolled-recursion e�ectively, grey-box

fuzzers need to have precise awareness about the stack memory

consumption of the target program when executing an input.

Figure 2 demonstrates an uncontrolled-memory-allocation prob-

lem in exiv2. At line 11-12, when the program parses a subBox in

readMetadata(), a length is extracted from the user inputs. Then

the length is fed directly into DataBuf() at line 13. Finally, this

value is used as the size of a memory allocation request at line 4.

Note that the program does not check the size before allocating

memory. By carefully handcrafting the input, an adversary can

provide arbitrarily large values for subBox.length, leading to pro-

gram crash (i.e., std::bad_alloc) or running out of memory. To

trigger this problem, the fuzzer would need to generate inputs with

a large subBox.length. For this purpose, the fuzzer needs to col-

lect information about the value of subBox.length to retain the

interesting inputs that can incur a large memory consumption.

However, existing coverage-based grey-box fuzzers lack aware-

ness about the value of subBox.length. Therefore, they cannot ef-

fectively generate inputs causing subBox.length to become larger.

Take AFL as an example, let us assume AFL now holds a seed

input a which incurs the subBox.length of 100 and causes the

function to enter the while at line 11 and eventually return at

line 16. After some mutations, AFL may generate another input

b which incurs the subBox.length of 10000 and also causes the

function to enter the while at line 11 and return at line 16. We can

Source
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Graph

Call Graph

Memory Usage
Operations

Instrumentation
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Program

Initial
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Seed Pool
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Figure 3: The overview of the proposed approach; grey rect-

angles denote the new features of MemLock.

clearly see that comparing with a, b consumes much more mem-

ory and is closer to running out of memory. However, AFL will

discard input b and will not retain it as a seed because b does not

bring new branch coverage. Consequently, AFL cannot detect this

uncontrolled-memory-allocation problem e�ectively.

Therefore, to expose uncontrolled-memory-allocation e�ectively,

grey-box fuzzers also need to have precise awareness about the

amount of consumed heap memory of the target program when

executing an input.

2.2 Approach Overview

Figure 3 shows the work�ow of MemLock, which contains two

main components: static analysis and fuzzing loop. In particular,

the static analysis takes the program source code as the input, and

generates three kinds of information (see Section 3.1): control �ow

graph, call graph, and memory usage operations. The static analysis

in MemLock helps to decide where to instrument and what to in-

strument. The control �ow graph information is used to collect the

branch coverage; the call graph information aids to instrument the

function call entries and returns. Based on the memory usage oper-

ation statements,MemLock instruments the locations of memory

allocation and free operations.

Once the program is instrumented, MemLock enters the con-

tinuous fuzzing loop to detect memory consumption bugs (see

Section 3.2). Given the initial seeds,MemLock selects a seed s from

the seed pool. As for the seed s , MemLock generates the new in-

puts (test cases) using di�erent mutation strategies.MemLock then

runs the generated inputs against the instrumented program, and

collects their memory consumption information (see Section 3.2.1)

and branch coverage information. If the generated seeds consume

more memory or have new branch coverage, they are retained as

interesting seeds. MemLock adds them into the seed pool through

a seed updating scheme (see Section 3.2.2). MemLock repeats this

process until reaching time or resource budget limits.

Example in Figure 1.We illustrateMemLock using the example in

Figure 1. Suppose the initial value of peek (obtained from function

parameter di by function d_peek_char at Line 5) is ‘a’. This value

is general, unbiased for any special case. Through the coverage

guidance,MemLock generates a new input i1 that may produce the
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value ‘P’ forpeek as it covers the di�erent branch.When i1 is further

mutated, it generates i2, which may produce four consecutive ‘P’s

for peek (i.e., “PPPP”) in its recursion. Since i2 has di�erent branch

hits in the sense of “loop bucket” from i1 , it is added into the

seed pool. When i2 is selected for mutation, it generates i3 that

may produce �ve consecutive ‘P’s for peek (i.e., “PPPPP”) in its

recursion. The coverage guidance uses the concept of “loop bucket”,

and considers that i3 does not o�er new branch coverage compared

to i1 and i2. In this case, existing coverage-based grey-box fuzzers

would discard i3, and thus miss the chance to generate an input that

can produce more consecutive ‘P’s. On the other hand,MemLock

introduces memory consumption as the guidance, under which i3 is

considered to causemorememory consumption (than i1 or i2). Thus,

it retains i3 as an interesting test case, and adds it into the seed pool.

It can further mutate i3, and generate inputs that may produce more

consecutive ‘P’s. After some mutations,MemLockmay generate an

input that would produce a su�ciently large number of consecutive

‘P’s (i.e., “PPP. . . ”) to run out the stack memory.

Example in Figure 2. For illustration, let us assume that the avail-

able heap memory is 10000 bytes. Suppose the initial value of

subBox.length is 100, which is produced from user input at Lines

11-12. At Line 13 in Figure 2, the memory is allocated successfully,

and the program executes the true branch of the while statement

at Line 11. Based on the coverage guidance, MemLock performs

the mutation and can generate a new input i1 that produces a

larger value for subBox.length. In this case, we assume the value

is 150. The input i1 still executes the true branch of the while

statement, and thus there is no new branch coverage. At this time,

the coverage-based grey-box fuzzers would discard i1, therefore

missing the chance to generate an input consuming more memory.

On the other hand, MemLock’s memory consumption guidance

considers that i1 consumes more memory (i.e., 150 > 100), and

keeps it as an interesting input. When i1 is further mutated,Mem-

Lock can generate an input (e.g., len = 250) that consumes more

memory. After some mutations,MemLock can generate an input

(e.g., len = 11000) that runs out of memory.

Note that we have not elaborated memory leaks separately

as MemLock deals with them in the same way as uncontrolled-

memory-allocation, using the same memory usage guidance during

fuzzing.

3 METHODOLOGY

3.1 Static Analysis

The static analysis in MemLock decides how to instrument the tar-

get program. Based on the instrumentation, MemLock collects the

guidance information, and then uses it to drive the fuzzing process.

After analyzing the control �ow graph, MemLock instruments the

target program to capture branch (edge) coverage, guiding program

path explorations. Additionally, based on the qualitative and quan-

titative analysis of call graph and memory usage operations, it also

instruments the target program to collect the memory consumption

information, guiding the fuzzing process towards consuming more

memory for each program path. To facilitate the description of our

methodology, we de�ne the following concepts.

