
Scientific Programming 10 (2002) 45–53 45
IOS Press

Memory access behavior analysis of

NUMA-based shared memory programs

Jie Tao∗, Wolfgang Karl and Martin Schulz
LRR-TUM, Institut für Informatik, Technische Universität München, 80290 München, Germany

Tel: +49-89-289-{28397,28278,28399}; E-mail: {tao,karlw,schulzm}@in.tum.de

Abstract: Shared memory applications running transparently on top of NUMA architectures often face severe performance

problems due to bad data locality and excessive remote memory accesses. Optimizations with respect to data locality are therefore

necessary, but require a fundamental understanding of an application’s memory access behavior. The information necessary for

this cannot be obtained using simple code instrumentation due to the implicit nature of the communication handled by the NUMA

hardware, the large amount of traffic produced at runtime, and the fine access granularity in shared memory codes. In this paper

an approach to overcome these problems and thereby to enable an easy and efficient optimization process is presented. Based

on a low-level hardware monitoring facility in coordination with a comprehensive visualization tool, it enables the generation of

memory access histograms capable of showing all memory accesses across the complete address space of an application’s working

set. This information can be used to identify access hot spots, to understand the dynamic behavior of shared memory applications,

and to optimize applications using an application specific data layout resulting in significant performance improvements.

1. Motivation

The development of parallel programs which run ef-

ficiently on parallel machines is a difficult task and takes

much more effort than the development of sequential

codes. A programmer has to consider communication

and synchronization requirements, the complexity of

data accesses, and the problem of partitioning work and

data. Even after a program has been validated and pro-

duces correct results, a considerable amount of work

has to be done in order to tune the parallel program to

efficiently exploit the resources of the parallel machine.

This task becomes even more complicated on par-

allel machines with NUMA characteristics (Non Uni-

form Memory Access). Shared memory programs run-

ning on top of such machines often face severe perfor-

mance problems due to bad data locality and excessive

remote memory accesses. In this case, optimizations

with respect to data locality are necessary for a better

performance. The information required for data local-

∗Jie Tao is a staff member of Jilin University, China and is currently

pursuing her Ph.D at the Technische Universiẗat München, Germany.

ity optimizations cannot be acquired easily as commu-

nication events are potentially very frequent, relatively

short, fine-grained, and implicit.

In this paper, a comprehensive approach for an easy

and efficient data locality optimization process is pre-

sented. This approach is based on a hardware mon-

itoring concept which allows the acquisition of very

fine-grained communication events. The information

is being delivered to a visualization tool which enables

the generation of memory access histograms capable

of showing all memory accesses across the complete

virtual address space of an application’s working set.

Using this graphical representation, the programmer
can identify access hot spots, understand the dynamic

behavior of shared memory applications, and optimize

the program with an application specific data layout

resulting in significant performance improvements.

The approach has been developed and evaluated

on PC clusters with an SCI interconnection technol-

ogy (Scalable Coherent Interface [3,5]). SCI supports

memory-oriented transactions over a ringlet-based net-

work topology, effectively supporting a distributed

shared memory in hardware. In order to support shared

memory programming on top of such a NUMA ar-

ISSN 1058-9244/02/$8.00 2002 – IOS Press. All rights reserved

46 J. Tao et al. / Memory access behavior analysis of NUMA-based shared memory programs

chitecture, a software framework has been developed

within the SMiLE project (Shared Memory in a LAN

like Environment) which closes the semantic gap be-

tween the global view of the distributed physical mem-

ories in NUMA architectures and the global virtual

memory abstraction required by shared memory pro-

gramming models [8,17]. This framework supports,

in principle, almost arbitrary shared memory program-

ming models on top of the PC cluster [13] and thereby

creates a flexible target platform for the presented mon-

itoring approach.

The paper is organized as follows. The next sec-

tion presents the SMiLE approach supporting shared

memory programming on SCI-based PC-clusters. The

SMiLE monitoring approach is being covered in Sec-

tion 3. Section 4 describes the tool environment sup-

porting the data locality optimization process. The pa-

per concludes with a brief overview of related work in

Section 5 and some final remarks in Section 6.

