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Memories in a network with excitatory and inhibitory plasticity are1

encoded in the spiking irregularity2

Júlia V. Gallinaro1 and Claudia Clopath1
3

1Bioengineering Department, Imperial College London, London, UK4

Abstract5

Cell assemblies are thought to be the substrate of memory in the brain. Theoretical studies have6

previously shown that assemblies can be formed in networks with multiple types of plasticity. But how7

exactly they are formed and how they encode information is yet to be fully understood. One possibility8

is that memories are stored in silent assemblies. Here we used a computational model to study the9

formation of silent assemblies in a network of spiking neurons with excitatory and inhibitory plasticity.10

We found that even though the formed assemblies were silent in terms of mean firing rate, they had11

an increased coefficient of variation of inter-spike intervals. We also found that this spiking irregularity12

could be readout with support of short-term plasticity, and that it could contribute to the longevity of13

memories.14

Introduction15

Cortical synapses are plastic, allowing sensory experience to be stored in network connectivity. Concurrent16

activation of ensembles of neurons is thought promote cell assembly formation by potentiating their synapses17

[1]. Stronger synapses within neurons allows them to be more easily activated together, even in the presence18

of partial cues. How exactly cell assemblies are formed and how their synapses and firing activity encode19

information, however, is yet to be fully understood. Theoretical work [2, 3, 4, 5, 6, 7, 8] has shown it20

is possible to create such assemblies by combining different forms of synaptic plasticity. In some of these21

models [3, 4], when strongly connected assemblies are formed, spontaneous activity is characterized by an22

overall stable firing rate across the excitatory population, but with the firing rate of individual assemblies23

transitioning between periods of high and low activity.24
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Cell assemblies, however, may not necessarily be persistently active at all times. Assemblies could also25

be stored in a latent or quiescent state, from where they can be retrieved by a cue [9]. Storing them in26

a silent state could be advantageous from an energy efficiency point of view [10], specially if they are not27

being constantly recalled. Inhibitory engrams have been proposed as a way of implementing this type of28

silent assembly, and were suggested to form when increased excitation within a highly active ensemble of29

neurons would be matched by increased inhibition [11]. Theoretical work [2, 5, 6] has shown such silent30

assemblies can be formed by combining traditional spike-timing dependent forms of excitatory plasticity [12,31

13, 14] with inhibitory plasticity [2, 15, 16]. In these models, inhibitory plasticity counteracts the effect of32

excitatory potentiation, leading to the formation of cell assemblies in which the excitatory neurons receive33

increased excitatory and inhibitory currents (EI assemblies).34

Although silent EI assemblies do not reactivate themselves during spontaneous activity, the memories35

they encode can still be reactivated by specific stimulation. Vogels, Sprekeler et al. [2] have shown that36

memories could be retrieved by momentarily disrupting balance within the assembly by stimulating a fraction37

of their neurons. Similarly, in Yger et al. [5], strengthening of the assembly led to stronger neural response38

upon stimulation. Since neurons belonging to an EI assembly receive increased excitation and inhibition,39

memories encoded by the EI assembly could also be reactivated by disinhibition [17, 18]. A transient decrease40

in inhibitory drive leads to a net increase in excitatory input to excitatory neurons belonging to the assembly,41

resulting in an increase in their activity. In Barron et al. [17], for example, dormant memories embedded in42

a network model could be retrieved by decreasing the efficacy of inhibitory synapses.43

Here, we study how stronger connectivity within EI assemblies influences spontaneous activity. More44

specifically, we show that neural stimulation does form EI assemblies that are silent in terms of firing rate, but45

leaves a trace in the regularity of their spike trains. Therefore, we suggest it is possible to readout assembly46

information not only with specific stimulation, but also during spontaneous activity. In a feedforward model,47

we show that an increase in excitatory current leads to an increase in irregular firing in a neuron receiving48

feedforward plastic inhibition. We also show this irregularity can be readout with support of short-term49

plasticity (STP) [19]. We extend these results to a network model with excitatory [13] and inhibitory50

[2] plasticity, and show that neurons belonging to an EI assembly fire indeed more irregularly. During51

spontaneous activity, we demonstrate that irregularity can be readout with STP, even though assembly52

neurons are not being specifically stimulated and their mean firing rate is indistinguishable from the other53

excitatory neurons in the network. Furthermore, we analyze the decay of excitatory weights, and find54

that memory lifetime is increased due to the irregular firing of the neurons within the EI assemblies. Put55

together, our results suggest that, in silent assemblies, memories may be encoded in regularity of firing56

during spontaneous activity, which allows them to be readout without specific stimulation, and that this57
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could contribute to their longevity.58

Results59

iSTDP leads to more irregular firing upon increased excitatory currents60

Inhibitory plasticity has been previously proposed as a mechanism to promote balance between excitatory61

and inhibitory currents to a neuron [2, 20], promoting homeostasis of the post-synaptic firing rate [2]. Such62

homeostatic regulation of firing rate at different levels of input currents, however, could have an effect on63

higher order statistics of post-synaptic firing. We therefore started by testing the effect of inhibitory plasticity64

on the irregularity of firing when a neuron received different intensities of excitatory current. For that, we65

used the inhibitory spike-timing dependent plasticity model (iSTDP) proposed by Vogels, Sprekeler et al.66