3.1.1 Control Flow Graph. MemLock collects branch coverage

information in the control �ow graph (CFG) of the program to guide

program path explorations as AFL [84]. It inserts instrumentation

into every branch of the program CFG, assigning a pseudo-unique

ID to every branch. During program execution, the instrumentation

uses an 8-bit counter to keep track of the number of times that

a branch has been executed. MemLock groups the hit counts of

each branch execution into several buckets to denote di�erent

magnitudes2. Consequently, the branch coverage information in an

executed program path can be de�ned as follows.

Definition 3.1 (Trace Bits [84]). For an executed program path,

its trace bits are represented by an 8-bit array with size 2K , and the

value of the IDth element is stored in an 8-bit counter (In AFL,K = 16).

The trace bits record the accumulated branches executed in a

program path, and they can represent a program path roughly.

Definition 3.2 (Path-ID). For an executed program path, its

path-ID is the hash value of its trace bits (see De�nition 3.1).

3.1.2 Call Graph. In addition to branch coverage, MemLock also

collects the memory consumption information. One important con-

struct that may cause a large bulk of stack memory consumption is

the recursive function call. When a function call occurs, the pro-

gram automatically allocates the stack memory for use (e.g., local

variables). On the other hand, when a function call is �nished (re-

turned), the program automatically reclaims the allocated stack

memory for reuse. To monitor the stack memory consumption of

function calls, MemLock injects the instrumentation into both the

entry and the exit of the function call.

We use ft to denote the length (i.e., consumption) of call stack

during the program execution. This value changes with the execu-

tion of the program. When the program execution enters a function,

the value ft is increased by one; likewise, when a function call is

returned, the value ft is decreased by one. In the following, we use

fm to denote the peak value of ft during the program execution.

The value fm thus qualitatively re�ect the maximum (stack) mem-

ory consumption by recursive function calls during the program

execution. We do not di�erentiate the memory consumption caused

by di�erent functions, because usually the stack memory can be ex-

hausted only under in�nite recursive function calls. Thus, we only

need the peak length of call stack to guide MemLock to approach

in�nite recursive function calls.

3.1.3 Memory Usage Operations. Memory usage operation state-

ments (e.g.malloc and free) may also contribute to the consumption

of a large bulk of memory. In a program path, the memory opera-

tion statements may be a�ected by the program inputs. When this

happens, it is possible to guide this program path to consume more

memory by controlling the program inputs. To this end, MemLock

uses instrumentation to quantitatively obtain the size of the mem-

ory operation. Due to the lack of freed memory size in deallocation

statements,MemLock maps them to their corresponding allocation

statements to obtain the size of the freed memory.

In particular, we insert instrumentation into the memory allo-

cation/deallocation functions in the standard libraries, and obtain

2In AFL, the hit counts of each branch execution are divided into 8 buckets: 1 time, 2
times, 3 times, 4-7 times, 8-15 times, 16-31 times, 32-127 times, and 128-255 times [78].
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Algorithm 1: Memory Usage Guided Fuzzing

input :an instrumented program P , and set of initial seedsT

output : test cases S triggering memory consumption bugs

1 S ← Φ;

2 Queue ← T ;

3 while time and resource budget do not expire do

4 for each input t in Queue do

5 if with probability FuzzProbt to select t then

6 numChildren ← AssiдnEnerдy(t);

7 for 0 ≤ i < numChildren do

8 childi ← Mutate(t);

9 (traceBitsi , fmi , omi ) ← Run(childi , P);

10 k = Hash(traceBitsi );

11 if it triggers memory consumption bugs then

12 S ← S ∪ childi ;

13 else

14 if NewCov(traceBitsi ) then

15 Queue ← Queue ∪ childi ;

16 if NewMax(fmi , omi ) then

17 Queue ←

Update(childi , fmMap[k], omMap[k]);

18 return S

its parameters and return value. The reason is that the memory is

allocated by some standard library functions [1, 46], e.g., malloc,

calloc, realloc, and new. On the other hand, the program may also

free the memory using the standard library function such as free

and delete. Even when the program uses a user-customized memory

usage operation function [33], it still relies on standard library func-

tions to operate a larger bulk of memory. Thus, we do not need to

consider the user-customized memory usage operations in practice.

We use ot to denote the amount ofmemory consumed bymemory

operations in a program path. When the program allocates ot′ bytes

memory, the value ot is increased by ot′; likewise, if it frees ot′ bytes

memory, the value ot is decreased by ot′. In the following, we use the

om to represent the peak value of ot during the program execution.

The value om evaluates the memory consumption in a program

path by memory usage operation statements. By using om as the

guidance, MemLock can mutate the program inputs and gradually

increase the peak value of memory consumption in a program path.

3.2 Fuzzing Loop

Algorithm 1 shows the high-level procedures of MemLock. The

intuition of the algorithm is that, for each input t in the seed pool,

MemLock decides whether to mutate it based on a selection prob-

ability. If so, MemLock mutates t and generates a set of child in-

puts. Then, MemLock runs each child input and monitors their

executions. If a child input has new coverage or consumes more

memory (see De�nitions 3.3 and 3.4), it is retained as an interesting

input. While this process is similar to the process of traditional

coverage-based grey-box fuzzers (e.g., AFL), the main di�erence is

that MemLock additionally adopts memory consumption guidance

to retain interesting inputs.

The algorithm takes the instrumented program P (see Section 3.1)

and a set of initial seeds T as the inputs, and outputs a set of test

cases S that trigger the memory consumption bugs. The variable

Queue represents the seed pool, and is initialized as the initial seeds

T at Line 2. MemLock �rst selects an input t from the seed pool

Queue (Line 4), and computes its probability on whether or not to

be mutated at Line 5 (see Section 3.2.1). Upon deciding to mutate

the input t ,MemLock assigns the energy (i.e., numChildren) to it at

Line 6, which determines the number of children to produce from

t . MemLock uses the same heuristics to determine numChildren

as AFL [84]. It produces more children for inputs that have wider

code coverage or that are discovered later in the fuzzing process. At

Lines 4-17,MemLockmutates the input t to generate numChildren

children, monitors their executions, and determines their a�liations.

