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Abstract

Any occasional changes in the acoustic environment are of potential importance for survival. In humans, the preattentive
detection of such changes generates the mismatch negativity (MMN) component of event-related brain potentials. MMN is
elicited to rare changes (‘deviants’) in a series of otherwise regularly repeating stimuli (‘standards’). Deviant stimuli are
detected on the basis of a neural comparison process between the input from the current stimulus and the sensory memory
trace of the standard stimuli. It is, however, unclear to what extent animals show a similar comparison process in response
to auditory changes. To resolve this issue, epidural potentials were recorded above the primary auditory cortex of urethane-
anesthetized rats. In an oddball condition, tone frequency was used to differentiate deviants interspersed randomly among
a standard tone. Mismatch responses were observed at 60–100 ms after stimulus onset for frequency increases of 5% and
12.5% but not for similarly descending deviants. The response diminished when the silent inter-stimulus interval was
increased from 375 ms to 600 ms for +5% deviants and from 600 ms to 1000 ms for +12.5% deviants. In comparison to the
oddball condition the response also diminished in a control condition in which no repetitive standards were presented
(equiprobable condition). These findings suggest that the rat mismatch response is similar to the human MMN and indicate
that anesthetized rats provide a valuable model for studies of central auditory processing.
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Introduction

Any sudden changes in the perceptual environment may signal

a potential threat or opportunity. The rapid and automatic

detection of such changes is therefore important. In humans, the

preattentive detection of auditory changes is reflected by a

mismatch negativity (MMN) component of event-related poten-

tials [1]. MMN can be observed in response to rare tones

(deviants) interspersed among frequent tones (standards) at about

100–250 ms from stimulus onset [2].

MMN is usually interpreted to reflect a comparison process in

which a difference is detected between the current input and the

representation of the standards in auditory sensory memory

(memory-comparison hypothesis, [2–4]). Consistently, MMN is

generally observed when silent inter-stimulus intervals (ISIs) (2–

10 s, [5–7]) roughly corresponding to the length of the auditory

sensory memory (1.5–4 s, [8,9]) are used.

However, according to so-called refractoriness hypothesis, no

comparison process between the input from the deviant stimulus

and the memory trace of the standards is needed. Instead, it might

be that standard stimuli induce refractoriness or adaptation in

afferent pathways they repeatedly activate, so that deviant stimuli,

merely by activating a distinct and hence ‘‘fresh’’ set of such

pathways, only elicit an enhanced cortical N1 component instead

of a genuine MMN component ([2,4]; see also [10]). The memory-

comparison hypothesis cannot, therefore, be accepted until the

refractoriness hypothesis has been ruled out. This has been

achieved by testing whether the MMN can be elicited without the

standards in the series. The removal of standards has been

performed in two alternate ways. Either the standards have been

completely omitted, leaving only ‘control’ stimuli in the series

(deviant-alone condition) or in a more controlled fashion by

replacing standards with heterogeneous stimuli (with respect to the

feature that differentiates deviants from standards) all presented

with equal probability (equiprobable condition, see e.g. ref. [11]

for frequency changes). An important advantage in this equiprob-

able condition is that it maintains the same overall presentation

rate of the stimuli as in the oddball condition. These control

procedures have consistently resulted in more negative responses

to oddball-deviants than to control stimuli, indicating that a

genuine memory-based MMN (e.g. [11–13]) and its analogy in

infants (e.g. [14]) can be dissociated from refractoriness effects.

In animals, higher amplitude responses to deviants than

standards (in some cases of positive polarity and hence termed

‘mismatch response’ here) have been reported several times (e.g.

[15–24]). However, there are also reports of negative findings in

PLoS ONE | www.plosone.org 1 September 2011 | Volume 6 | Issue 9 | e24208



rats [25–26]. Furthermore, when testing the refractoriness

hypothesis, animal studies have relied solely on the deviant-alone

condition [20,23,26–29], except one study reporting hippocampal

mismatch responses in rabbits [30].