[2], which has been previously shown to reproduce multiple experimental results [2, 21, 22]. We simulated67

a single LIF neuron that received input from one excitatory source with a fixed weight WE→E = J , and68

from one inhibitory source through iSTDP [2] (Figure 1A). After the inhibitory weight had reached an69

equilibrium value, and the neuron fired at target rate, we increased the strength of the excitatory connection70

WE→E . As expected, just after an increase of the excitatory current, the output neuron fired at a higher71

rate, triggering an upregulation of the inhibitory weight by iSTDP (Figure 1B-C), until the output neuron72

fired again at target rate (Figure 1C). We then repeated this procedure systematically, for different values of73

increase in strength of the excitatory connection WE→E = 2J, 3J, 4J, 5J . We observed that after plasticity74

had converged, the neuron fired always at target rate, but with a CV that increased with WE→E (Figure 1D).75

To better understand this result, we calculated the expected firing rate and CV for an LIF neuron76

as a function of the mean and variance of its subthreshold membrane potential [24, 23] (see Methods for77

details of the calculation). Although higher excitatory and higher inhibitory currents contribute to the mean78

with different signs, they both contribute positively to the variance [24, 23]. This means that the same79

firing rate can be achieved by different combinations of mean and variance of the subthreshold membrane80

potential (contour lines on Figure 1E). At the same time, different combinations of mean and variance of81

the subthreshold membrane potential will lead to different values of CV (Figure 1F). More specifically, for82

a given fixed firing rate, the CV will be higher when mean is lower and variance is higher (Figure 1G).83

Therefore, for a neuron receiving inhibitory plastic input under iSTDP, an increase in excitatory currents84

leads to lower mean membrane potential and more irregular spikes.85
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iSTDP

Figure 1: iSTDP leads to more irregular firing upon increased excitatory currents. (A) A single
LIF neuron receives input from one excitatory source with a fixed weight, and one inhibitory source through
iSTDP. (B) Synaptic weight from the inhibitory source to the output neuron as a function of time. The grey
shaded area indicates the period where the weight from the excitatory source is increased from WE→E = J
to WE→E = 4J . (C) Firing rate of the output neuron as a function of time. Grey shaded area as in
(B). (D) Mean firing rate (edge colored) and CV (full colored) of the output neuron for different values
of increase in excitatory current WE→E = J, 2J, 3J, 4J, 5J . Black lines show standard deviation across 10
independent output neurons. Firing rate and CV are calculated using the last 50 s of the simulation. (E)
Predicted firing rate of a LIF neuron as a function of mean (µ) and standard deviation (σ) of its subthreshold
membrane potential from theoretical calculations [23]. The red crosses indicate mean and standard deviation
of subthreshold membrane potential from neurons in (D), with matching colors. Black lines show contour
lines for firing rate equal 1, 8 and 50 Hz. (F) Same as (E) for CV. (G) Predicted CV from theory as a
function of mean subthreshold membrane potential for a fixed firing rate, matching the contour lines on (E).

Different levels of irregularity can be readout with short-term plasticity (STP)86

If the irregularity of spike trains can carry information about previous stimulation, one important question87

is whether it can be decoded by an output neuron. To that end, we connected an output LIF neuron88

to multiple inputs with same rate and CV (Figure 2A). For a given input firing rate, the postysnaptic89

subthreshold membrane potential had a constant mean µVm
(Figure 2B), and a standard deviation σVm

90

that increased with CV (Figure 2C). The increase in σVm
alone, however, was not enough to trigger large91

modulation of output firing rate with input CV. Therefore, we found that an increase in CV of the input92

neurons led to slightly increased firing rate of the output neuron (Figure 2D)93

Previously, STP has been shown to increase postsynaptic sensitivity to bursts [25]. Here, introducing94

short-term facilitation [19] (STF) in the connections to the output neuron (Figure 2E) led to modulation of95

the mean µVm
(Figure 2F), as well as the standard deviation σVm

(Figure 2G), of the subthreshold voltage96

with the CV of the input neurons. This in turn was reflected in a larger modulation of output rate with97
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Figure 2: Different levels of irregularity can be readout with short-term plasticity (STP). (A)
An output neuron receives input through static excitatory connections from multiple neurons firing at the
same rate and CV. The small plots on the right illustrate what is measured from the output neuron, namely
its subthreshold membrane potential and its firing rate (B) Mean subthreshold membrane potential of the
output neuron in (A), for different values of CV. (C) Standard deviation of the subthreshold membrane
potential of the output neuron in (A) for different values of CV. (D) Output firing rate of the neuron in (A)
for different values of CV. (E-H) Same as (A-D), but with output neuron receiving input through plastic
excitatory connections following short-term facilitation.

input CV (Figure 2H). In summary, although higher values of input CV lead to larger standard deviation98

of the subthreshold voltage of the output neuron in the presence of static synapses, this has only a small99

effect on the firing rate of the output neuron. In the presence of STF, on the other hand, higher input CV100

also leads to higher mean subthreshold voltage of the output neuron, leading to a larger modulation of the101

output rate with input CV. Therefore, the irregularity of spike trains can be decoded with the support of102