MemLock �rst performs mutation to generate the new input childi
(Line 8). At Line 9, MemLock then runs the input childi on the

instrumented program P , and collects its branch coverage (i.e.,

traceBitsi ), function memory consumption (i.e., fm), and operation

memory consumption (i.e., om), respectively.

If the input childi triggers memory consumption bugs (how

to determine memory consumption bugs, see Section 4.1), it is

added into the output S (Line 12). Otherwise,MemLock analyzes

its branch coverage and memory consumption (Line 14 and 16). If it

has new branch coverage, it is added into theQueue for the further

mutation (Line 15). In addition, we further analyze its memory con-

sumption. MemLock checks whether childi leads to more memory

consumption based on fmmap[k] and ommap[k] at Line 16. (see

Section 3.2.1). If so,MemLock updates the value of fmmap[k] and

ommap[k] using the function Update at Line 17 (see Section 3.2.2).

This process is repeated until the given time or resource budget

expires (Lines 3).

3.2.1 Guidance Mechanisms. One of the most important compo-

nents in the grey-box fuzzing is its guidance mechanism (Lines 14

and 16 in Algorithm 1), which often dominates the capability of

the fuzzing technique in �nding bugs [11, 37]. For example, Slow-

Fuzz [58] uses the number of executed instructions as guidance to

stress algorithmic complexity vulnerabilities. To �nd the memory

consumption bugs e�ectively,MemLock uses branch coverage as

well as memory consumption as the guidance. The branch coverage

information guidesMemLock to explore di�erent program paths,

while the memory consumption information can driveMemLock

to focus on program paths with more memory consumption. To

facilitate the description of our memory consumption guidance, we

de�ne the following concepts.

Definition 3.3 (Maximum Function Memory). Given a path

k and a set I of inputs that all execute k , the maximum function

memory consumption fmmap[k] in k is the maximum peak value of

call stack, among all the inputs I :

fmmap[k] ← max
i ∈I

fmi

where fmi represents the peak value of call stack during the execution

of input i (see Section 3.1.2).
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Figure 4: Dynamic Seed Updating

Definition 3.4 (Maximum Operation Memory). Given a path

k and a set I of inputs that all execute k , the maximum operation

memory consumption ommap[k] in k is the maximum peak value of

memory consumption by memory usage operations, among all the

inputs I :

ommap[k] ← max
i ∈I

omi

where omi denotes the peak value of memory consumed by memory

usage operations during the execution of input i (see Section 3.1.3).

Definition 3.5 (NewCov). Given a set I of inputs and an input

t , we say t hits a new coverage, if it either (1) executes a branch that

has not been touched by I ; or (2) hits a branch touched by I but with

a di�erent bucket number.

The function NewCov (Line 14) will check whether a newly

generated input childi hits a new coverage with respect the current

Queue or not. That is, the function NewCov considers the branch

coverage and guides MemLock to explore di�erent program paths.

Definition 3.6 (NewMax). Given a set I of inputs and an input t

that all executek , we say t hits a newmaximummemory consumption,

if either fmt > fmmap[k] or omt > ommap[k].

The function NewMax (Line 16) determines whether the input

childi leads to the maximum memory consumption among the cur-

rent seed set. It actually checks two kinds of memory consumption.

It �rst determines whether childi leads to the maximum function

memory consumption (see De�nition 3.3). It also considers whether

childi leads to the maximum operation memory consumption (see

De�nition 3.4). If the input childi satis�es either of the above two

cases, MemLock update the seed queue with childi at Line 17 (see

Section 3.2.2).

3.2.2 Dynamic Seed Updating. In order to e�ciently support re-

taining the most interesting input for each path, we propose a

novel seed updating scheme. InMemLock, the seed queue is kept

in a linked list, where each node represents a seed that explores

a program path, as shown in Fig. 4. MemLock updates the seed

queue in the following two cases. (1) New Path. If the test input

results in new branch coverage, then it will be added to the seed

queue as a new node, as shown in the second row of Fig. 4. (2)

Larger Memory Consumption. If the input, e.g., seed2 in the third

row of Fig. 4, generates an input seed5, which does not result in

new branch coverage, but it leads to larger memory consumption

than the corresponding input. When seed2 and seed5 execute the

same path, seed2 is replaced with seed5. With replacing the original

seed with the generated input childi , we well exploit the advantage

of childi as it is better in terms of �nding memory consumption

bugs. This seed updating policy ensures MemLock to gradually

improve/increase the overall memory consumption, and it could

avoid getting stuck in local maxima like SlowFuzz [37], and brings

long-term stable improvements.

To tailor for our guidance mechanism, MemLock also optimizes

the seed selection probability (Line 5 in Algorithm 1) for the muta-

tion as follows.

Definition 3.7 (Favored Input). An input t is favored for muta-

tion, if t has new branch coverage (i.e. NewCov) or t leads to maximum

memory consumption (i.e., NewMax).

Definition 3.8 (Selection Probability). An input t is selected

for mutation with the following probability:

FuzzProbt =

{

1 if t is favored

a otherwise

That is, the favored inputs are always selected, and a is the

probability of selecting a non-favored input. In our experiments we

use a = 0.01 like PerfFuzz [37].

4 EVALUATION

We have built a prototype of MemLock. Our implementation adds

around 1.6k lines of C/C++ code to the �le containing AFL’s core im-

plementation. In particular, the static analysis and instrumentation

components are implemented based on the LLVM framework [36],

and the fuzzer engine is implemented based on the AFL-2.52b frame-

work [84]. We have conducted thorough experiments to evaluate

MemLock with a set of real-world programs. More detailed ex-

perimental results can be found on our website [48]. With these

experiments, we aim to answer the following research questions:

RQ1. How capable is MemLock in memory consumption crash

detection?

RQ2. How capable is MemLock in memory consumption real-

world vulnerability detection?

RQ3. Do the strategies of MemLock help to trigger memory leaks

with more leakage?

RQ4. Do the strategies of MemLock help to generate inputs with

more memory consumption?

4.1 Experiment Setup

Following the suggestions in [35], we conducted the experiments

carefully, to draw conclusions as objective as possible.