Here we study whether the mismatch response to frequency

changes in urethane-anesthetized rats reflects the operation of a

genuine memory-based comparison process by applying oddball

and equiprobable conditions (modified from ref. [11]) to

disentangle the mismatch response from possible refractoriness

effects. To investigate the temporal span of the auditory sensory

memory supporting the change detection, a previously unexplored

issue in rats, different inter-stimulus intervals (ISIs) were applied.

Across two animal groups, we used two different ISIs and two

different deviant-standard frequency separations (standard con-

stantly 4000 Hz, deviants 3800 Hz and 4200 Hz, ISIs 375 ms and

600 ms in one group and deviants 3500 Hz and 4500 Hz, ISIs

600 ms and 1000 ms in the other group). Based on prior studies of

mismatch negativity in humans (e.g. [5,6]) as well as mismatch

potential in rabbits [15] we expected larger amplitude difference

between standard and deviant responses for the shorter than the

longer ISIs (375 ms vs. 600 ms and 600 ms vs. 1000 ms, in group

1 and group 2, respectively). We also expected that the larger

deviant-standard frequency separation would better allow elicita-

tion of the differential response than the smaller separation (5% vs.

12.5%) since similar findings exist in humans (e.g. [31]).

Methods

Subjects and surgery
Two groups of adult male Spraque Dawley rats were used in the

study. Group 1 consisted of twenty animals, weighing 435–765 g,

and group 2 consisted of thirteen animals, weighing 305–370 g.

The animals were housed in metal cages, kept under a 12-h light-

dark cycle and fed ad libitum. The experiments were approved by

the Finnish National Animal Experiment Board (Permit code:

ESLH-2007-00662), and carried out in accordance with the

European Communities Council Directive (86/609/EEC) regard-

ing the care and use of animals for experimental procedures. The

presentation of the experimental blocks was counterbalanced

between the animals. After the experiments, the anesthetized

animal was immediately killed by cervical dislocation.

The animals were anesthetized with intraperitoneal injections of

urethane (1.2 g/kg dose, 0.24 g/ml concentration, Sigma-Aldrich,

St. Louis, MO, USA). Supplemental doses were injected if the

required level of anaesthesia was not obtained. The level of

anaesthesia was monitored by testing the withdrawal reflexes. The

head of the animal was attached to the stereotaxic instrument

(David Kopf Instruments, Model 962, Tujunga, CA, USA) using

45 degree ear bars. Under local anaesthesia (lidocaine 20%, Orion

Pharma, Espoo, Finland) the skin and underlying muscles were

removed and a unilateral craniotomy was performed to expose a

464 mm region of dura over the auditory cortex in the left

hemisphere (coordinates for the recording area: 4.5–6.5 mm

posterior and 3–5 mm ventral to bregma). The tip of a Teflon-

insulated stainless steel wire (200 mm in diameter, A-M Systems,

Chantilly, VA) was positioned on the surface of the dura on the

basis of on-line recorded epidural potentials to tone stimuli that

were similar to those later used in the actual experiment. Two

stainless steel skull screws (0.9 mm diameter, World Precision

Instruments, Berlin, Germany) positioned on the right side of the

brain above the cerebellum (AP 211.0, ML 3.0) and frontal cortex

(AP +4.0, ML 3.0) served as reference and ground electrodes,

respectively. Before the electrocorticogram recording, a headstage

composed of a screw and dental acrylic was attached to the right

prefrontal part of the skull to hold the head in place and allowing

removal of the right ear bar.

Electrocorticogram recording
Continuous electrocorticogram was first 10-fold amplified using

the AI 405 amplifier (Molecular Devices Corporation, Union City,

CA, USA), high-pass filtered at 0.1 Hz, 200-fold amplified, and

low-pass filtered at 400 Hz (CyberAmp 380, Molecular Devices

Corporation), and finally sampled with a 16-bit precision at 2 kHz

(DigiData 1320A, Molecular Devices Corporation). The data were

stored on a computer hard disk using Axoscope 9.0 data

acquisition software (Molecular Devices Corporation). The data

analyses were performed offline using Vision Analyzer (Brain

Products, Gilching, Germany), Matlab 7.5 (MathWorks Inc.,

Natick, MA, USA) and SPSS for Windows (SPSS Inc., Chicago,

IL, USA).