STF.103

Assemblies formed by excitatory and inhibitory plasticity are silent but leave a104

trace in terms of irregular firing105

Inhibitory plasticity has been proposed to support the formation of balanced excitatory-inhibitory assemblies106

(EI assemblies) by matching high excitatory currents in neurons following increased excitatory plasticity [11,107

2]. We just showed that an increase in excitatory current led to more irregular firing of a neuron receiving108

inhibitory input through iSTDP (Figure 1) and that a difference in irregularity modulated the output firing109

rate of a neuron receiving plastic input under STF (Figure 2). Put together, this suggests that formation of110

EI assemblies leaves a trace on the regularity of spike trains, which can be readout with STP.111
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In order to test this idea, we started by investigating whether the formation of EI assemblies left a112

trace on irregularity of firing in a model similar to the one presented in Vogels et al. [2]. We simulated a113

recurrent network of excitatory and inhibitory LIF neurons in which inhibitory-to-excitatory synapses were114

plastic according to the iSTDP rule [2] and other synapses were static (Supplementary Figure 1A). We also115

included two output neurons, one receiving input from the neurons within the EI assembly and the other116

receiving input from a group of excitatory neurons outside the assembly (Supplementary Figure 1A). Both117

output neurons received those inputs through connections that were plastic according to STF. Once the118

excitatory neurons had reached their target firing rate, we formed an assembly by hardwiring an increase in119

excitatory weights between assembly neurons by a factor of 6. As shown in Vogels et al. [2], this increase in120

recurrent excitatory weights led to an increase in firing rate of assembly neurons, which triggered an increase121

in incoming inhibitory weights through the iSTDP rule [2] (Supplementary Figure 1B). Following a transient122

period, the within assembly excitatory neurons fired again at target rate (Supplementary Figure 1C-D),123

but with higher CV (Supplementary Figure 1E-F). Moreover, following the assembly formation, the output124

neuron connected to the assembly fired with higher rate than the one connected to excitatory neurons outside125

the assembly (Supplementary Figure 1H).126

We proceeded by including excitatory plasticity on this recurrent network, such that assemblies could be127

formed by specific stimulation of neurons. Starting from the previous model of recurrent network (Supple-128

mentary Figure 1A), we made excitatory-to-excitatory synapses plastic according to a triplet-based model of129

STDP [13] (Figure 3A). This triplet model was built as an extension of classical pair-based STDP models, and130

has been shown to reproduce a series of experiments on plasticity [13]. In this model, weights are potentiated131

by post-pre-post triplets, such that high post-synaptic firing rate leads to LTP [13]. An EI assembly was132

then formed by stimulating a subset of the excitatory neurons (Figure 3A). The increase in activity following133

stimulation led to potentiation of both excitatory synapses through the triplet rule and inhibitory synapses134

through iSTDP, as shown in Vogels et al. [2] (Figure 3B). After a transient period, given the homeostatic135

nature of the iSTDP rule [2], the mean firing rate of the stimulated neurons was indistinguishable from the136

rest of the network (Figure 3C-D). At this point, due to the increase in synaptic weights (Figure 3B), the137

neurons belonging to the assembly received more excitatory and more inhibitory currents than before the138

stimulation protocol, which led to more irregular spike trains (Figure 3E-F).139

The increase in excitatory-to-excitatory weights also led to higher correlation between assembly neurons140

(Figure 3G and see Supplementary Figure 3 for full population rater plots). This means that the formed141

assemblies are ‘silent’ in terms of mean firing rate, but not in terms of correlation. The strength of within142

assembly connectivity was determined here by the maximum weight allowed for excitatory-to-excitatory143

connections Wmax
E→E . If weaker assemblies were formed, the effect on CV was smaller than the observed one.144
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iSTDP

Triplet

STF

Figure 3: Assemblies formed by excitatory and inhibitory plasticity are silent but leave a trace
in terms of irregular firing. (A) The simulated network is composed of excitatory (red) and inhibitory
(blue) LIF neurons. Inhibitory-to-excitatory connections (dotted blue) are plastic according to iSTDP [2]
and excitatory-to-excitatory (dotted red) according to the triplet rule [13]. An EI assembly is formed when
a subset of the excitatory neurons (purple) is stimulated. One readout neuron receives input from the EI
assembly (purple edge color) and another readout neuron receives input from a subset of excitatory neurons
outside of the assembly, but with same size as the assembly (red edge color). The readout synapses are
plastic under STF (dotted grey). Inhibitory-to-inhibitory and excitatory-to-inhibitory connections (black)
are static. (B) Mean synaptic weight between groups of neurons. Neurons are sorted such that the first
160 neurons are assembly neurons. Neurons are then divided into groups of 40 neurons, and shown is the
average synaptic weight between groups. Shown are excitatory (red scale) and inhibitory (blue scale) synaptic
weights to excitatory neurons only. Synaptic weights which are not plastic are not shown. The purple lines
indicate the position of groups comprising assembly neurons only. (C) Mean firing rate of neurons within
the assembly (purple) and outside the assembly (red) before and 500 s after stimulation. Black lines show
standard deviation across neurons for a single simulation run. (D) Firing rate of all excitatory neurons in
the network before (top) and 500 s after (bottom) stimulation. Neurons are displayed in a 32 x 50 grid.
The black square on each panel indicates neurons belonging to the assembly. (E-F) Same as (C-D) for the
CV.(C-F) Mean firing rate and CV are calculated using 50 s of activity. (G) Raster plots showing 3 s activity
of 160 neurons within the assembly and 160 excitatory neurons outside of the assembly before stimulation
(top) and 500 s after stimulation (bottom). The purple lines indicate neurons belonging to the assembly. (H)
Firing rate of the readout neuron connected to the assembly (purple edge) or outside assembly (red edge),
before and after stimulation. Black lines show standard deviation across 5 independent simulation runs.