Baseline Fuzzers to Compare against. We compare MemLock

against six state-of-the-art fuzzers, namely AFL [84], AFLfast [8],

PerfFuzz [37], FairFuzz [38], Angora [12] and QSYM [83]. The base-

line fuzzers are selected based on the following considerations. AFL

is the widely-used coverage-based greybox fuzzer, and selected

as baseline fuzzer in the most work. AFLfast is an advanced vari-

ant of AFL, specially equipped with a better power schedule [8].

PerfFuzz [37] is to stress the time complexity issues in the pro-

gram, while MemLock seeks to detect space complexity issues.

FairFuzz [38] leverages a targeted mutation strategy to execute

towards rare branches. Further, Angora [12] utilizes taint analy-

sis to track information �ow, and then uses gradient descent to
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break through the hard branches. Lastly, QSYM [83] is a popular

symbolic execution assisted fuzzer. Note that we haven’t selected

MemFuzz [16] as baseline fuzzer, because MemFuzz is not open

source and it resorts to memory accesses (instead of memory con-

sumption). In a word, we selected various kinds of representative

state-of-the-art fuzzers as baseline fuzzers, and they are widely

used to discover vulnerabilities in practice.

Evaluation Benchmarks. We select evaluation benchmarks con-

sidering several factors, e.g., popularity, frequency of being tested,

development activeness, and functional diversity. Finally, we use

14 widely-used real-world programs, which all contain memory

consumption bugs, to evaluateMemLock, including well-known

development tools (e.g., nm, cxx�lt, readelf ), code processing tools

(e.g., nasm, �ex, yaml-cpp, mjs), graphics processing libraries (e.g.,

openjpeg, jasper, exiv2), video processing tools (e.g., bento4 and

libming), and data processing libraries (e.g., libsass and yara), etc.

These programs have also been widely tested by existing state-of-

the-art greybox fuzzers [28, 35, 38, 82].

PerformanceMetrics.To compare against state-of-the-art fuzzers,

the most direct measurement is the capability to �nd the vulnera-

bilities. With this regard, we consider both unique bugs and unique

crashes each fuzzer �nds in the fuzzing process. Since MemLock is

to stress the space complexity issues of programs, we also distill

the memory consumption of each seed in the pool.

Con�guration Parameters. Since the fuzzers heavily rely on the

random mutation, there could be performance jitter during fuzzing

process. We took two actions to mitigate the randomness caused by

the nature of fuzzing techniques. First, we test each program for a

longer time, until the fuzzer reaches a relatively stable state. We run

each fuzzer for 24 hours. Second, we perform each experiment for

5 times, and evaluate their statistical performance. Besides, we run

all the fuzzers with the -d option to skip the deterministic mutation

stage, following the con�guration of PerfFuzz [37].

Memory Consumption Bugs. The uncontrolled-recursion bug

usually causes stack-over�ow, thus we can directly use Address-

Sanitizer [62] to detect it. The uncontrolled-memory-allocation bug

consumes a large amount of memory so that the program runs

out of the memory. Thus, we can detect it by setting the “alloca-

tor_may_return_null” [29] �ag of AddressSanitizer. In addition, we

use LeakSanitizer [60] to detect memory leakage.

Experiment Infrastructure. All our experiments have been per-

formed onmachines with an Intel (R) Xeon (R) E5-1650 v3 Processor

(3.40GHz) and 16GB of RAM under 64-bit Ubuntu LTS 16.04.

4.2 Unique Crashes Evaluation (RQ1)

To evaluate the e�ectiveness of fuzzers, a direct measurement is

the number of unique crashes found by di�erent fuzzers. It is be-

lieved that more unique crashes usually indicate higher chances of

covering more unique vulnerabilities.

Table 1 shows the number of unique crashes, which is caused by

memory consumption vulnerabilities, found by 7 di�erent fuzzers

within 24 hours in the benchmark programs. It is worth noting, we

identify unique crashes related to memory consumption bugs by

reproducing the crashes and analyzing their crash stacks. And we

discuss other types of crashes in Section 4.6. Out of the 17 groups of

experiments,MemLock performs best in 10 (58.8%) groups of exper-

iments among 7 di�erent fuzzers, as shown in columnMemLock. In

total,MemLock �nds 2009 unique memory consumption crashes in

the benchmark programs, improving by 59.2%, 70.5%, 76.9%, 98.1%,

40.5% and 66.7% respectively, compared to state-of-the-art fuzzers

AFL, AFLfast, PerfFuzz, FairFuzz, Angora and QSYM. Especially,

MemLock is able to �nd unique crashes in all benchmark programs,

while other 6 state-of-the-art fuzzers may �nd no crashes in some

benchmark programs. For example, none of the other 6 state-of-

the-art fuzzers could �nd any unique crashes in the program �ex,

butMemLock was able to �nd 61 unique crashes within 24 hours.

To better compare di�erent fuzzers, we also use the plots to de-

pict the performance over time in some benchmark programs, as

shown in Figure 5. It shows that MemLock has a steady and strong

growth trend in �nding unique crashes, andMemLock is also the

�rst fuzzer that reported crashes.

Following Klees’ recommendation [35], we also conduct the

statistic test for the results. The Â12 [68] statistic measures the

probability that one fuzzer (in this case MemLock) outperforms

another fuzzer. The value of Â12 means by what chance the result of

MemLock is better than the competitor, as shown in columns with

the heading Â12. Further, we apply the Mann-Whitney U -test [2]

with a signi�cance level of 0.05 to check the statistical signi�cance

di�erences of experimental results. A smaller statistical signi�cance

di�erence (a.k.a p-value) indicates a more signi�cant di�erence

between MemLock and the competitor. In Table 1, we mark the

corresponding Â12 values in bold for those with a p-value smaller

than the signi�cance level (0.05) (for simplicity, we do not include

p-values here but they are available at the companion website [48]).

Out of 102 Â12 values in the table, 72 (70.6%) Â12 values exceed the

conventionally large e�ect size (0.71) and are marked in bold. Thus,

we can conclude that MemLock signi�cantly outperforms other 6

state-of-the-art fuzzers in most benchmark programs.

From the analysis of Table 1 and Figure 5, we can positively an-

swer RQ1 that MemLock signi�cantly outperforms the start-

of-the-art fuzzers in terms of memory consumption crashes

detection.