2. Shared memory in NUMA clusters

Cluster systems in combination with NUMA (Non-

Uniform Memory Access) networks work on the prin-

ciple of a global physical address space and enable each

node to transparently access the memories on all other

nodes within the system. They thereby form a favor-

able architectural tradeoff by combining the scalabil-

ity and cost-effectiveness of standard clusters with a

shared memory support close to CC-NUMA and SMP

systems. However, in order to exploit this hardware

support for shared memory environments, a software

framework is required which closes the semantic gap

between the distributed physical memories of NUMA

machines and the global virtual memory abstraction

required by shared memory programming models.

Such a shared memory framework based on SCI

(Scalable Coherent Interface [3]),an IEEE-standardized

[5] cluster interconnect with NUMA capabilities, has

been developed within the SMiLE [7] (Shared Memory

in a LAN-like Environment) project, which broadly in-

vestigates in SCI-based cluster computing. In addition,

this framework, called HAMSTER [13] (Hybrid-dsm

based Adaptive and Modular Shared memory archi-

TEctuRe), is capable of supporting in principle almost

arbitrary shared memory programming models on top

of a common hybrid-DSM core, the SCI Virtual Mem-

ory or SCI-VM [8,17]. This new type of DSM system

establishes the global virtual address space required

for applications by combining the present NUMA HW-

DSM with lean software management. On top of

this fundament, HAMSTER provides a large range of

shared memory and cluster resource services, including

an efficient synchronization module called SyncMod

[18]. These services are designed in way that allows

the implementation of programming models in a low-

complex fashion, enabling the creation of as many dif-

ferent models as required or necessary for the intended

target users and/or applications. In summary, HAM-

STER enables the efficient exploitation of loosely cou-

pled NUMA clusters for shared memory programming

without binding users to a new, custom API.

Despite the efficient and direct utilization of the un-

derlying HW-DSM and the lean implementation of the

correspondingsoftware components, it can be observed

that applications often suffer from significant perfor-

mance deficiencies. The reason for this can be found

in excessive remote memory accesses which, despite

SCI’s extremely low latency, still can be up to an order

of magnitude slower than local ones. It is therefore of

great importance to study and optimize the locality be-

havior of shared memory applications in such NUMA

scenarios since this will have a significant impact in the

overall execution time and parallel efficiency of these

codes.

3. Observing shared memory accesses

In order to optimize the runtime behavior of shared

memory applications on top of such loosely coupled

NUMA architectures, it is necessary to enable users to

understand the memory access pattern of their applica-

tions and their impact with respect to the actual mem-

ory distributions. Depending on the application and

its complexity, this can be a quite difficult and tedious

task. Therefore it is of importance to support this pro-

cess with appropriate tools. The basis for any of these,

however, is the ability to monitor the memory access

behavior on-line during the runtime of the application.

3.1. Challenges

The most severe problems connected with such a

monitoring component stem from the fact that shared

memory traffic by default is of implicit nature and per-

formed at runtime through transparently issued loads

and stores to remote data locations. Unlike in mes-

sage passing systems, where explicite communication

points are known and hence can be instrumented, in a

J. Tao et al. / Memory access behavior analysis of NUMA-based shared memory programs 47

shared memory environment other ways to track remote

communication have to be found.

In addition, shared memory communication is very

fine-grained (normally at word level). This also renders

code instrumentation recording each global memory

operation infeasible since it would slow down the ex-

ecution significantly and thereby distort the final mon-

itoring to a point where it is unusable for an accurate

performance analysis. In addition, such an approach

would require a complete cache and consistency model

emulation since these two components play a large role

in filtering the actual memory references which need to

be served from main and/or remote memory.

Therefore, the only viable alternative is to deploy

a hardware monitoring device observing the actual

link traffic of the NUMA interconnection network.

Only this guarantees fine-grained information about

the actual communication after any access filtration by

caches without influencing the actual execution behav-

ior. Such a device, the SMiLE hardware monitor, has

been developed within the SMiLE project for the ob-

servation of SCI network traffic [6].