If stronger assemblies were formed, on the other hand, there was an increase in correlation (Supplementary145

Figures 2 and 3).146

As previously seen in the network without excitatory plasticity (Supplementary Figure 1H), we also147

observed that the output neuron connected to the EI assembly fired with a larger firing rate than the output148

neuron connected to the random group of excitatory neurons (Figure 3H). This is probably due to higher149
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correlation within assembly neurons, but also due to higher CV. Even though all neurons in the network150

fired at the same mean rate, the neurons belonging to the EI assembly fired more irregular spike trains. Due151

to STF, short intervals between spikes led to more STF and, consequently, higher activity of the output152

neuron, as previously seen (Figure 2).153

In summary, in neurons belonging to an EI assembly, assembly embedding encodes a trace in the regularity154

of their spike trains, which can be decoded by an output neuron through plastic connections with STF. Put155

together, this suggests that there are traces of the memory available from the neuronal activity even during156

seemingly silent moments, which could be potentially used for downstream processing without the need for157

an externally stimulated recall.158

Stronger assemblies decay more slowly due to both the irregular spiking and159

correlations160

Due to the homeostatic nature of iSTDP, assembly neurons fired at target rate after formation of the161

assembly (Figure 3C-D). Given that this value was below the threshold for potentiation of the triplet rule,162

the stronger weights between assembly neurons decayed with time (Figure 4 and Supplementary Figure 4).163

We were therefore interested in how the decay of excitatory weights was influenced by the strength of the164

assemblies. In order to test that, we performed the following simulations. After forming an assembly by165

stimulating a subgroup of neurons, the external input was set back to its baseline value and we measured166

the weight decay between pairs of synaptically connected neurons belonging to the assembly (Figure 4A).167

We performed separate simulations in which the assemblies were formed with different strengths, by setting168

different values of maximum allowed excitatory-to-excitatory weights Wmax
E→E .169

We observed that the stronger assemblies decayed more slowly than the weaker ones (Figure 4B-D).170

Slower decay of stronger assemblies could be explained by increased correlation caused by the stronger171

excitatory weights (Figure 4D). Increased correlation means there should be a higher occurrence of pre-post172

pairs within short time windows. Considering the triplet rule [13], it is expected that such an increase should173

lead to more potentiation between excitatory weights and, therefore, slower decay of the assemblies. At the174

same time, the triplet rule is also known to potentiate post-pre-post triplets [13]. In that case, we should175

also expect more potentiation in cases where the postsynaptic neuron is firing with higher CV, given that176

higher CV translates into an increased occurrence of shorter intervals between two consecutive post-synaptic177

spikes.178

Therefore, we also expected a slower decay of assembly weights due to higher CVs, and not exclusively179

due to increased correlation coefficient (CC). In order to test this, we tried to disentangle the effects of CC180
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Figure 4: Stronger assemblies decay more slowly due to both the irregular spiking and corre-
lations. (A) Spike trains of 5 pairs of synaptically connected assembly neurons and the time series of the
excitatory weight between them are extracted from each of the 5 independent simulation runs shown on
Figure 3. A linear function is fitted to the last 1 000 s of the weight decay, and its decay slope α is extracted.
(B) Excitatory weight between assembly neurons during 2 000 s after the embedding of the assembly. Shown
are the weights between 5 different pairs of connected neurons, for each of 3 different assembly strengths
(shades of red, Wmax

E→E = 1.5, 3 and 5 J). (C) Slope of weight decay α plotted against mean CV between
pre- and post-synaptic spike trains for different strengths of assembly. (D) Slope of weight decay α plotted
against correlation coefficient (CC) between pre- and post-synaptic spike trains for different strengths of
assembly. (C-D) Mean CV and CC are calculated using the last 50 s of simulation, r shows the Pearson’s
correlation coefficient between x and y values. (E) For each pair of pre- and post-synaptic neurons in (A),
the post-synaptic spike train is shifted by 3 s, and the synaptic weight between the last 1 000 s of the pre-
and manipulated post-synaptic spike trains is calculated. (F-H) Same as (B-D), but for the shifted spike
trains.

and CV by calculating the weight decay of manipulated spike trains. For each pair of pre-post spike trains181

recorded in our intact simulation (Figure 4A), we artificially shifted the post-synaptic spike train by 3 s,182

and calculated the weight decay for the manipulated spike train (Figure 4E). By performing this shift we183

observed two things. Firstly, as expected, shifting the spike trains led to lower correlation between spike trains184