4.3 Real-world Vulnerability Evaluation (RQ2)

In this section, we compare the capability of MemLock to �nd real-

world known vulnerabilities against baseline fuzzers, as suggested

by Klees [35].

Table 2 shows the statistic results inMemLock as well as other 6

di�erent state-of-the-art fuzzers. The benchmark programs totally

contain 34 unique vulnerabilities, out of whichMemLock performs

best in the 25 vulnerabilities among other 6 state-of-the-art fuzzers,

as shown in column MemLock. MemLock averagely takes about

5.4 hours to �nd each unique vulnerability, which is 2.15, 2.15,

2.20, 2.69, 3.76, 2.07 times faster than the state-of-the-art fuzzers

AFL, AFlfast, PerfFuzz, FairFuzz, Angora and QSYM respectively. In

particular,MemLock �nds 33 out of 34 unique vulnerabilities within

24 hours, while other fuzzers AFL, AFLfast, PerfFuzz, FairFuzz,

Angora and QSYM only �nd 26, 28, 20, 17, 6 and 25, respectively.

The three unique vulnerabilities (i.e., issue#106, CVE-2018-18701

and CVE-2019-6293) in mjs, nm and �ex can be found only by
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Table 1: Unique Crashes Evaluation

MemLock AFL AFLfast PerfFuzz FairFuzz Angora QSYM
Program Version SLoC Type

#Crashes #Crashes Â12 #Crashes Â12 #Crashes Â12 #Crashes Â12 #Crashes Â12 #Crashes Â12

mjs [53] 1.20.1 40k UR 114 36 1.00 31 1.00 88 0.96 12 1.00 0 1.00 30 1.00

cxx�lt [5] 2.31 1,757k UR 448 373 1.00 304 1.00 401 0.88 39 1.00 0 1.00 327 1.00

nm [5] 2.31 1,757k UR 127 12 1.00 21 1.00 17 1.00 0 1.00 0 1.00 20 1.00

nasm [54] 2.14.03 105k UR 132 6 1.00 4 1.00 40 1.00 0 1.00 0 1.00 4 1.00

�ex [27] 2.6.4 27k UR 61 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00 0 1.00

yaml-cpp [80] 0.6.2 58k UR 4 0 1.00 1 1.00 3 0.56 0 1.00 0 1.00 0 1.00

libsass [43] 3.5.4 27k UR 23 6 1.00 4 1.00 23 0.53 11 0.88 26 0.25 7 1.00

yara [81] 3.5.0 45k UR 156 34 1.00 33 1.00 65 0.94 13 1.00 0 1.00 31 1.00

readelf [5] 2.28 1,844k UA 273 104 1.00 110 1.00 54 1.00 181 0.88 0 1.00 114 1.00

exiv2 [25] 0.26 84k UA 10 11 0.14 11 0.20 6 0.90 15 0.00 13 0.16 8 0.52

openjpeg [55] 2.3.0 243k UA 16 8 0.80 5 1.00 0 1.00 7 0.46 0 1.00 5 0.80

UA 5 2 1.00 2 0.98 2 1.00 1 1.00 189 0.00 1 1.00
bento4 [4] 1.5.1 78k

ML 145 78 1.00 72 1.00 61 1.00 125 1.00 290 0.00 74 1.00

UA 18 20 0.40 18 0.60 17 0.62 20 0.20 3 1.00 16 0.80
libming [42] 0.4.8 92k

ML 264 336 0.20 324 0.00 324 0.00 371 0.00 87 1.00 354 0.00

UA 3 2 0.84 3 0.56 0 1.00 3 0.56 2 1.00 2 0.92
jasper [32] 2.0.14 44k

ML 210 234 0.08 235 0.08 35 1.00 216 0.40 820 0.00 212 0.46

Total Unique Crashes (Improvement) 2009 1262 (+59.2%) 1178 (+70.5%) 1136 (+76.9%) 1014 (+98.1%) 1430 (+40.5%) 1205 (+66.7%)

* UR means the uncontrolled-recursion bug, UA means the uncontrolled-memory-allocation bug, and ML means the memory leak. We highlight the Â12 values in the bold if its
corresponding Mann-Whitney U test is signi�cant.
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Figure 5: The growth trend of unique crashes found in di�erent fuzzers; higher is better

MemLockwithin 24 hours. Therefore, it is proved that our memory-

consumption guided strategy is very e�ective in �nding memory

consumption bugs.

In addition, we also conduct the statistic test for unique vulner-

ability evaluation. Out of 204 Â12 values in the table, 139 (68.1%)

Â12 values are bold and exceeding the conventionally large e�ect

size (0.71). Thus, MemLock signi�cantly outperforms other 6 state-

of-the-art fuzzers in �nding unique vulnerabilities.

Case Study. To demonstrate the reason behindMemLock’s superi-

ority, we present the case of CVE-2019-6293. It is an uncontrolled-

recursion vulnerability in �ex, which is a lexical analyzer generator.

The lexical analyzer generated by �ex has to provide “beginning”

state and “ending” states. The mark_beginning_as_normal func-

tion mark each “beginning” state in a machine as being a “normal”

state, and the “beginning” states are the epsilon closure of the �rst

state. The mark_beginning_as_normal function would call to it-

self if there is a state reachable from the �rst state through epsilon.

We investigateMemLock’s mutation history and identify a key mu-

tation step. The test case triggers the mark_beginning_as_normal

function calling itself for multiple times, through havoc mutation

operation. Then, the recursive depth of this function is multiplied

by splice operation, and �nally leading to stack-over�ow.

More interestingly,MemLock takes only 5.4 hours on average to

discover this vulnerability, while other fuzzers all fail. We can also

see the peak length of call stack of �ex in Figure 6. AFL does not

retain any seed over 5000 lengths, as those inputs do not increase

coverage. Comparing to AFL, MemLock intentionally keeps seeds

that increase the peak length of call stack, and �nally triggering

stack-over�ow. This explains the reason whyMemLock can �nd

the vulnerability, while AFL can not detect it in all 5 runs.