3.2. The SMiLE monitoring approach

This SMiLE hardware monitor is designed to be at-

tached to an internal link on current SCI adapters, the

so-called B-Link. This link connects the SCI link chip

to the PCI side of the adapter card and is hence traversed

by all SCI transactions intended for or originating from

the local node. Due to the bus-like implementation of

the B-Link, these transactions can be snooped without

influencing or even changing the target system and can

then be transparently recorded by the SMiLE hardware

monitor.

In order to prevent the necessity to actually store the

complete transaction information for later processing

and to enable an efficient on-line analysis of the ob-

served data, the hardware monitor enables a sophisti-

cated real-time analysis of the acquired data. The result

are so-called memory access histograms which show

the number of memory accesses across the complete

virtual address space of an application’s working set

separated with respect to target node IDs. These his-

tograms give the user a first and direct overview of the

real memory access behavior of the target application.

In order to save valuable hardware resources, the

SMiLE hardware monitor implements a swapping

mechanism for its counter components. Whenever all

counters are filled or one counter is about to over-

flow, a counter is evicted from the hardware monitor

and stored in a ring buffer in main memory. The free

counter is then reclaimed by the monitoring hardware

for the further monitoring process. The resulting mon-

itoring information in the main memory ring buffer is

then collected by a corresponding driver software and

combined to the complete access histogram. As the

information, by the time it is evicted from the monitor,

is relatively coarse grained, this combination step has

rather low computational demands and therefore only a

minimal impact on the application execution behavior

[6].

In addition to this histogram mode, also referred to

as dynamic mode due to its adaptability to the memory

access behavior of the target application, the SMiLE

monitor also contains a static monitoring component

which allows to watch predefined events or accesses

to special, user definable memory regions. In contrast

to the former method, which is intended for a first

performance overview of the complete application, this

static mode is very useful for the detailed analysis of

specific bottlenecks. Together, the two modes enable

the complete analysis of the memory access behavior

of shared memory applications on top of SCI.

Currently, the SMiLE hardware monitor is still un-

der development with a first experimental prototype ex-

pected within the next six months. In order to still be

able to start with software development and to prove

the feasibility and usability of the presented approach,

a realistic simulator for NUMA architectures has been

developed [20] and is also being used within this work.

It is designed in a way which allows a clean and easy

migration from the simulation platform to the real hard-

ware guaranteeing the validity of the presented ap-

proach.

3.3. The SMiLE tool infrastructure

In order to make the information gathered by the

hardware monitor available to the user, it has to be

first transformed to a higher level of abstraction. This

is necessary since all acquired data is only based on

individual memory accesses observed from the SCI

network adapter and hence by nature based purely on

physical addresses. This needs to be transformed into

the virtual address space and then be related to source

code information.

For this task, a comprehensive SMiLE software in-

frastructure is under development [9] (see also Fig. 1).

It is based on the information acquired from the un-

derlying monitoring component and transforms and en-

hances it using additional data collected from the var-

48 J. Tao et al. / Memory access behavior analysis of NUMA-based shared memory programs

ious components of the overall system, including the

SCI Virtual Memory and its synchronization module

(see also Section 2) as well as various interfaces in

programming models. This information is then aggre-

gated and made globally accessible through the OMIS

interface [1], an established on-line monitoring specifi-

cation, and OCM (the OMIS Compliant Monitor) [23],

the corresponding reference implementation.

As a result, this monitoring infrastructure enables

a standardized and highly structured way for tools to

access the distributed information. Currently the main

focus lies on a sophisticated visualization tool, called

DLV [21], which will be discussed below in more de-

tail. In the future further shared memory tools will

complete the monitoring infrastructure; especially an

integrated and automatic data migration and load bal-

ancing component is envisioned.

4. Access behavior analysis

As mentioned in Section 2, the latency of remote

memory accesses is one of the most important per-

formance issues on NUMA systems. Optimizing pro-

grams with respect to data locality can minimize the ac-

cesses to remote memory modules and improve mem-

ory access performance. It requires, however, an un-

derstanding of a program’s memory access behavior at

run-time. The SMiLE tool infrastructure described in

Section 3 provides a monitoring facility for observing

the interconnection traffic and enables a comprehen-

sive analysis of the runtime memory access behavior

of shared memory applications based on the observed

data.