(Figure 4H) and overall faster decay of assembly weights (Figure 4F-H). Secondly, the weights of assemblies185

with higher CV decayed more slowly even for the shifted spike trains (Figure 4G), when correlation between186

pre and post activity was almost zero (Figure 4H). Taken together, these results indicate that not only CC,187

but also higher CVs lead to slower decay of assemblies.188
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Discussion189

Cell assemblies are considered to be the substrate of memories in the brain. But how exactly memories are190

encoded in the synaptic weights and the firing statistics of assembly neurons is yet to be fully understood.191

Our results suggest that, in the presence of inhibitory plasticity [2], a memory trace can be encoded in192

the regularity of neuronal firing. More specifically, we have shown that increasing excitatory input to a193

neuron, which also received plastic feedforward inhibition [2], caused the neuron to fire spike trains with194

higher coefficient of variation of inter-spike intervals (CV). We have also shown that this change in CV could195

be readout with the support of short-term facilitation [19]. In a recurrent network model with excitatory196

[13] and inhibitory [2] plasticity, we have shown that embedding a cell assembly left a trace in terms of197

irregular firing, which suggests the memory could still be available for influencing downstream processing198

even when the memory is stored in a silent state. Furthermore, we have shown that excitatory weights within199

the assembly decayed more slowly for stronger assemblies, due to both increased irregularity and increased200

correlation between assembly neurons.201

In our current work, within assembly excitatory weights decayed back to baseline levels if the formed202

assembly was not reactivated by external input (Figure 4 and Supplementary Figure 4). This means that203

any memory encoded in the assembly would be slowly forgotten if no external reactivation was performed.204

A memory that is not forgotten without external reactivation would require that assembly weights are205

strengthened during spontaneous activity. Previous theoretical work has shown that in a network with206

multiple plasticity mechanisms, the structure of cell assemblies can be reinforced during spontaneous activity207

through self reactivation [3]. Even without self reactivation, when the firing rate of assembly neurons is208

below the potentiation threshold for the triplet rule, within assembly weights can still be reinforced during209

spontaneous activity if correlation between assembly neurons is high enough, as previously shown in [6]. In210

our simulations, stronger correlation between assembly neurons could be achieved with stronger excitatory211

weights, but this would possibly also require stronger recurrent weights overall in the network to stabilize212

network activity. Alternatively, including other plasticity mechanisms such as plastic excitatory-to-inhibitory213

weights could lead to the formation of balanced clusters containing both excitatory and inhibitory neurons.214

Embedding such clusters in networks has been shown to allow multistability and faster transitions in assembly215

activity between high and low firing rate [26]. In any case, the formation of self reinforcing silent EI assemblies216

through increased correlation between assembly neurons would also make assemblies less silent.217

Silent assemblies have also been shown to form in simulations without inhibitory plasticity [27]. For218

example, silent assemblies can be formed with a model of structural plasticity on excitatory synapses [28, 29].219

In those studies, stimulation of an assembly led to rewiring of synapses such that the assembly neurons were220
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more likely to be connected, but the total indegree of excitatory neurons remained unchanged. Different to221

what we found here, the silent assemblies in that case were formed by rearranging the excitatory connections,222

but without increasing total excitatory and inhibitory input currents. Therefore, the mean excitatory and223

inhibitory input to assembly neurons was the same before and after the assembly embedding. In that case,224

embedding the assembly does not leave a trace on the regularity of firing of assembly neurons. Therefore,225

silent assemblies formed in different ways could potentially leave specific markers on neuronal firing patterns,226

which could contribute different functional aspects to a more complex circuit.227

One prediction from our simulations is that neurons belonging to an engram fire with more irregular228

spike trains. While not many studies have investigated firing patterns of engram neurons in vivo, Tanaka229

et al. [30] did find that engram neurons were more likely to fire in bursts. They measured activity of place230

cells in hippocampal region CA1 during context discrimination. They found that not all place cells belonged231

to an engram, but those that did had higher burst rates and shorter inter-burst intervals. Furthermore,232

they found that engram neurons were more likely to fire during, and be phase locked to, fast gamma events.233

Since fast gamma oscillations correlate with inputs from entorhinal cortex [31], they have suggested that234

engram neurons in CA1 may be more responsive to inputs coming from this region. It remains an open and235

interesting question whether there could be any causal relationship between the burst firing of engram cells236

and their responsiveness to specific inputs.237

Burst firing could also have an influence on how input signals are processed and on how signals are238

propagated to downstream areas [32]. In our model, the memory encoded in a silent EI assembly would be239

reflected in the CV, or level of burstiness of individual neurons. Interestingly, in a recent study, Koren et240

al. [33] found that the activity of bursty neurons in monkey primary visual cortex was more informative241

for decoding behavior than the activity of non-bursty neurons. Bursts have also been proposed to modulate242

the effect of plasticity [14, 13], and shown to implement credit assignment in a model of burst-dependent243

synaptic plasticity [34]. This could be relevant in a context of multiplexing, since firing rate and bursts could244

convey separate streams of information. In Naud and Sprekeler [25], it was shown that multiplexing could245

be implemented in a neuron if single spikes and bursts were considered as two distinct codes. Similarly in246

the work we present in this paper, the firing rate and regularity of spike trains, or the CV, could also serve247

as two separate streams of information. Different to Naud and Sprekeler [25], however, the CV is modulated248