NewVulnerabilitiesMemLock Found.WithMemLock, we have

discovered many previously unknown security-critical vulnera-

bilities. These vulnerabilities were not previously reported. We

informed the maintainers, and Mitre assigned 15 CVEs. Among

these 15 CVEs, 8 CVEs are uncontrolled-recursion vulnerabilities,

5 are vulnerabilities due to uncontrolled-memory-allocation issues,

and 2 are about memory leak vulnerabilities. An attacker might

leverage these vulnerabilities to launch an attack, by providing well-

conceived inputs that trigger excessive memory consumption. The

developers actively patched the vulnerabilities with our reports. At

the time of writing, 12 of these vulnerabilities have been patched.

Detailed information on our newly discovered vulnerabilities is

available on our website [48]. We are con�dent thatMemLock is

e�ective and viable in practice.
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Table 2: Time to expose real-world vulnerability

MemLock AFL AFLfast PerfFuzz FairFuzz Angora QSYM
Program Vulnerability Type

Time(h) Time(h) Â12 Time(h) Â12 Time(h) Â12 Time(h) Â12 Time(h) Â12 Time(h) Â12

issue#58 UR 0.5 0.3 0.25 0.4 0.25 0.2 0.13 0.4 0.25 T/O 1.00 0.3 0.22
mjs

issue#106 UR 13.7 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00

CVE-2018-9138 UR 0.3 7.2 1.00 10.1 1.00 0.5 0.81 T/O 1.00 T/O 1.00 3.3 1.00

CVE-2018-9996 UR T/O 16.5 0.00 T/O 0.50 T/O 0.50 T/O 0.50 T/O 0.50 T/O 0.50

CVE-2018-17985 UR 0.2 1.1 1.00 4.5 1.00 0.2 0.63 1.9 1.00 T/O 1.00 1.4 1.00

CVE-2018-18484 UR 0.2 1 1.00 4.5 1.00 0.2 0.63 8 1.00 T/O 1.00 1.4 1.00

cxx�lt

CVE-2018-18700 UR 0.2 1.2 1.00 4.6 1.00 0.3 0.75 12.6 1.00 T/O 1.00 1.4 1.00

CVE-2018-12641 UR 2.6 19.1 1.00 12.6 1.00 12.2 0.88 T/O 1.00 T/O 1.00 12.8 0.88

CVE-2018-17985 UR 10.4 18.2 0.81 11.9 0.56 T/O 1.00 T/O 1.00 T/O 1.00 13.3 0.63

CVE-2018-18484 UR 9.9 16.4 0.84 17.1 0.84 T/O 1.00 T/O 1.00 T/O 1.00 14 0.75

CVE-2018-18700 UR 9.6 14.9 0.63 17.8 0.88 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00

CVE-2018-18701 UR 13.9 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00

CVE-2019-9070 UR 18.4 15.6 0.56 13.9 0.44 T/O 1.00 T/O 1.00 T/O 1.00 15.8 0.56

nm

CVE-2019-9071 UR 12.4 T/O 0.88 14 0.69 T/O 0.88 T/O 0.88 T/O 1.00 T/O 0.88

CVE-2019-6290 UR 0.9 T/O 1.00 19 1.00 9 1.00 T/O 1.00 T/O 1.00 17.6 1.00
nasm

CVE-2019-6291 UR 1.5 9 0.94 14 1.00 8.7 1.00 T/O 1.00 T/O 1.00 7.5 1.00

�ex CVE-2019-6293 UR 5.4 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00

CVE-2019-6292 UR 0.4 T/O 1.00 18.4 1.00 0.9 0.81 T/O 1.00 T/O 1.00 T/O 1.00
yaml-cpp

CVE-2018-20573 UR 6.1 T/O 0.88 T/O 0.84 12.4 0.84 T/O 0.84 T/O 1.00 T/O 0.84

CVE-2018-19837 UR 1.6 13.3 0.88 10.5 0.88 1.8 0.63 8.5 0.88 T/O 1.00 5 0.81

CVE-2018-20821 UR 0.1 5.7 1.00 6.5 1.00 0.1 0.50 9.5 1.00 T/O 1.00 7.4 1.00libsass

CVE-2018-20822 UR 15.6 14.3 0.50 19.5 0.56 14.6 0.47 11.3 0.56 0.92 0.00 10.5 0.44

yara CVE-2017-9438 UR 0.2 0.9 1.00 4.3 1.00 0.61 0.91 5.3 1.00 T/O 1.00 0.8 1.00

readelf CVE-2017-15996 UA 0.2 0.3 0.86 0.2 0.68 0.5 0.92 0.3 0.68 T/O 1.00 0.3 0.96

exiv2 CVE-2018-4868 UA 0.1 0.1 0.50 0.1 0.50 0.1 0.50 0.1 0.50 0.1 0.5 0.1 0.50

CVE-2018-20186 UA 0.4 0.4 0.50 0.4 0.50 0.4 0.50 0.4 0.50 0.1 0.00 0.4 0.50
bento4

CVE-2019-7698 UA 14.6 T/O 1.00 T/O 1.00 T/O 1.00 T/O 1.00 0.5 0.00 T/O 1.00

CVE-2019-7581 UA 0.6 0.8 0.68 1.4 0.80 2 0.88 0.4 0.36 T/O 1.00 1.6 0.80

CVE-2019-7582 UA 0.1 0.1 0.50 0.1 0.50 0.1 0.50 0.1 0.50 0.1 0.50 0.1 0.50libming

issue#155 UA 1.4 1 0.30 1.3 0.36 1.4 0.40 1.2 0.42 T/O 1.00 1.6 0.64

CVE-2019-6988 UA 7.8 15.1 0.86 11.1 0.84 T/O 1.00 T/O 1.00 T/O 1.00 15.3 0.81
openjpeg

CVE-2017-12982 UA 4.5 11.4 0.72 10 0.60 T/O 1.00 11.9 0.64 T/O 1.00 10 0.50

CVE-2016-8886 UA 4.1 17 0.88 22.3 1.00 T/O 1.00 10.3 0.52 T/O 1.00 18.2 0.88
jasper

issue#207 UA 1.7 2.2 0.62 3.6 0.68 T/O 1.00 2.2 0.68 15.9 1.00 4 0.64

Average Time Usage (Improvement) 5.4 11.6 (2.15×) 11.6 (2.15×) 11.9 (2.20×) 14.5 (2.69×) 20.3 (3.76×) 11.2 (2.07×)

Unique Vulnerabilities (Improvement) 33 26 (+26.9%) 28 (+17.9%) 20 (+65.0%) 17 (+94.1%) 6 (+450.0%) 25 (+32.0%)

* UR means the uncontrolled-recursion bug, UA means the uncontrolled-memory-allocation bug. T/O means the fuzzer can’t �nd this vulnerability throughout 24 hours across 5

repetitions. When we calculate the average time usage, we replace T/O with 24 hours. We highlight the Â12 in the bold if its corresponding Mann-Whitney U test is signi�cant.