4.1. The visualization tool

As already mentioned, the current focus of the

SMiLE tool infrastructure lies on the Data Layout Visu-

alizer (DLV) [21], a comprehensive visualization tool

for shared memory traffic on NUMA architectures. It

is capable of transforming the fine-grained data ac-

quired by snooping hardware monitors like the SMiLE

hardware monitor into a human-readable and easy-to-

use form, enabling an exact understanding of an ap-

plication’s memory access behavior and the detection

of communication hot spots. It provides a set of dis-

play windows showing the memory access histograms

in various views and projecting the memory addresses

back to data structures within the source code (see

Fig. 2). This allows the programmer to analyze an ap-

plication’s access pattern and thereby forms the basis

for any optimization of the physical data layout and

distribution.

For this purpose, the DLV includes several differ-

ent views on the acquired data, each presented by a

specific window within the GUI. The most basic one

among them is the “Run-time transfer” window (shown

top left in Fig. 2). It is designed to illustrate a global

overview of the actual data transfer performed on the

interconnection fabric and visualizes the number of net-

work packets between all nodes in the system. In addi-

tion, communication bottlenecks are highlighted based

on user-defined thresholds (relative to a system wide

average).

Going further into detail and looking at accesses re-

lated to their destination within the whole shared vir-

tual space, the “Histogram table” (shown top right in

Fig. 2) shows exact numbers of accesses at page granu-

larity. As above, access hot spots are highlighted using

user-defined thresholds and are also extracted into a

further table shown in the “Most frequently accessed”

window. The same information, however with less de-

tail, can also be shown graphically in the “Access dia-

gram” (shown at bottom of Fig. 2). It presents the mem-

ory access histogram at page granularity using colored

columns to show the relative frequency of accesses per-

formed by all nodes. In this diagram, inappropriate

data allocation can be easily detected via the different

heights of the columns. In addition, the correspond-

ing data structure of a selected page can be shown in a

small combined window using a mouse button within

the graphic area. These diagrams therefore can direct

users to place data on the correct node that mostly re-

quires it.

The “Histogram table” and the “Access diagram” de-

scribed above serve as the base for a correct alloca-

tion of pages accessed dominantly by one node. For

pages accessed by multiple processors, however, it is

more difficult to determine their location. For this pur-

pose, the DLV provides a “Page analysis” window to

illustrate the access behavior within a page, directing

programmers to partition such a page and distribute it

among the nodes in the system. An example for this is

given in the next section.

Besides the direct information based on virtual ad-

dresses discussed so far, the DLV is also capable of re-

lating the presented data to user data structures within

the source code. This is done with the help of the “Data

structure and location” window, which can be activated

as a main window beyond other windows or as a sub-

window within them, showing the mappings between

J. Tao et al. / Memory access behavior analysis of NUMA-based shared memory programs 49

node local resources

SMiLE monitor
(phys. addresses, nodes, statistics, timing)

SCIVM
(virt./phys. address mapping, statistics)

SyncMod
(locks, barriers, counters, consistency)

programming model
(distrib. threads, TreadMarks, SPMD, . ..)

high level prog. environment
(OpenMP, parallel C ++, CORBA, ...)

prog. environment
extension

prog. model
extension

OMIS SCI-
DSM extension

OMIS
/

OCM
core

tool
O

M
IS

/O
C

M
 m

o
n

it
o

r

Fig. 1. Multilayer tool infrastructure.

Fig. 2. GUI of the Data Layout Visualizer (DLV) with a few sample windows.

the virtual address currently under investigation and the

corresponding data structure within the source code. It

therefore enables the user to relate the information ac-

quired and visualized within the DLV to the data struc-

tures exhibiting the observed behavior and thereby to

exactly modify the physical layout and distribution of

the structures causing a problematic execution behav-

ior.