Stimulation
Sinusoidal tones of 50 ms in duration, including 5-ms rise and

fall times, were used as stimuli. The tones were created using the

Adobe Audition software (Adobe Systems Incorporated, CA,

USA), and played from a PC via an active loudspeaker system

(Studiopro 3, M-audio, Irwindale, CA, USA). The stimulation was

presented with the passive part of the loudspeaker system directed

towards the right ear of the animal at a distance of 20 cm. In all

conditions, the sound pressure level for each tone was 70 dB, as

measured with a sound level meter (type 2235, Bruel & Kjaer,

Nærum Denmark) with C-weighting (optimized for 40–100 dB

measurement) in the location where the animal’s right pinna was

during the recording.

For animal group 1, two stimulus conditions were presented. In

the oddball condition, two infrequent deviants (probability of

0.0625 for each deviant type), one of 3800 Hz (‘deviant-3800 Hz’)

and the other of 4200 Hz (‘deviant-4200 Hz’) were interspersed

with frequently occurring (probability of 0.8750) standards of

4000 Hz (‘standard-4000 Hz’). We selected such a small difference

(200 Hz, equals to 5%) between the standard and the deviant

sounds in order to reveal the possible attenuation of the mismatch

response from shorter to longer ISIs. The frequencies of the

sounds were well above rats’ hearing threshold [32]. The tones

were delivered in a pseudorandom fashion with the restriction that

consecutive deviants were separated by at least two standards. In

the oddball condition two separate stimulus blocks were presented

with inter-stimulus intervals of 375 ms and 600 ms (ISI, offset to

onset).

The equiprobable condition comprised of 16 tones with

frequencies ranging from 3300 Hz to 4800 Hz in 100-Hz steps

(probability 0.0625 for each). The tones were presented with an

offset to onset ISI of 375 ms. The range of tones applied also

included those used as deviants in the oddball condition. We term

these 3800 Hz and 4200 Hz tones presented in this condition

‘control-3800 Hz’ and ’control-4200 Hz’, respectively. Thus, these

two tones had the same probability of occurrence as when they

were used as deviants in the oddball condition.

In each block of the oddball condition (oddball-375 ms,

oddball-600 ms), and in the block of the equiprobable condition

(equiprobable), 1600 stimuli were presented. The order of the

three stimulus blocks was counterbalanced across the animals, with

pauses of 3–5 minutes between consecutive blocks.

For animal group 2, only two oddball stimulus blocks, with ISIs

of 600 ms and 1000 ms, were applied. In addition, the difference

in frequency between the standard and deviant stimuli was larger

than that for the animal group 1, the deviants being 3500 Hz and

4500 Hz in frequency with the standard retained at 4000 Hz

Memory-Based Mismatch Response in Rats
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(500 Hz, equals to 12.5% difference). Otherwise the stimulation

was carried out similarly as in group 1.

Data analysis
The data were off-line filtered at 0.1–30 Hz (24 dB/octave).

Sweeps from 50 ms before to 350 ms after stimulus onset were

averaged for the oddball condition for each of the types of deviants

and standards that immediately preceded these deviants. For the

equiprobable condition, a similar procedure was applied for each

type of control stimuli. The averaged waveforms were baseline-

corrected against the mean of their 50-ms pre-stimulus period.

Three different analysis windows were applied based on visual

inspection of the peaks of the deviant-standard amplitude

differences (Figures 1 and 2): 60–100 ms, 110–150 ms and 180–

220 ms from stimulus onset. Mean local field potential values

within these analysis windows were submitted to repeated

measures analysis of variance (ANOVA).

The memory-comparison versus refractoriness hypotheses were

tested by applying five levels for the factor Stimulus type for the

conditions with an ISI of 375 ms, (standard-4000 Hz, deviant-

3800 Hz, deviant-4200 Hz, control-3800 Hz, control-4200 Hz)

applied in animal group1. Then separate ANOVAs with three

levels of Stimulus type separately for the two animal groups and

data from different ISI conditions were applied (standard-

4000 Hz, deviant-3800 Hz, deviant-4200 Hz for the animal group

1 and standard-4000 Hz, deviant-3500 Hz, deviant-4500 Hz for

the animal group 2).