by the amount of inhibitory current, which changes according to the iSTDP rule [2]. Therefore, changes249

in CV happen at a slow time scale. In other words, the signal encoded by the CV would have to be a250

slow signal. Alternatively, a faster signal could be constructed by gating the activity of different neurons, or251

populations of neurons, that fire with constant CV. On the other hand, faster changes in firing rate could still252

be propagated without triggering plastic changes through iSTDP and, therefore, without affecting the CV.253
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It remains an open question of how the synaptic increase and the larger CV within an assembly modulate254

the output firing of a stimulated neuron.255

In conclusion, our results show that embedding cell assemblies in a network with excitatory and inhibitory256

plasticity can leave a trace in terms of regularity of firing. This means that information about the assembly257

can be present in the neuronal activity even when the memory is stored in a silent state. Moreover, we258

showed that this information could be readout during spontaneous activity with support of STF, which259

suggests the silent memory could potentially modulate other signals in the absence of direct stimulation.260

Furthermore, we also showed how this change in regularity contributes to the longevity of memories. Put261

together, our results propose a different way in which memories could be encoded in silent EI assemblies.262

Methods263

Neuron model264

All neurons in our simulations were current-based leaky integrate-and-fire (LIF) with exponential post-265

synaptic currents (PSC). The sub-threshold membrane potential Vi of neuron i obeyed the following equation:266

τm
dVi

dt
= −Vi +RI(t), (1)

where τm = 20ms is the membrane time constant and R = 80MOhm is the input resistance. The input267

current I(t) consisted of the sum of all excitatory and inhibitory currents coming from pre-synaptic sources.268

Unless stated otherwise, the input current from a pre-synaptic neuron j to a post-synaptic neuron i evolved269

according to:270

dIj(t)

dt
= −

Ij(t)

τsyn
+Wij

∑

k

δ(t− tkj ), (2)

where τsyn = 1.5ms is the synaptic time constant and Wij represents the synaptic weight between pre-271

synaptic neuron j and post-synaptic neuron i. The spike train
∑

k δ(t− tkj ) consisted of all spikes produced272

by neuron j. The synaptic weight Wij was fixed for static synapses. For synapses that obeyed excitatory and273

inhibitory plasticity, Wij = w̄ × wij(t), where w̄ is a scaling constant and wij(t) is a dimensionless variable274

that evolved according to the equations for excitatory and inhibitory plasticity described below. w̄E = 1pA275

for excitatory synapses and w̄I = −1 pA for inhibitory synapses. In the following sections, some synaptic276

weight parameters are given with respect to a reference value J = 30.8 pA, which was chosen such that the277

maximum amplitude of the post-synaptic potential would be 0.15mV.278
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Every time the membrane potential reached a threshold value Vth = 20mV, the neuron emitted a spike.279

Following a spike, the membrane potential was reset to Vreset = 10mV and remained there for a refractory280

period tref = 2ms.281

Plasticity models282

Inhibitory plasticity283

Plastic inhibitory-to-excitatory connections followed the inhibitory spike timing-dependent plasticity rule284

(iSTDP) by [2]. In this rule, synaptic weights wij between pre-synaptic neuron j and post-synaptic neuron i285

are updated whenever there is a pre-synaptic spike (tpre) or post-synaptic spike (tpost), respectively, according286

to:287

wij(t) → wij(t) + η(xi − α) if t = tpre,

wij(t) → wij(t) + ηxj if t = tpost, (3)

where η is the learning rate, α = 2×ρ× τSTDP is a depression factor and ρ is a constant parameter that sets288

the target firing rate of the post-synatic neuron [2]. The synaptic trace xi increases by 1 whenever neuron i289

fires a spike and decays otherwise with time constant τSTDP, according to:290

dxi(t)

dt
= −

xi(t)

τSTDP

. (4)

The parameters used were η = 0.3, ρ = 9Hz and τSTDP = 20ms. Weights were bound to a maximum291

Wmax
I→E = 3000 pA292

Excitatory plasticity293

Recurrent excitatory-to-excitatory connections in the network simulations were plastic according to the294

triplet-based model of spike timing-dependent plasticity by [13]. In this model, synaptic weights wij between295

pre-synaptic neuron j and post-synaptic neuron i are updated whenever there is a pre-synaptic spike (tpre)296

or post-synaptic spike (tpost), respectively, according to:297
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wij(t) → wij(t)− o1(t− ǫ)[A−

2 +A−

3 r2(t− ǫ)] if t = tpre,

wij(t) → wij(t) + r1(t− ǫ)[A+
2 +A+

3 o2(t− ǫ)] if t = tpost, (5)

where A−

2 , A
−

3 , A
+
2 , A

+
3 denote amplitude of weight changes and r1, r2, o1 and o2 are synaptic traces. In the298

original model [13], ǫ is a small positive constant to ensure weights are updated before the traces o2 and r2.299

In our simulations, ǫ illustrates the fact that weights were always updated before all trace values, including300

o1 and r1. The pre-synaptic (post-synaptic) traces r1 and r2 (o1 and o2) are increased by 1 whenever the301

pre-synaptic (post-synaptic) neuron fires, and decay otherwise according to:302

dr1(t)

dt
= −

r1(t)