4.2. Analyzing a sample code

The various DLV windows can efficiently be used

to characterize the memory access behavior of shared

memory codes. This will be demonstrated in the fol-

lowing using a Successive Over Relaxation (SOR) as a

basic and easy-to-follow example. SOR is a numerical

kernel that is used to iteratively solve partial differential

50 J. Tao et al. / Memory access behavior analysis of NUMA-based shared memory programs

Fig. 3. Memory accesses of some pages on node 1 (SOR code).

equations. Its main working set is a large dense matrix

array. During each iteration a four point stencil is ap-

plied to all points of this matrix. Due to the fixed and

uniform work distribution across all matrix points and

due to the numerical stability of the approach, which

allows a reordering of the stencil updates, the matrix is

split into blocks of equal size during the parallelization

process. Each block is assigned to one processor of the

cluster and each processor in the following only up-

dates the part of the matrix assigned to it. On the other

side, elements of the matrix array are stored transpar-

ently over the whole cluster corresponding to the de-

fault allocation scheme of the SCI-VM, a round-robin

distribution at page granularity.

Processors therefore communicate on most ma-

trix/memory accesses to access the data included in the

individual blocks leading to poor speedup. In order to

understand its memory access behavior, the execution

of the SOR code, running on a 4-nodes cluster using

a 512 by 512 grid (about 1 MB memory footprint), is

simulated for 10 iterations and the monitored data is

visualized. Based on this information, the access pat-

tern of the SOR code can be exactly analyzed and in

the next step optimized.

First we use the “Run-time transfer” window to get

a first overview over the complete application and to

detect simple communication bottlenecks. In this case,

however, this display only shows that every node is ac-

cessed frequently by others without the existence of a

single dominating bottleneck. This indicates that the

overall working load of the SOR code is not allocated

correctly. In order to find the hot spots, the next step

is to analyze the memory access histogram using the

“Access diagram” window. Figure 3 shows three dif-

ferent sections of the complete node diagram from the

view of node 1 as the local node (incoming memory

transactions). The memory access behavior of pages on

other nodes is quite similar due to the symmetric work

distribution and parallelization concept within SOR.

The figure first shows that page 0 behaves differently

than the rest, as it is accessed by all nodes. By ex-

amining the “Data structure and location” information,

it can be extracted that this is caused by accesses to

global variables located at the beginning of this page

before the actual matrix part. This includes information

about the matrix size as well as IDs for nodes, locks,

and barriers, which are required by all parallel threads.

Past this initial information, it can be seen that all pages

up to 64 are only accessed by node 1 (the local node),

pages between 68 to 124 by node 2, and so on. The data

structure information provided by the DLV (shown in

the small top window in Fig. 3) additionally shows that

these access blocks correspond to matrix blocks of the

main SOR matrix.

While the “Access diagram” offers the general un-

derstanding of a program’s access behavior, a more de-

tailed analysis can be enabled using the “Page analy-

sis” window of the visualizer. This window provides

facilities to exhibit the memory accesses within a page

and can be used for border pages with accesses from

more than one node. Figure 4 shows the informa-

tion about one such page: the “Section” subwindow,

demonstrates the total references at finest possible gran-

ularity (mostly L2 cache line size) and the “Read/write”

J. Tao et al. / Memory access behavior analysis of NUMA-based shared memory programs 51

subwindow presents the concrete numbers of reads and

writes. These windows thereby give exact information

about the memory accesses within a page and can be

used to clearly identify sharing properties.

In the concrete example, Fig. 4 shows that the first

few sections are only accessed by node 1 followed by

sections with overlapping accesses from both. This

indicates that such a page can be partitioned and dis-

tributed with the first section located together with the

whole block on pages 4 to 64 on the corresponding

node. For the following section with true sharing, how-

ever, a correct distribution is more difficult. In this

case, the Read/write curve can be used to determine the

optimal placement: since blocking read operations are

more expensive than writes, which are non-blocking,

the node with a highest read frequency has the priority

for owning them.

In summary, the information acquired from the DLV

windows clearly shows the blocked memory access and

matrix distribution strategy presented in the SOR code.

This observation is also likely to hold for all other work-

ing set sizes. Hence, it is possible to deduce an appli-

cation’s memory access behavior based on the analysis

of a single working set size and thereby to optimize the

application in general.