Huynh-Feldt-adjusted degrees of freedom were used whenever

the sphericity assumption was violated. Post-hoc analyses were

carried out using two-tailed paired samples t-tests.

Results

All types of stimuli evoked a prominent response of positive

polarity peaking at ,35 ms after stimulus onset (Figures 1, 3 and

4). This positive peak was followed by a smaller negative peak

around 100–150 ms from stimulus onset. Visual inspection

revealed a larger positive response to the higher frequency

deviants (deviant-4200 Hz and deviant-4500 Hz) in comparison

to the standards at approximately 60 ms to 200 ms post-stimulus

in the shorter ISI conditions in the both animal groups (375-ms ISI

in group 1, 600-ms ISI in group 2; Figures 1 and 4, respectively).

In the 60–100 ms analysis window for the 375-ms ISI condition

(animal group 1), a significant effect of Stimulus type on the

response amplitudes was found (standard-4000 Hz, deviant-

3800 Hz, deviant-4200 Hz, control-3800 Hz, control-4200 Hz),

F(4,76) = 3.1, p = 0.049. Further t-tests revealed a significantly

higher response amplitude to deviant-4200 Hz than to standard-

Figure 1. Local field potentials for the short (375 ms) and long (600 ms) ISIs in the oddball condition in animal group 1. Grand-
averaged epidural potentials to standards and deviants elicited in the Oddball-375 ms and Oddball-600 ms conditions. The rectangle indicates the
latency in which the significant difference between responses was found (60–100 ms after stimulus onset). The y-axis indicates the stimulus onset.
doi:10.1371/journal.pone.0024208.g001
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4000 Hz, t(19) = 2.7, p = 0.015, but no significant difference was

observed between the responses to standard-4000 Hz and deviant-

3800 Hz (Figure 1). Most importantly, the responses to deviant-

4200 Hz were significantly higher in amplitude than those to the

control-4200 Hz (the same tone presented in the equiprobable

condition), t(19) = 2.6, p = 0.017. No significant difference was

found between the responses to deviant-3800 Hz and control-

3800 Hz (Figure 3). The mean amplitude was 14.7 mV for

deviant-4200 Hz, -7.6 mV for the standard-4000 Hz preceding

deviant-4200 Hz, and -27.2 mV for control-4200 Hz.

When the longer ISIs (600 ms) with deviant-3800 Hz and

deviant-4200 Hz were used (animal group 1), no differences

between the responses to the different stimuli were found. In

addition, no differences were found when later time windows

(110–150 ms and 180–220 ms after stimulus onset) were analyzed.

However, when the larger (12.5%) frequency separation

between the standards and deviants were applied (animal group

2), differences between the stimulus types were found also with

600 ms ISI. Responses to standard and deviant tones in Oddball-

600-ms and Oddball-1000-ms conditions for the animal group 2

are shown in Figure 4. In the analysis window of 60–100 ms after

stimulus onset, there was a significant effect of Stimulus type

(standard-4000 Hz, deviant-3500 Hz, deviant-4500 Hz), F(2,24)

= 5.5, p = 0.011. Subsequent t tests revealed that this effect was

due to a significantly more positive response to the deviant-

4500 Hz tones compared to standard-4000 Hz tones, t(12) = 2.7,

p = 0.019, but a lack of such differential response between deviant-

3500 Hz and standard-4000 Hz (Figure 4). The mean amplitude

was 62.6 mV for the deviant-4500 Hz and 37.2 mV for the

standard-4000 Hz tone preceding it.

When a longer ISI (1000 ms) was used, no differences between

responses to the different stimuli were found. In addition, no

differences were found when later time windows (110–150 ms and

180–220 ms after stimulus onset) were analyzed.

Discussion

Brain electrical responses were recorded epidurally in urethane-

anesthetized rats above the auditory cortex (A1) during auditory

oddball experiments. In both groups of animals, a differential

response of positive polarity (deviant minus standard, i.e. a

mismatch response) was observed at 60–100 ms from stimulus

onset for melodically ascending (deviants of 4200 Hz or 4500 Hz)

but not for descending (deviants of 3800 Hz or 3500 Hz) changes

in a series of repeating standard stimuli of 4000 Hz. The mismatch

response disappeared when the ISIs were prolonged from 375 ms

to 600 ms (+5% change in frequency) in group 1 and also when

the ISIs were prolonged from 600 ms to 1000 ms (+12.5% change

in frequency) in group 2.