τ+
,

dr2(t)

dt
= −

r2(t)

τx
,

do1(t)

dt
= −

o1(t)

τ−
,

do2(t)

dt
= −

o2(t)

τy
(6)

Weights were bounded between Wmin
E→E = J and Wmax

E→E , which was assigned different values at different303

simulations. The parameters used were taken from [13]: A−

2 = 7×10−3, A−

3 = 2.3×10−4, A+
2 = 7.5×10−10,304

A+
3 = 9.3× 10−3, τ+ = 16.8ms, τx = 101ms, τ− = 33.7ms, τy = 125ms.305

Short-term plasticity306

In simulations with short-term plasticity, the model used was the short-term facilitation (STF) by [19]. In307

this model, the total synaptic input to a post-synaptic neuron i is given by:308

I(t) =
∑

j

Ayj(t), (7)

where A is the absolute synaptic weight, and yj determines the effective contribution of the PSC from neuron309

j to the input current to neuron i. It evolves according to the system of equations:310
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dxj

dt
=

zj
τrec

− ujxjδ(t− tpre),

dyj
dt

= −
yj
τsyn

+ ujxjδ(t− tpre),

dzj
dt

=
yj
τsyn

−
zj
τrec

, (8)

where xj, yj and zj are the fraction of synaptic resources in the recovered, active and inactive states, respec-311

tively, from neuron j, tpre denotes the timing of a pre-synaptic spike, τsyn is the decay time constant of PSC312

and τrec is the recovery time constant for depression. The variable uj describes the effective use of synaptic313

resources by each pre-synaptic spike, and it evolves according to:314

duj

dt
= −

uj

τfac
+ U(1− uj)δ(t− tpre) (9)

where τfac is the time constant for facilitation and the parameter U determines how much uj is increased315

with each spike. The absolute synaptic weight used was A = 1000 pA. The remaining parameters were316

taken from [25]: U = 0.02, τrec = 100ms, τfac = 100ms.317

Simulations318

All simulations were performed using the neural network simulator NEST 2.20.0 [35].319

Single neuron simulation (Figure 1)320

Spiking simulation321

A single output neuron received input from an external input, an excitatory and an inhibitory source. The322

external input represented a source of feedforward input and it was modeled as a Poisson process with rate323

νext = 18 kHz. It connected to the output neuron with a fixed synaptic weight Wext = J/3, which did324

not change throughout simulations. The excitatory source represented recurrent input received from other325

neurons within the same network. It was modeled as a Poisson process with rate νexc = 1440Hz and it326

connected to the output neuron with a fixed synaptic weight WE→E = J , which varied between simulations.327

The inhibitory source was modeled as a Poisson process with rate νinh = 360Hz, and it connected to the328

output neuron with a plastic synapse following the iSTDP rule. The choices of parameters were made in329

order to match the scenario from Figure 3. After a warm-up period of 200 s of simulation, the excitatory330

synaptic weight was increased to a multiple of the original weight WE→E = 1J, 2J, 3J, 4J, 5J . The weight331
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from the external input source remained unaltered. The simulation ran for another 200 s. Mean firing rate332

and coefficient of variation of inter-spike intervals of the output neuron were calculated using the last 50 s of333

simulation.334

Subthreshold membrane potential simulation335

The mean and variance of the subthreshold membrane potential (x and y coordinates of red crosses in336

Figure 1E-F and x coordinates on Figure 1G) were calculated in a new set of simulations. In those simulations,337

the spiking threshold of the output neuron was removed, such that the output neuron produced no spikes.338

Given that the output neuron produced no spikes, the connection from the inhibitory source was static.339

The weight WI→E used was the mean synaptic weight from the spiking simulation, averaged across the last340

100 s of simulation. This scenario was simulated for 400 s, and mean and standard deviation of membrane341

potential were calculated using the last 200 s of simulation.342

Single readout simulation (Figure 2)343

Two output neurons received input from 160 input sources. Both neurons were the same, except that the344

spiking neuron had a spiking threshold Vth = 20mV and the non spiking neuron had none. Input sources345

were modeled as Gamma processes. Their spike trains were generated by randomly sampling inter-spike-346

intervals from a Gamma distribution with parameters shape k = 1
CV2 and scale θ = CV2

ν
, where CV was the347

prescribed coefficient of variation of inter-spike intervals and ν = 9Hz was the prescribed mean rate of each348

spike train. A different value of CV was used for each simulation, ranging from CV = 0.4 to CV = 1.4 in349

intervals of 0.1. Both output neurons also received a constant current I = 150 pA. Each simulation lasted350

55 s. Output rate was calculated from the spiking output neuron using the last 50 s of simulation. The mean351

and standard deviation of subthreshold membrane potential was calculated from the non spiking output352

neuron using the last 50 s of simulation.353

In the simulations with no plasticity, the input sources were connected to the output neurons with a fixed354

synaptic weight WE→E = J . In the simulations with short-term plasticity, the input sources connected to355

the output neurons with plastic synapses following STF.356

Network simulation (Figures 3 and 4)357

The recurrent network comprised NE = 1600 excitatory and NI = 400 inhibitory neurons. The excitatory358