4.3. Using the information for easy optimization

Based on the analysis described above, programs can

be optimized by specifying a data layout fitting to their

memory access pattern. This is done by placing data,

which is indicated by the DLV as incorrectly allocated,

on the correct nodes using annotations available in the

programming models. For the SOR code this can be

done by specifying a blocked memory distribution cor-

responding to the matrix subdivision into blocks and

their assignment to processors. In order to verify the

efficiency of this optimization, the modified version

of the SOR code has been executed on a real NUMA

cluster, along with two further codes, a Gaussian elim-

ination (GAUSS) and a particle simulation (WATER-

NSQUARED from Splash-2 [24]), which have been

optimized in a similar way.

Both, the optimized and the transparent version of

each code, have been executed on a 4 node Xeon

450 MHz cluster interconnected using the D320 SCI

adapter cards by Dolphin ICS and the software setup

described in Section 2. The results of these experiments

are shown in Table 1 in terms of speed-up in comparison

to a sequential execution. They show a rather poor per-

formance when executed on a fully transparent mem-

ory layout with a significant slow-down. This picture

changes drastically after the modification of the mem-

ory layout. Now a significant speedup can be observed,

especially the SOR code with a speedup of over 3.1 on

4 processors. Also all other codes benefit significantly

proving both the importance and the feasibility of the

presented approach.

5. Related work

In recent years, monitoring approaches are increas-

ingly investigated and some hardware monitors [10,12,

14] have been developed for tracing of interconnection

traffic. None of them, however, is applied to improve

the data locality of running programs. An example is

the trace instrument at Trinity College Dublin [14]. It

has been built for monitoring the SCI packets transfered

across the network, as our hardware monitor does, but

is intended only for the analysis of the interconnect

traffic with the goal to improve the modeling accuracy

for network simulation systems.

Data locality, on the other hand, has been addressed

intensively since it has a severe influence on perfor-

mance of NUMA systems. Among these efforts [2,

4,11,15,16,19,22], which are primarily based on com-

piler analysis and page migration. One is especially

closely related to the approach presented here. This is

the Dprof profiling tool [2] developed by SGI. Dprof

samples a program during its execution and records the

program’s memory access information as a histogram

file. This histogram can be manually plotted using

gnuplot for analyzing which regions of virtual mem-

ory each thread of a program accesses and further di-

rects the explicit placement of specific ranges of virtual

memory on a particular node.

In comparison with the approach presented in this

paper, the Dprof report is based on statistical sampling

and does therefore not record all references; in addi-

tion, numbers of memory accesses are shown at page

granularity, allowing no detailed understanding of ac-

cesses within a single page. This restricts the accuracy

of memory behavior analysis and prohibits a proper

specification of an optimal data layout.

6. Conclusions

The successful deployment of NUMA architectures

using the shared memory paradigm depends greatly on

the efficient use of memory locality. Otherwise appli-

52 J. Tao et al. / Memory access behavior analysis of NUMA-based shared memory programs

Fig. 4. The detailed access character of Page 65 on node 2 (SOR code).

Table 1

Execution on a real cluster with 4 nodes with and without optimizations

SOR GAUSS WATER-N.

Time Speedup Time Speedup Time Speedup

Sequential execution 1.36 s 1 4.83 s 1 15.83 s 1

Transparent parallel 78.16 s 0.0174 44.95 s 0.1075 116.12 s 0.14

Optimized parallel 0.43 s 3.16 2.11 s 2.289 5.20 s 3.04

cations will be penalized by excessive remote memory

accesses and their significantly higher latencies. The

tuning of applications towards this goal, however, is

a difficult and complex task, since all communication

is executed implicitly by read and write accesses and

cannot directly be observed using simple software in-

strumentation without incurring a high probe overhead.

Therefore, a low-level hardware monitoring facility in

coordination with a comprehensive toolset has to be

provided enabling users to perform the required opti-

mizations.

Such an environment has been presented in this work.