The attenuation of the mismatch response from shorter to

longer ISIs probably indicates that the neural representation of

standards provided a template for the deviant detection of a +5%

deviation from the standard frequency and was maintained for at

least 375 ms. This representation is likely to depend on the

Figure 3. Local field potentials to the deviants in the oddball
condition and to the control stimuli in the equiprobable
condition in animal group 1. In both conditions the ISI was 375 ms.
The rectangle indicates the latency in which the significant difference
between responses was found (60–100 ms after stimulus onset). The y-
axis indicates the stimulus onset.
doi:10.1371/journal.pone.0024208.g003

Figure 2. Difference waves for the oddball responses in animal
group 1. Difference waves (deviant minus standard) in Oddball-375 ms
and Oddball-600 ms conditions separately for both deviant types
(deviant-3800 Hz and deviant-4200 Hz). The rectangles indicate the
latency windows which have been applied in the data analysis (60–
100 ms, 110–150 ms and 180–220 ms after stimulus onset).
doi:10.1371/journal.pone.0024208.g002
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magnitude of deviance and fades rapidly over longer periods, but

after 600 ms, it still allowed the detection of a +12.5% deviation

from the standard frequency, most probably because a more

robust representation of the deviants. The 5% difference in

frequency applied between the standards and deviants was close to

the behaviorally assessed Weber ratios of frequency difference

limen in awake rats (from 3.7 to 7.3%, [33]). Thus, the memory

trace had to be highly accurate in representing the standard

frequency for at least 375 ms.

In the present study mismatch responses were observed only for

melodically ascending deviants. A similar asymmetry in change

detection favoring the ascending over descending frequency

deviations has previously been found in humans using both

neurophysiological [34,35] and behavioral [36] measures. To-

gether these and the present finding suggest a novel phylogenetic

continuum in central auditory processing, one that has possibly

evolved across animal species in response to shared environmental

demands on the auditory system.

An important aim of the present study was to test whether the

memory trace formed by the standards is needed to elicit the

mismatch response. To this end, we applied a control condition

where no repetitive standards were presented, i.e. the equiprob-

able condition [11], and found that the response to the control

stimulus was lower in amplitude compared to the response to the

deviant stimulus recorded in the oddball sequence. This suggests

that neuronal refractoriness alone cannot account for the

difference in potentials we observed for the rare oddball deviants.

Unlike the deviant-alone condition used in previous studies in

anesthetized rats to test the refractoriness hypothesis [23,26–28],

the equiprobable condition applied here preserved the same

overall presentation rate of the stimuli as in the oddball condition.

For this reason the equiprobable condition is a more valid control

for possible refractoriness effects than the deviant-alone condition.

One may argue that the responses to the 3800 Hz and 4200 Hz

tones may be smaller in amplitude in the control than in the

oddball condition because of the smaller frequency range between

tones in the control condition (steps of 100 Hz in equiprobable

condition vs. 200 Hz in oddball condition). However, it is more

likely that the opposite is true, namely, because the tones in the

equiprobable condition are presented randomly from a wider

frequency range than in the oddball condition. Thus, the

frequency separation between control stimulus and previous (or

nearby) tones can be much larger than the standard-deviant

frequency separation in oddball condition; hence frequency-

specific refractoriness is less likely to occur (see also [11]). Please

note also, that although no equiprobable condition was applied

with the 600-ms ISI (only for the 375-ms ISI), refractoriness effects

are unlikely to account for the mismatch response observed using

the longer ISI either, as the oddball-deviant vs. equiprobable

control stimulus comparison ruled it out for the shorter (375-ms)

ISI condition which is more prone to possible refractoriness effects.