(inhibitory) population formed synapses to randomly selected neurons from both excitatory and inhibitory359

populations with an indegree CE = 0.1NE (CI = 0.1NI). All neurons received a background input in the form360
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of a spike train with Poisson statistics with rate νext = 18 kHz and weight Wext = J/3. Synapses from the361

excitatory to the inhibitory population were static with weight WE→I = J . Synapses from the inhibitory362

to the inhibitory population were static and stronger by a factor of 10 (WI→I = −10J). Excitatory-to-363

excitatory synapses followed the triplet based STDP rule, and inhibitory-to-excitatory synapses followed the364

iSTDP rule.365

After a warm-up period of 2 000 s, a subgroup comprising 10% of the excitatory neurons was stimulated.366

Stimulation consisted of increasing the rate of the external input to the stimulated subgroup by a factor 5367

for 1 s. Following stimulation, the rate of the external input was set back to its original value νext, and the368

network was simulated for further 2 000 s.369

Two readout neurons received input from either the stimulated neurons, or a subgroup of excitatory370

neurons with the same size as the stimulated subgroup. The synapses connecting excitatory neurons to371

readout neurons followed STF.372

Theoretical rate and CV373

The firing rate ν of a leaky integrate-and-fire neuron can be estimated by the following equation (see details374

of the derivation in [24, 23]).375

ν =

[

tref + τm
√
π

∫

Vth−µ

σ

Vreset−µ

σ

eu
2

(1 + erf(u))du

]−1

(10)

where µ and σ are respectively the mean and standard deviation of the subthreshold membrane potential,376

tref is the refractory period, τm is the membrane time constant of the neuron, Vth is the threshold potential,377

Vreset is the reset potential and erf() is the error function.378

The coefficient of variation of inter-spike intervals for a neuron firing with rate ν and different combina-379

tions of mean µ and variance σ of subthreshold membrane potential can be theoretically predicted using the380

following equation (see derivation in [23]):381

CV =

[

2πν2
∫

Vth−µ

σ

Vreset−µ

σ

ex
2

dx

∫ x

−∞

ey
2

(1 + erf(y))2dy

]

1

2

(11)

Data analysis382

Firing rate383

Mean firing rates r were calculated using:384
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r =
S

N∆T
, (12)

where S is the number of spikes of all N neurons during time interval ∆T . For single neuron mean rate,385

N = 1. ∆T = 50 s unless stated otherwise.386

CV387

Coefficient of variation of inter-spike intervals (ISI) were calculated using:388

CV = σISI/µISI, (13)

where σISI is the standard deviation and µISI is the mean of the ISI of an individual neuron. CVs were389

calculated using 50 s of spiking data.390

CC391

The spike count correlation between a pair of neurons i and j was calculated as the Pearson correlation392

coefficient393

Rij =
cij

√
ciicjj

, (14)

where cij is the covariance between spike counts extracted from spike trains of neurons i and j, and cii is the394

variance of spike counts extracted from neuron i. In Figure 4, correlations were calculated from spike trains395

comprising the last 1 000 s of activity, using bins of size 10ms. In Figure 3, correlations were calculated from396

spike trains comprising the 10 s of activity shown in the raster plots, using bins of size 10ms.397

Decay slope398

The decay slope α of excitatory weights was calculated by fitting a linear function to the last 1 000 s of the399

WE→E(t) decay data, and extracting its slope. The fitting was performed using a standard fitting algorithm400

from NumPy.401
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Supplementary Material520

iSTDP
STF

Supplementary Figure 1: Formation of assembly without the triplet rule. Same as Figure 3 from the
main text, but excitatory to excitatory connections are static (no triplet rule). The assembly is formed by
hardwiring an increase in excitatory weights between assembly neurons by a factor of 6. Please note that in
order to achieve a similar effect on CV, the increase by a factor of 6 is larger than Wmax

E→E = 5 J on the main
figure. This is because the triplet rule leads to potentiation of weights from all excitatory neurons in the
network to the assembly neurons, which is not the case for this static scenario (Compare (H) to Figure 3H
in the main text).
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iSTDP

Triplet

STF

Supplementary Figure 2: Formation of stronger assembly. Same as Figure 3 from the main text, but with
Wmax

E→E = 5.5 J
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Supplementary Figure 3: Whole population raster plot. (A) Raster plot of all assembly neurons (purple)
and all other excitatory neurons outside the assembly, during 10 s before (top), and 500 s after (bottom)
stimulation, for Wmax

E→E = 5 J (same simulation as Figure 3 in the main text). (B) Same as (A) for Wmax
E→E =

5.5 J (same simulation as Supplementary Figure 2). (C) Cumulative distribution of correlation coefficients
between all pairs of assembly neurons (ASB) before (blue) and after (red) stimulation on (A) (left) and (B)
(right).
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Supplementary Figure 4: Decay of assembly weights to baseline. Excitatory-to-excitatory weights between
assembly neurons as a function of time for different values of Wmax

E→E . For these simulations, plasticity was
accelerated by multiplying η from the iSTDP rule, and A+

2 , A
−

2 , A
+
3 , A

−

3 from the triplet rule by a factor of
10. Shown are the weights between 5 different pairs of pre- and post-synaptic neurons, for each simulation
run.
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