It consists of a low-level hardware monitor capable of

observing the complete inter-node memory access traf-

fic across the interconnection network and a tool infras-

tructure transforming the gathered information about

the runtime behavior of the application into a human-

readable way and enhancing it by additional informa-

tion acquired through the various layers of the runtime

environment. The current focus of this tool environ-

ment is a comprehensive visualization tool, the Data

Layout Visualizer (DLV), which enables the presenta-

tion of the acquired information in a graphical and easy-

to-use way. This includes the creation of memory ac-

cess histograms which give a complete overview of the

application execution across the whole address space

without requiring any previous knowledge about the

application. The information can then be used to ana-

lyze the memory access behavior of the target applica-

tion and to optimize its memory distribution leading to

a, in most cases significant, performance improvement.

This has been proven by a set of numerical kernels,

for which the optimization has enabled good speedup

values on a 4-node SCI clusters. It is expected that a

similar benefit can also be achieved for larger codes and

systems as well as with more complex access patterns.

Even though this work was based on a single specific

NUMA architecture, PC-based clusters interconnected

with SCI, the approach is principally applicable to any

other NUMA system, which allows to snoop memory

traffic on any node. It therefore presents a general ap-

proach for the optimization of shared memory applica-

tions in such systems and can potentially be used far

beyond the context of the SMiLE project.

References

[1] M. Bubak, W. Funika, R. Gembarowski and R. Wismüller,

OMIS-compliant monitoring system for MPI applications,
Proc. 3rd International Conference on Parallel Processing and

Applied Mathematics – PPAM’99, Kazimierz Dolny, Poland,

Sept. 1999, pp. 378–386,

[2] D. Cortesi, Origin2000 and Onyx2 Performance Tuning and

Optimization Guide, chapter 4, Silicon Graphics Inc., 1998,

Available from: http://techpubs.sgi.com:80/library/manuals/

3000/007-3430-002/pdf/007-3430-002.pdf.

J. Tao et al. / Memory access behavior analysis of NUMA-based shared memory programs 53

[3] H. Hellwagner and A. Reinefeld, SCI: Scalable Coherent

Interface: Architecture and Software for High-Performance

Computer Clusters, Volume 1734 of Lecture Notes in Com-

puter Science, Springer Verlag, 1999.

[4] G. Howard and D. Lowenthal, An Integrated Compiler/Run-

Time System for Global Data Distribution in Distributed

Shared Memory Systems, Proceedings of the Second Work-

shop on software Distributed Shared Memory Systems, 2000.

[5] IEEE Computer Society, IEEE Std 1596–1992: IEEE Stan-

dard for Scalable Coherent Interface, The Institute of Electri-

cal and Electronics Engineers, Inc., 345 East 47th Street, New

York, NY 10017, USA, August, 1993.

[6] W. Karl, M. Leberecht and M. Schulz, Optimizing Data Lo-

cality for SCI–based PC–Clusters with the SMiLE Monitoring

Approach, Proceedings of International Conference on Par-

allel Architectures and Compilation Techniques (PACT), Oct.

1999, pp. 169–176.

[7] W. Karl, M. Leberecht and M. Schulz, Supporting Shared

Memory and Message Passing on Clusters of PCs with a

SMiLE, in: Proceedings of Workshop on Communication and

Architectural Support for Network based Parallel Comput-

ing (CANPC) (held in conjunction with HPCA), volume 1602

of LNCS, A. Sivasubramaniam and M. Lauria, eds, Springer
Verlag, Berlin, 1999, pp. 196–210.

[8] W. Karl and M. Schulz, Hybrid-DSM: An Efficient Alternative

to Pure Software DSM Systems on NUMA Architectures,

Proceedings of the 2nd International Workshop on Software

DSM (held together with ICS 2000), May 2000.

[9] W. Karl, M. Schulz and J. Trinitis, Multilayer Online-

Monitoring for Hybrid DSM systems on top of PC clusters

with a SMiLE, Proceedings of 11th Int. Conference on Mod-

elling Techniques and Tools for Computer Performance Eval-

uation, volume 1786, of LNCS, Springer Verlag, Berlin, Mar.

2000, pp. 294–308.

[10] S. Karlin, D. Clark and M. Martonosi, SurfBoard-A Hardware

Performance Monitor for SHRIMP, Technical Report TR-596-

99, Princeton University, Mar. 1999.