Mismatch responses have been previously observed in animals

with various anaesthetic agents, including urethane [16,21,23],

ketamine [20,29], and pentobarbital [18,27]. On the other hand,

mismatch responses in intracortical field potentials have not been

observed in awake rats, even for frequency changes that have

clearly been above the discrimination threshold, when 800-ms

silent ISIs have been used [25]. Thus, it seems likely that urethane-

induced anaesthesia may leave the memory and change detection

functions of the rat auditory system unaffected. In humans,

propofol anaesthesia has led to inconsistent findings of MMN

during deep sedation (e.g. [37,38]). Further systematic enquiries

on the effects of the type and the level of anaesthesia on MMN as

well as on its animal analogues would provide invaluable

information on the neuropharmacology of the core perceptual

mechanisms.

While the epidural local field potential recording applied here

reflects synchronized post-synaptic activity of hundreds or

thousands of neurons, intracranial single cell recordings provide

a different level of analysis to the auditory change detection.

Neuronal stimulus-specific adaptation (SSA) to a repeated sound,

which does not fully generalize to the other sounds, has been

suggested as a single-cell correlate of scalp-recorded MMN [39].

SSA to repeated sound frequency was initially reported in cat

auditory cortex [40] and relatively weak levels of SSA was also

found in the auditory cortex of awake rats [25]. In addition, some

subcortical structures in rats contribute significantly to the

elicitation of SSA (inferior colliculus: [41]; medial geniculate

body: [42]; for a relatively weak levels of SSA in mice, see also

[43]). Since some of these studies have been carried out in the

same preparation as the one used in the present study, i.e. in

urethane anesthetized rats, a closer inspection of their results is

fruitful. In the medial geniculate body of the thalamus [42], SSA

was best observed when the non-stimulated ISI was 150 ms or

400 ms while only few neurons responded in a stimulus-specific

manner when ISI was 2000 ms. This finding is in agreement with

the present results showing degrading of the mismatch response

from shorter to longer ISIs. In the inferior colliculus [41], the

difference between responses to the deviant and standard stimulus

was positively correlated with the amount of frequency separation

between the stimulus types. This is well in line with our results

showing that the larger frequency separation allowed elicitation of

the mismatch response with the same ISI (600 ms) that was too

long when the smaller separation was applied. It is noteworthy that

Figure 4. Local field potentials for the short (600 ms) and long
(1000 ms) ISIs in the oddball condition in animal group 2.
Grand-averaged epidural potentials to standards and deviants elicited
in the Oddball-600 ms and Oddball-1000 ms conditions. The rectangle
indicates the latency in which the significant difference between
responses was found (60–100 ms after stimulus onset). The y-axis
indicates the stimulus onset.
doi:10.1371/journal.pone.0024208.g004
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no studies of SSA have applied the equiprobable control condition

(or deviant-alone condition either). This control condition would

allow the testing of whether SSA could serve as a neural basis for

the memory-based change detection mechanism. In bridging this

gap between MMN and SSA, local field potentials recorded

simultaneously with single-cell responses (see ref. [25]) would

provide a valuable method.

In conclusion, we observed mismatch responses in urethane-

anesthetized rats to rare auditory changes with a set of

characteristics similar to those of MMN in humans. These

characteristics include higher sensitivity to ascending than

descending frequency changes [34], dependence on the inter-

stimulus interval (e.g. [5]), and a memory-based comparison

process as an underlying mechanism (e.g. [11,12]).
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6. Mäntysalo S, Näätänen R (1987) The duration of a neuronal trace of an
auditory stimulus as indicated by event-related potentials. Biol Psychol 24:

183–195.

7. Sams M, Hari R, Rif J, Knuutila J (1993) The human auditory sensory memory
trace persists about 10 s: Neuromagnetic evidence. J Cogn Neurosci 5: 363–370.

8. Cowan N (1984) On short and long auditory stores. Psychol Bull 96: 341–370.
9. Darwin CJ, Turvey MT, Crowder RG (1972) An auditory analogue of the

Sperling partial report procedure: Evidence for brief auditory storage. Cognit

Psychol 3: 255–267.
10. May PJ, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited

auditory deflection, explained. Psychophysiology 47: 66–122.
11. Jacobsen T, Schröger E (2001) Is there pre-attentive memory-based comparison

of pitch? Psychophysiology 38: 723–727.
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