From the analysis of Table 2, the case study and new vul-

nerabilitiesMemLock found, we can positively answer RQ2

that MemLock signi�cantly outperforms the state-of-the-art

fuzzers in terms of real-world memory consumption vulnera-

bility detection.

4.4 Memory Leakage Evaluation (RQ3)

Memory leak bugs are a little di�erent from uncontrolled-recursion

and uncontrolled-memory-allocation bugs, because they may not

lead to program crashes immediately. Only enough memory is

leaked, it would produce Denial-of-Service (DoS) attack, for exam-

ple, in a long time running programs (e.g., banking service). To

evaluate the e�ectiveness of fuzzers in �nding memory leaks, we

look into the number of total bytes leaked during 7 di�erent fuzzers

within 24 hours

Table 3 shows the amount of memory leak (in bytes) identi�ed

by each fuzzer that may occur in di�erent programs. We can see

that MemLock shows an obvious advantage over other baseline

fuzzers. The number of bytes leaked is improved (increased) by

from 234% to 3753163%, compared to other baseline fuzzers. This is

because MemLock tries to maximize each allocation and generates

inputs with high memory consumption. When the memory leak

happens, those memory-consuming inputs will often cause more-

bytes memory leakage.

From the results in Table 3, we can answerRQ3 thatMemLock

signi�cantly magni�es the memory leakage comparing to

the state-of-the-art fuzzing techniques, due to its memory

consumption guidance.

4.5 Memory Consumption Evaluation (RQ4)

SinceMemLock seeks to generate test inputs that consume more

and more memory. In this experiment, we evaluate the test in-

put distribution according to memory consumption forMemLock,

AFL, AFLfast, PerfFuzz, FairFuzz, Angora and QSYM. A fuzzer that

maintains a seed pool with a larger proportion of high memory con-

sumption inputs is considered to have a better chance of detecting

memory consumption bugs.
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Figure 6: Seed distribution based on memory consumption. The larger the value on the right side is better.

Table 3: Total Leak Bytes

Program Type Tool leakge (Bytes) Improve. p-value Â12

bento4 memory leak

MemLock 52,709,574 - - -
AFL 151,862 +34609% 0.0061 1.00

AFLfast 1,233,255 +4174% 0.0061 1.00
PerfFuzz 105,984 +49633% 0.0061 1.00
FairFuzz 1,910,466 +2659% 0.0061 1.00
Angora 141,512 +37147% 0.0060 1.00
QSYM 15,784,847 +234% 0.0061 1.00

libming memory leak

MemLock 176,320,785 - - -
AFL 4,869,594 +3521% 0.0061 1.00

AFLfast 2,535,212 +6855% 0.0061 1.00
PerfFuzz 47,044,964 +257% 0.0061 1.00
FairFuzz 828,742 +21176% 0.0061 1.00
Angora 4,698 +3753163% 0.0060 1.00
QSYM 1,219,093 +14363% 0.0061 1.00

jsaper memory leak

MemLock 2,372,844,732 - - -
AFL 56,018,839 +4136% 0.0061 1.00

AFLfast 48,403,244 +4802% 0.0061 1.00
PerfFuzz 6,229,898 +37988% 0.0061 1.00
FairFuzz 56,788,235 +4096% 0.0061 1.00
Angora 191,907,941 +1136% 0.0105 0.98
QSYM 38,244,568 +6104% 0.0061 1.00

Figure 6 shows the input distribution based onmemory consump-

tion. In general, we can clearly see that MemLock can generate

more seeds with higher memory consumption. This is because the

guidance mechanisms in MemLock help to gradually add more

and more memory consuming inputs into the seed pool. In par-

ticular, for the uncontrolled-recursion bugs (nm, nasm, �ex and

yara),MemLock generates a large number of inputs that hold more

than 30,000 function calls in the call stack, while PerfFuzz gen-

erates only a few and AFL/AFLfast can hardly generate inputs

that hold more than 10,000 function calls. The pattern is similar

for uncontrolled-memory-allocation bugs (readelf, openjpeg, jasper

and libming). MemLock can generate a considerable amount of

inputs with high memory consumption while the inputs of the

other fuzzers concentrate on the low memory consumption region.

The results clearly demonstrate the e�ectiveness of the strategies

of MemLock in generating inputs with high memory consumption.

After analyzing Figure 6, we can answer RQ4 that the strate-

gies of MemLock indeed help to generate inputs with high

memory consumption.

4.6 Discussion

Additional Experiments. The above four groups of experiments

show that MemLock is e�ective and e�cient in �nding memory

consumption vulnerabilities. Since MemLock focuses on the space

complexity issues, it may fall behind other baseline fuzzers in other

performance metrics. For example,MemLock intentionally keeps

seeds that increase memory consumption, which may degrade its

capability of identifying other types of vulnerabilities. We have

therefore evaluated the capability of �nding other types of crashes.

In the benchmark programs, MemLock, AFL, AFLfast, PerfFuzz,

FairFuzz, Angora and QSYM �nd 77, 239, 228, 189, 276, 343 and 236

other types of unique crashes, respectively. Moreover, our approach

may also incur some runtime overhead. Therefore, we compare

the code coverage and execution speed for each baseline fuzzer.

In total, the number of executed test inputs in MemLock ranges

from 20% to 84% of those in AFL, AFLfast, FairFuzzer and QSYM.

Among all the fuzzers, PerfFuzz performs the worst likely due to

the fact that it prefers the test inputs that execute long instructions.