[11] A. Krishnamurthy and K. Yelick, Analyses and Optimiza-
tion for Shared Space Programs, Journal of Parallel and Dis-

tributed Computation 38(2) (1996), 130–144.

[12] D. Lenoski, J. Laudon, T. Joe, D. Nakahira, L. Stevens, A.

Gupta and J. Hennessy, The DASH Prototype: Logic Over-

head and Performance, IEEE Transactions on Parallel and

Distributed Systems 4(1) (Jan. 1993), 41–61.

[13] M. Schulz, Efficient deployment of shared memory models

on clusters of PCs using the SMiLEing HAMSTER approach,
in: Proceedings of the 4th International Conference on Algo-

rithms and Architectures for Parallel Processing (ICA3PP),

A. Goscinski, H. Ip, W. Jia and W. Zhou, eds, World Scientific

Publishing, Dec. 2000, pp. 2–14.

[14] M. Manzke and B. Coghlan, Non-intrusive deep tracing

of SCI interconnect traffic, Conference Proceedings of SCI

Europe’99, a conference stream of Euro-Par’99, Toulouse,

France, Sept. 1999, pp. 53–58.

[15] A. Navarro and E. Zapata, An Automatic Iteration/Data Dis-

tribution Method based on Access Descriptors for DSMM,

Proceedings of the 12th International workshop on Languages

and Compilers for Parallel Computing (LCPC’99), San Diego,

La Jolla, CA, USA, 1999.

[16] D. Nikolopoulos, T. Papatheodorou, et al., User-Level Dy-

namic Page Migration for Multiprogrammed Shared-Memory

Multiprocessors, Proceedings of the 29th International Con-

ference on Parallel Processing, Toronto, Canada, Aug. 2000,

pp. 95–103.

[17] M. Schulz, True shared memory programming on SCI-based

clusters, chapter 17, volume 1734 of Hellwagner and Reine-

feld [3], Oct. 1999, pp. 291–311.

[18] M. Schulz, Efficient Coherency and Synchronization Man-

agement in SCI based DSM systems, in: Proceedings of

SCI-Europe 2000, The 3rd international conference on SCI–

based technology and research, G. Horn and W. Karl, eds,

ISBN: 82-595-9964-3, Also available at http://wwwbode.

in.tum.de/events/, Aug. 2000, pp. 31–36.
[19] S. Tandri and T. Abdelrahman, Automatic Partitioning of Data

and Computations on Scalable Shared Memory Multiproces-

sors, Proceedings of the 1997 International Conference on

Parallel Processing (ICPP ’97), Washington – Brussels –

Tokyo, Aug. 1997, pp. 64–73.

[20] J. Tao, W. Karl and M. Schulz, Using Simulation to Understand

the Data Layout of Programs, Proceedings of the IASTED In-

ternational Conference on Applied Simulation and Modelling

(ASM 2001), page to appear, Marbella, Spain, Sept. 2001.

[21] J. Tao and W. Karl and M. Schulz, Visualizing the memory

access behavior of shared memory applications on NUMA ar-

chitectures, Proceedings of the 2001 International Conference

on Computational Science (ICCS), volume 2074 of LNCS,

San Francisco, CA, USA, May 2001, pp. 861–870.

[22] B. Verghese, S. Devine, A. Gupta, M. Rosenblum, OS support
for improving data locality on CC-NUMA compute servers,

Technical Report CSL-TR-96-688, Computer System Labo-

ratory, Stanford University, Feb. 1996.

[23] R. Wismüller, Interoperability Support in the Distributed Mon-

itoring System OCM, Proc. 3rd International Conference on

Parallel Processing and Applied Mathematics – PPAM’99,

Kazimierz Dolny, Poland, Sept. 1999, pp. 77–91.

[24] S. Woo, M. Ohara, E. Torrie, J. Singh and A. Gupta, The
SPLASH–2 Programs: Characterization and Methodological

Considerations, Proceedings of the 22nd International Sym-

posium on Computer Architecture (ISCA), June 1995, pp. 24–

36.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