Considering the code coverage,MemLock achieves the comparable

code coverage, compared to the fuzzers AFL, AFLfast, FairFuzzer

and QSYM. PerfFuzz still performs the worst among those fuzzers,

and in most cases it only achieves the code coverage from about

60% to 70% of those in other fuzzers. All extra experimental results

and data are available on our website[48] for interested readers.

Threats to Validity.We selected a variant of real-world programs

to show the capabilities of MemLock, and compared it against other

state-of-the-art fuzzers. However, our benchmarks may still include
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a certain sample bias. Further studies on more real-world programs

can help better evaluate MemLock. Besides, MemLock also su�ers

from the di�culty in breaking through hard comparisons (e.g.,

magic bytes) as most work [7, 11, 28]. Adopting some program

analysis techniques (e.g., symbolic execution) might help mitigate

this threat.

5 RELATED WORK

Coverage-based Grey-box Fuzzing. Coverage-based grey-box

fuzzing [3, 39, 41, 44, 47, 57, 66] is one of the most e�ective tech-

niques to �nd vulnerabilities and bugs, and has attracted a great

deal of attention from both academic and industry. Coverage-based

grey-box fuzzers typically adopt the coverage information to guide

di�erent program path explorations. For example, Google has built

an OSS-FUZZ platform [61] by incorporating several state-of-the-

art coverage-based grey-box fuzzers: libFuzzer [45], honggfuzz [9],

AFL [84] and ClusterFuzz [30].

Since a coverage guidance engine is a key component for the

grey-box fuzzers, much e�ort has been devoted to improve their

coverage. Steelix [40], Vuzzer [59] and REDQUEEN [3] use program-

state analysis or taint analysis to penetrate some paths protected by

magic bytes comparisons. QSYM [83], Driller [64] and SAFL [76]

equips grey-box fuzzing with a symbolic execution engine to reach

deeper program code. Angora [12] adopts a gradient descent tech-

nique to solve path constraints so as to break some hard compar-

isons. MemFuzz [16] augmenting evolutionary fuzzing by addi-

tionally leveraging information about memory accesses (instead

of memory consumption) performed by the target program. Pro-

Fuzzer [82], GRIMOIRE [6], Superion [75] and Zest [56] leverage

the knowledge in highly-structured �les to generate syntactically

and semantically valid test inputs, and thus be able to touch deeper

program code. CollAFL [28] proposes a coverage sensitive fuzzing

solution to mitigate the path collisions. FairFuzz [38] leverages

a targeted mutation strategy to execute towards rare branches.

UAFL [73] incorporates typestate properties and information �ow

to their fuzzing engine to guide the detection of use-after-free

vulnerabilities. Besides, AFLgo [7] and Hawkeye [11] use the dis-

tance metrics to execute towards user-speci�ed target sites in the

program. The main di�erence between MemLock and these state-

of-the-art fuzzers is that, MemLock aims at memory consumption

bugs while the others are to �nd memory corruption vulnerabilities.

Thus, MemLock is orthogonal to these state-of-the-art fuzzers.

Recently, researchers have paid attention to the algorithmic com-

plexity vulnerabilities (i.e., time complexity issues) such as Slow-

Fuzz [58], Singularity [77] and PerfFuzz [37]. They use the number

of executed instructions as the guidance to explore the program

path with a longer path length. In contrast with MemLock, they

stress the time complexity issues whileMemLock considers space

complexity issues. The space complexity issues have its own unique

characteristics, as the amount of memory consumption can increase

(e.g., function entry, memory allocation) and decrease (e.g., function

exit, memory free),MemLock takes both of them into consideration.

Static Analysis. Static analysis is also used to analyze memory

consumption [1, 10, 13, 14, 31, 34, 70]. Wang et al. [70] presents a

type-guided worst-case input generation by using automatic amor-

tized resource analysis to derive symbolic bounds on the resource

usage of functions. Duc-Hiep et al. [15] presents a worst-case mem-

ory consumption analysis, which uses symbolic execution to ex-

haustively unroll loops and compute memory consumption of each

iteration. He et al. [31] and Chin et al. [14] employ static veri�cation

to check a program’s memory usage is within the memory bounds,

while Chin et al. [13] uses static analysis to compute the mem-

ory usage bounds for assembly level programs. These approaches

rely on type theory or symbolic execution, thus they often su�er

from the scalability issue. SMOKE [26] is a path-sensitive memory

leak detector for millions of lines of code. It �rst uses a scalable

but imprecise analysis to compute a set of candidate memory leak

paths and then veri�es the feasibility of the candidates using a more

precise analysis. While SMOKE can demonstrate the existence of

memory leak,MemLock can generate an input that produces the

memory leak.

Dynamic Analysis. Yuku et al. [46] proposes an improved real-

time scheduling algorithm to reduce maximal heap memory con-

sumption by controlling multitask scheduling. Di�erent fromMem-

Lock, this technique aims at reducing memory consumption by

dynamic online scheduling while MemLock is to �nd memory con-

sumption bugs. BLEAK [69] is a system to debug memory leaks in

web applications. It leverages the observation that users often re-

peatedly return to the same visual state. Sustained growth between

round trips is a strong indicator of a memory leak. BLEAK is only

applicable to memory leak of web applications, whileMemLock can

�nd several kinds of memory consumption bugs. Radmin [24] is a

system for early detection of application-level resource exhaustion

and starvation attacks. It �rst learns and executes multiple proba-

bilistic �nite automata from its benign executions. It then restricts

the resource usage to the learned automata and detects resource

usage anomalies. Radmin uses some heuristics to detect resource

usage anomalies, whileMemLock employs the fuzzing technique to

automatically generate the inputs for memory consumption bugs.

6 CONCLUSION

In this paper, we proposeMemLock, an enhanced grey-box fuzzing

technique to �nd memory consumption bugs.MemLock employs

both coverage and memory consumption information to guide the

fuzzing process. The coverage information guides the exploration

of di�erent program paths, while the memory consumption infor-

mation guides the search for those program paths that exhibit more

and more memory consumption. Our experimental results have

shown that MemLock outperforms state-of-the-art fuzzing tech-

niques (i.e., AFL, AFLfast, PerfFuzz, FairFuzz, Angora and QSYM)

in detecting memory consumption bugs. We also found 15 security-

critical vulnerabilities in some real-world programs. At the time of

writing, 12 of these vulnerabilities have been patched.
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